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Preface

This book was written with the aim of providing a unified treatment, suitable for beginning
researchers, of the properties and applications of Alfven waves and related waves in magne-
tized plasmas, that is, ionized gases in a magnetic field strong enough to affect the behaviour
of the ions and electrons. These waves are among the most fundamental features of magne-
tized plasmas. The term "Alfven wave" is used with a number of different meanings in the
literature, and it is intended in this book to provide a guide to these different usages.

The book covers the basic properties of the low-frequency wave modes in magnetized
plasmas, the Alfven waves and magnetoacoustic waves. (Henceforth in this book the general
term 'Alfven waves" will be understood to encompass magnetoacoustic waves as well). In
addition, it covers results of the latest research in applications of the waves in the contexts of
laboratory, space and astrophysical plasmas, in particular some of the results achieved since
the publication over a decade ago of the two "standard" references on Alfven waves, The
Alfven Wave by Hasegawa & Uberoi (1982), and An Introduction to Alfven Waves by Cross
(1988). This book also covers a somewhat broader range of topics than the two earlier books.

There is much potential for cross-fertilization between the different areas of application of
plasma physics. This book aims to facilitate this cross-fertilization by showing the common
features of the physics of Alfven waves across the various plasma environments. There is, of
course, an enormous volume of work on Alfven waves in the literature, so I have primarily
selected topics in which I have research experience. Hopefully this selection will give starting
researchers a flavour of this interesting field of physics, and at least help to point them in the
right direction for their specific interests.

The book deals especially with nonideal effects, such as multi-species, collisional and
kinetic effects. These physical processes have consequences for the dispersion relations and
absorption properties of linear and nonlinear Alfven waves that are not predicted by ideal
or pure magnetohydromagnetic (MHD) theory. It has been common in the literature to use
ideal MHD theory to treat the behaviour of the waves, particularly when treating problems
of propagation in nonuniform plasmas. This approach has the virtue that the basic equations
are relatively simple differential equations, which may often be solved analytically. They
lead to many interesting mathematical problems, such as the treatment of the absorption of
wave energy at the "Alfven resonance" by analysing the behaviour of the solutions at the
singularities of the differential equations, as well as nonlinear properties of the waves.

However, the emphasis of this book is the analysis of the effects of nonideal corrections to
the MHD theory on the properties of the waves. These corrections are intended to reflect the
physics of the realistic applications of the theory more closely.
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Some of the corrections which have been treated in the literature are: finite frequency
effects (i.e. allowance for the wave frequency to approach the ion cyclotron frequency), in-
clusion of minority ion species and charged dust grains, resistivity, viscosity, friction with
neutral particles, and kinetic theory effects. All of these modifications of the plasma change
the dispersion relation of the waves, and most cause damping of the waves. The disadvantage
of including nonideal effects compared to the MHD approach is that the starting equations are
higher-order fluid differential equations, in the case of finite frequency, resistivity and viscos-
ity effects, or are coupled integro-differential equations in the case of kinetic theory effects.
The greater complexity of the equations reflects the greater number of wave modes allowable
in the plasma when nonideal effects are taken into account, and they can often only be solved
numerically.

A unique feature of the "shear" Alfven wave in ideal MHD is the fact that wave energy
propagates along the magnetic field, regardless of the angle of the wave front with the mag-
netic field. This feature leads to several fascinating phenomena, the discussion of which in the
literature has at times been controversial, such as localized propagation, the absence of discrete
eigenmodes in nonuniform plasmas, and resonance absorption. This book endeavours to pro-
vide a coherent and unified explanation of such phenomena in terms of the above-mentioned
nonideal effects.

The plan of the book is as follows. In the first chapter we establish the basic models used
to describe the plasma, and give the equations used in the subsequent analysis of the waves.
The multi-fluid, ideal MHD and kinetic theory models are discussed. Chapter 2 deals with the
waves in a uniform plasma, employing the different plasma models, and then Chapter 3 dis-
cusses the waves in nonuniform plasmas, in particular the case of stratified plasmas. Chapter 4
follows on from Chapter 3 with a treatment of surface waves in strongly nonuniform plasmas.
The instabilities of nonequilibrium plasmas that produce Alfven and magnetoacoustic waves,
and the theory of nonlinear Alfven waves, and the instabilities of the waves themselves, are
reviewed in Chapter 5. The applications of Alfven waves in laboratory plasmas are discussed
in Chapter 6, including the use of the waves in devices for controlled nuclear fusion. Chapter
7 investigates the natural occurrence of the waves in space and solar plasmas, ranging from
the Earth's magnetosphere to the interplanetary plasma and the Sun's atmosphere. Finally, in
Chapter 8 we look at two problems in astrophysical plasmas: waves in partially ionized and
dusty interstellar clouds, and in the relativistic and very strongly magnetized plasma of pulsar
magnetospheres.

I owe a great deal to my close research collaborators on the physics of Alfven waves in
Sydney, initially Ian Donnelly and, more recently, Sergey Vladimirov, for their stimulation.
Amongst my overseas collaborators, I would like to particularly thank Frank Verheest and Jun-
Ichi Sakai. I have also drawn much inspiration over the years from the group of Australian
Alfven wave enthusiasts, including the late Frank Paoloni, Rod Cross, Bob Dewar and Robin
Storer. Don Melrose has inspired me through his vast knowledge of plasma physics, and has
provided a stimulating research environment in Sydney. Dave Galloway has been my valued
local expert on solar Alfven waves. I thank Bob May and Les Woods for introducing me
to Alfven waves at the beginning of my career. Lastly, my students George Rowe, Robert
Winglee, Ken Wessen and Lap Yeung, have made invaluable contributions to our research in
Sydney on Alfven waves.
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Part of the writing of this book was accomplished during a study leave spent at Toyama
University, Japan, the University of Gent, Belgium, and the Max Planck Institute for Extrater-
restrial Physics, Garching, Germany, and I thank Professors Sakai, Verheest and Morfill for
their hospitality. The work encompassed in this book has also been supported by grants from
the Australian Research Council.
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June 2001 Neil Cramer
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1 Descriptions of Magnetized Plasmas

1.1 Introduction

It was discovered, some five decades ago, that low-frequency electromagnetic waves are able
to propagate in conducting fluids, such as plasmas, even though they cannot propagate in rigid
conductors. Hannes Alfven, in 1942, investigated the properties of plasmas, assuming the
plasma medium to be a highly conducting, magnetized and incompressible fluid. He found
that a distinctive wave mode arises in the fluid, propagating along the magnetic field direction
(Alfven 1942). This wave is now called the shear or torsional Alfven wave. The existence of
the wave, in the conducting fluid mercury, was experimentally verified by Lundquist (1949).
The importance of the waves discovered by Alfven for space and astrophysical plasmas was
soon realized, and the compressible plasma case, which leads to the fast and slow magneto-
acoustic waves in addition to the shear Alfven wave, was treated by Herlofsen (1950).

The Alfven and magnetoacoustic waves, which are the basic low-frequency wave modes
of magnetized plasmas, have been the subject of intense study in the succeeding decades.
The main reason for the great interest in these waves is that they play important roles in
the heating of, and the transport of energy in, laboratory, space and astrophysical plasmas.
The "Alfven wave heating" scheme has been investigated theoretically and experimentally
as a supplementary heating scheme for fusion plasma devices, and it has been invoked as a
model of the heating of the solar and stellar coronae. The waves are believed to underlie
the transport of magnetic energy in the solar and stellar winds, transfer angular momentum
in interstellar molecular clouds during star formation, play roles in magnetic pulsations in the
Earth's magnetosphere, and provide scattering mechanisms for the acceleration of cosmic rays
in astrophysical shock waves. These and other applications of Alfven and magnetoacoustic
waves in the fusion, space physics and astrophysics fields are the subject of this book.

In realistic physical problems in all plasma environments, Alfven and magnetoacoustic
waves propagate in nonuniform plasmas. As a result, the waves may be reflected, transmitted
or absorbed. The practical question of the heating to high temperatures of laboratory fusion
plasmas that are contained in a vessel, and are therefore necessarily nonuniform, involves
such processes. The space and astrophysical environments where the waves are found are also
inevitably nonuniform.

Wave energy can be concentrated in plasma regions of nonuniform density and/or mag-
netic field, and in the limiting case of density or magnetic field discontinuities, when a well-
defined surface is present, wave eigenmodes exist whose amplitudes decay approximately
exponentially in each direction away from the surface. These are the Alfven surface wave
eigenmodes, which have been shown by theory and experiment to play an important role

The Physics of Alfven Waves. Neil F. Cramer
Copyright © 2001 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40293-4



2 1 Descriptions of Magnetized Plasmas

in Alfven wave heating, because they can be easily excited by an antenna in a laboratory
plasma. Alfven surface waves are also expected to exist in astrophysical plasmas where jumps
in density or magnetic field occur, such as the surfaces of magnetic flux tubes in the solar and
stellar atmospheres, or the boundaries between plasmas of different properties in the Earth's
magnetosphere. The properties of the waves when they propagate in nonuniform plasmas,
including the phenomenon of Alfven surface waves, are treated here in some depth.

A number of different models of the plasma, namely the multi-fluid, ideal MHD, Hall-
MHD and kinetic theory models, are presented in this chapter, as well as a brief summary of
Fourier transform theory. The results are used in later chapters to describe the self-consistent
response of the plasma medium to the presence of the waves. All the models use Maxwell's
equations for the electric field E and magnetic field B\

V . £ = — (1.1)
£o

Y - J B = 0 (1.2)

8B
(1.3)

dt

1 f) W
-2^. d-4)cz at

Here pe is the electric charge density, J is the current density, and c is the speed of light in
vacua. SI units are used throughout.

1.2 The Multi-Fluid Equations

We consider first the multi-fluid model of a plasma, in which each distinct species of particle
is specified by the index a, with mass ma and charge Zae, where e is the fundamental unit
of electric charge. Each collection of particles of a specific type is supposed to act as a fluid,
with its own velocity va, rnass density pa, number density na and pressure pa. Each fluid
is "collision dominated". This means that the time for relaxation of each type of species to
a Maxwellian velocity distribution with a unique temperature Ta, through collisions of like
particles, is short compared with the other time-scales of interest. Each fluid may be acted on
by the electric and magnetic fields, and may act on the other fluids via collisions, which may
have characteristic times of the order of the time-scales of interest.

The equation of motion for the fluid corresponding to the species a is

^L = _ J_Vpa + ̂ (E + VaXB)_y Vaa,(Va _ Va>) (1.5)
dt pa ma

 a ^f

where uaa< is the collision frequency of a particle of species a with particles of species a'.
The continuity equation for each fluid is, if sources and sinks for the particles are neglected,

^p+ V-(*,»„) = 0. (1.6)
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A partial pressure pa = nak&Ta, where &B is Boltzmann's constant, may be associated with
each species. The thermal speed for species a is then defined as

Va = ^kBTa/ma. (1.7)

A strong magnetic field B may enable the pressure parallel to B to be different to the pres-
sure perpendicular to B, leading to distinct parallel and perpendicular temperatures for each
species. Such concepts are useful if the relaxation times for the pressures in the two directions
are longer than the wave periods being considered.

The multi-fluid equations (1.5) and (1.6) may be combined and simplified under various
assumptions, as is covered in elementary plasma physics texts such as the books by Schmidt
(1979) and Tanenbaum (1967). A careful discussion of the basis of multi-fluid models in
terms of relative time-scales is to be found in the book by Woods (1987).

The simplest approximation of the multi-fluid model is that of magnetohydrodynamics
(MHD), where the inertia of the electron fluid is neglected, and the motions of the different
ion and neutral species are combined such that the plasma is assumed to act like a single fluid.
If the collisions between electrons and ions are allowed for, the electron momentum equation
reduces to Ohm's law, which relates the electric field E1 in the rest frame of the fluid to the
current density J.

The form of Ohm's law used in "collisional" or "resistive" MHD is

E' = E + v x B =:??J (1.8)

where v is the single fluid velocity, and 77 is the electrical resistivity, related to the electron-ion
collision frequency z/ei by

f] = I/eiAoU>pe (1.9)

where

/ 2 \ !/2

(1 .10)

is the electron plasma frequency. Here ne is the electron density. The "ideal" MHD model, in
which the resistivity is neglected in Eq. (1 .8), is discussed further in the next section.

1.3 The Magnetohydrodynamic Model

Magnetohydrodynamics, or hydromagnetics, is a fluid model which describes a magnetized
plasma in which both the ions and the electrons are said to be strongly magnetized or tied
to the magnetic field lines, which is to say that the magnetic field is strong enough that the
cyclotron periods of all the charged species are well below all other time-scales of interest.
The entire plasma acts like a single normal fluid with a single well-defined temperature and
pressure. The equations derived from the multi-fluid equations (1.5) and (1.6) correspond to
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the plasma being treated as a single fluid of density p and velocity v, and include the continuity
equation:

o ( i . i i )

and the equation of fluid motion:

p^. = -Vp + J x B (1.12)
dt

where p is the thermal pressure of the plasma particles, that is, the sum of the partial pressures
due to each species of plasma particle.

The third of the MHD equations, in the presence of resistivity, is Ohm's law (Eq. 1.8). In
the derivation of Eqs. (1.8) and (1.11) (for example by Woods, 1987), the plasma is assumed
to be charge neutral, and the electron mass is assumed negligible compared to the ion mass.
In the absence of resistivity or other collisional processes, the magnetic lines of force are said
to be frozen-in to the plasma. This concept is valid provided there is no electric field along
the magnetic field direction.

We also need an equation of state linking the pressure to the other state variables, such as
the adiabatic equation of state

A(w-7) = 0 (1.13)

with 7 the adiabatic index. On the other hand, for an incompressible plasma, the equation of
state is

^ = 0 (1.14)
dt

or equivalently, from Eq. (1.11),

V-v = 0. (1.15)

In the case of an adiabatic equation of state for a nonionized fluid, the speed of sound is
given by

cs = (7P/V)1/2. (1-16)

We thus see from Eqs. (1.13) and (1.14) that the incompressible equation of state (1.14) cor-
responds to an infinite adiabatic index and infinite speed of sound.

In Ampere's law Eq. (1 .4) in the MHD model we usually neglect the displacement current
term, the reason being that the characteristic speeds are normally much less than the speed of
light in vacua (an exception is considered in Chapter 8). In this case we may write, for the
magnetic force in Eq. (1.12),

J x B = -^—VB2 + —(B • V)J3. (1.17)
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Table 1.1: Representative values of the electron density ne, temperature T, magnetic field B, Alfven
speed I?A, sound speed cs and plasma /3, in different physical regimes.

Laboratory plasma

Ionosphere

Solar corona

Solar atmosphere

Gaseous nebula

Interstellar gas

ne (m-3
)

1018-1024

IO8 - 10

IO13

IO18

IO9

IO6

12

r(K)
io6

io3

IO6

IO4

IO2

IO2

B(T) t;A(ms *)
1

10-
10

10

10

10

-4.5

-4

-1

-9

-9

10
10

7-104

7-105

IO6

IO6

IO3

IO4

cs(ms l )

10

10

10

10

10

10

5

3

5

4

3

3

ft
10~4-102

< io-4

io-2

io-4

1
io-2

The first term on the right-hand side of Eq. (1.17) corresponds to minus the gradient of an
effective magnetic pressure,

PB = £2/2A<o (1.18)

which may be combined with the particle pressure p in Eq. (1.12) to give an effective total
pressure

PT = P + PB. (1.19)

The strength of the particle pressure compared with the magnetic pressure is measured by
the plasma beta,

0= - - - (1.20)
P

0 is proportional (with the constant of proportionality depending on the equation of state) to
the ratio of the square of the sound speed cs to the square of the Alfven speed VA, which as
we shall see is the characteristic speed of low-frequency shear Alfven waves , and is given by

(1.21)

Thus for an adiabatic equation of state, we have

P=-4-- (L22)

7<

Typical values of VA, cs and 0, for the particle densities, temperatures and magnetic fields
applicable to the various physical regimes to be covered in this book, are shown in Table 1.1.

It is also useful to distinguish the ion and electron betas separately:

(L23)

where p\ and pe are the partial pressures of the ions and the electrons respectively. We note
that in an incompressible plasma, 0 can be finite, even though cs becomes infinite.
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The second term on the right-hand side of Eq. (1.17), (B • V)£?/^o, can be decomposed
into two components. Defining b as the unit vector in the direction of the magnetic field, the
component aligned with the magnetic field may be written as

66- V52/2^o.

This component cancels the field-aligned component of the magnetic pressure gradient . Thus
only the components of the magnetic pressure gradient perpendicular to the magnetic field
exert force on the plasma. If this magnetic pressure gradient force exists, there is said to be
magnetic compression.

The component of (B • V)B/jUo that is perpendicular to the field may be written as (e.g.
Kivelson 1995a)

~nB2/^Rc (1.24)

where ?i is the outward normal vector and Rc is the local radius of curvature of the magnetic
field. This component is antiparallel to the radius of curvature of the field lines, and is called
the magnetic tension or the curvature force. It is present only for curved field lines, and is
analogous to the perpendicular force exerted by tension in a curved string. It acts to reduce the
curvature of the field line. These concepts of magnetic compression and tension are useful for
gaining an intuitive idea of the behaviour of Alfven waves, as we will find in the next chapter.

A generalization of the MHD model, sometimes used to describe waves in collisionless
plasmas with anisotropic pressures and a strong magnetic field, is the CGL or double-adiabatic
approximation (Chew, Goldberger & Low 1956, Schmidt 1979). Replacing Eq. (1.13) are two
adiabatic equations of state for the pressures parallel and perpendicular to the magnetic field:

, . .at \ fr ) at \pB J

The first relation follows from parallel motion of the particles being independent of the perpen-
dicular motion, while the second expresses constancy of magnetic moments (Schmidt 1979).
Instead of Eq. (1.12) with Eq. (1.17), we have two equations of motion for the parallel and
perpendicular components of v:

(1.26)

1.4 The Hall-MHD Model

The "two-fluid" model is the next fluid approximation, and assumes the plasma to consist of
an electron fluid and a single ion species fluid. The electrons are considered to be magnetized
(electron cyclotron period much shorter than time-scales of interest), while the ions are not
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completely magnetized (ion cyclotron period comparable with the other time-scales). In its
simplest form this model is often referred to as Hall MHD, since the Hall term is present on
the right-hand side of Ohm's law (assuming resistivity to be negligible):

E + v x B - — J x J3, (1.28)
n\e

where n\ is the ion number density. The absence of the Hall term in Ohm's law Eq. (1.8) used
in MHD means that ion cyclotron effects are absent in the MHD model, in other words the ion
cyclotron frequency

«i = — (1.29)
in\

is assumed much higher than the wave frequency, whereas in the Hall-MHD model the wave
frequency can be comparable with the ion cyclotron frequency.

In the static Hall effect, for a conductor of finite extension across the current flow and a
static magnetic field applied perpendicular to the current, an electric field across the conductor
is observed. In dynamic situations such as waves, alternating Hall currents are produced. The
Hall-MHD model allows wave frequencies up to and beyond the ion cyclotron frequency, but
below the electron cyclotron frequency, to be considered.

We can employ the single-particle point of view of a plasma to provide a physical ex-
planation of the effect of the Hall term. If the motion of a particle is followed over several
gyration orbits, that is if the time-scale of interest, such as the period of a wave, is larger than
the gyration period about the magnetic field, the particle drifts in a direction perpendicular to
both the electric and magnetic field with the velocity

uD = ExB/B2. (1.30)

This drift does not introduce currents into the plasma, since MD is independent of both the
charge q and the mass ra of the particle. However, the electrons and ions will move in dif-
ferent directions if the wave frequency becomes comparable with the ion cyclotron frequency.
Such differential motions of charges constitute a current, the Hall current. Another way of
expressing this is to say that the individual electron and ion Hall currents no longer cancel
each other.

The Hall-MHD model is used to study the wave heating of laboratory plasmas at frequen-
cies approaching the ion cyclotron frequency (see Chapter 6). It has also been found to capture
important macroscopic effects in the simulation of the interaction of the solar wind with the
Earth's magnetosphere (Winglee 1994, Huba 1996) and of magnetic field line reconnection
(Lottermoser & Scholer 1997). Ion cyclotron effects may also play a role in solar coronal
heating (Cranmer, Field & Kohl 1999) (see Chapter 7).

As an extension of the Hall-MHD model of the plasma, the nonideal effects of resistivity,
electron inertia and electron pressure that arise from the species equations of motion can be
included in the following generalized Ohm's law:

- + — J x B- — Vpe- (1-31)-
n\e2 at n\e n\e
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The first term on the right-hand side of Eq. (1.31) is the usual resistive term and the second
term is the electron-inertia term, which allows the effect of a finite plasma frequency to be
included. The third term is the Hall term and the fourth is an electron pressure gradient
term, with pe the electron gas pressure. This generalized Ohm's law allows the description of
wave modes with very short wavelength in a direction perpendicular to the magnetic field, an
important aspect of the process of Alfven resonance absorption as we will see in Chapters 2
and 3.

1.5 Fourier Transforms

Both the fluid and kinetic descriptions of a plasma employ the theory of Fourier transforms ,
which we summarize here. If the equilibrium state of the plasma is assumed uniform, and the
fluid equations are linearized, the coefficients in the resulting wave equations are constants.
A Fourier transform in space and time will then yield an algebraic equation in the Fourier
amplitude of, for example, the perturbation velocity v\, which is a function of time t and
space x. The Fourier transform of v\ is defined as

dtd3xexp(i(u>t -k -x))vi(t,x) (1.32)

with the inverse transform

/

dujd^k
77—77- exp(-i(urt - k • x ) } v ( u j , k). (1.33)
(*K)

Taking the Fourier transform in the uniform plasma case is simply equivalent to seeking plane
wave solutions, that is, to assuming the form

exp [!(&#£ + kyy + kzz - u>t}} (1.34)

for the wave fields, with kx, ky and kz the constant wavenumbers in a Cartesian coordinate
system. However, this is not the case for a nonuniform plasma or for nonlinear wave fields,
where Fourier methods are not so useful.

1.6 The Kinetic Theory

The disadvantage of a fluid description of a plasma is that some effects, such as Landau and
cyclotron damping, caused by a resonance of the wave with particles, cannot be modelled. The
description of such effects requires a kinetic theory of the plasma. The theory of collisionless
plasmas is well developed, so we can simply quote the relevant results from the theory, for
example from the book of Melrose (1986).

The kinetic theory proceeds from the Vlasov theory of the collisionless plasma. After
Fourier transforming Maxwell's equations and the Vlasov equations for the ions and electrons,
we use expansions in terms of Bessel functions to derive the frequency and wavenumber
dependent dielectric tensor /i^, which is defined in terms of the conductivity tensor <7i ?:

Kij(u,k) = S i j + —cr^Kfc). (1.35)
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The results of the calculation of the dielectric tensor from Vlasov theory are given in the
Appendix. The plasma is said to be spatially dispersive if Kij depends on k.

The Fourier transform of the current density induced by the electric field imposed on the
plasma is given in component form by

u , f c ) . (1.36)

The wave equation for the electric field derived from Maxwell's equations is

1 82E dJ

Fourier transforming Eq. (1.37) and using Eq. (1.35) and Eq. (1.36) yields

^ij(^,k}Ej(u,k} = 0 (1.38)

with the wave tensor
2

A . . (, , l-i\ — / / „ . /„ . L**J\..\-L-T<'..(/iL»\ (1 ^Q"^I j \(JJ , n> J — —— \n,i Avj — n, Uij J -\~ l\.<ij \LU ) t\>) \ 1 .Js)

where k2 = k^ + k2-+-k2. The dispersion equation is then obtained by setting the determinant,
A(CJ, k ) , of the 3 x 3 matrix Azj(u, k) to zero.

For example, in the next chapter we will assume the wavevector to lie in the x-z plane, so
ky — 0, in which case the determinant is

K-21 -C2fc2/W2 + A'22 A'23

c2 kx kz/w
2 + A3i A'32 - c2 fc2 /ui2 + A'33

(1.40)

The dispersion relation for some mode M is given by a solution, cj = CJM(&)> of the
dispersion equation A = 0. The direction of the electric field E ( u M ( k ) , k ) for waves in the
mode M is described by the unimodular polarization vector CM(^)» which satisfies the relation

e M (*0-e^( fc ) = l. (1.41)

An important quantity that characterizes the magnitude and direction of the flow of energy
in waves is the group velocity vector, given by

The energy flux in the waves is equal to the group velocity times the energy density in the
waves. Provided the plasma is not spatially dispersive (i.e., there is no thermal energy in the
wave (Stix 1992)), the energy flux is purely due to the electromagnetic energy flux, given by
the Poynting vector

S = ExB/n0. (1.43)

In that case, the group velocity vector has the same direction as the Poynting vector. Further
discussion of energy flux and the group velocity is to be found in the books by Cross (1988)
and Melrose( 1986).
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2 Waves in Uniform Plasmas

2.1 Introduction

In this chapter we consider the properties of small amplitude linear waves in a spatially uni-
form plasma, using the models of the plasma introduced in Chapter 1. The properties of small
amplitude waves in the uniform plasma form a basis for the discussion in following chapters
of the waves in nonuniform plasmas, and of nonlinear waves. The waves will be assumed to
have frequencies below or of the order of the ion cyclotron frequency, and we shall concentrate
on waves that are predominantly electromagnetic. The classification of these waves is not as
difficult a task as in the general case for the full range of frequencies covering the electron
plasma frequency and the electron cyclotron frequency. In that case recourse may be made to
techniques such as the Clemmow-Mullaly-Allis diagram to classify the waves (Stix 1992).

We discuss the waves first with the ideal MHD or hydromagnetic model, suitable for low-
frequency waves in thermal plasmas with no interspecies collisions. Then the frequency range
is extended to encompass the ion cyclotron frequency, using the Hall-MHD model for both
cold and warm plasmas. A description of the cold plasma modes in terms of the dielectric
tensor approach follows. The nonideal effects of interspecies collisions and multiple ions are
then considered. Next, kinetic effects using the Vlasov theory are included, for both low and
high plasma beta. Finally, the "kinetic" and "inertial" Alfven waves are discussed, employing
both fluid and kinetic theory.

2.2 Waves with the MHD Model

Let us assume an equilibrium with the plasma at rest and with no zero-order electric field. The
plasma will be modelled in this section by the MHD equations (1.8), (1.11) and (1.12), with
the adiabatic equation of state (1.13). We assume initially that the plasma has zero resistivity
(the ideal MHD model). If subscripts 0 denote the equilibrium state, and subscripts 1 denote
the first-order perturbations associated with the wave motion, the equilibrium satisfies the
force balance equation obtained from Eq. (1.12),

Vpo = JQ X BQ. (2.1)

From Eq. (1.11) and Eq. (1.13), the perturbed density and pressure satisfy

-^- + V • (po^i) = 0 (2.2)
at
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and

7Po ,0 av
Pi = - Pi- (2.3)

Po

From the equation of fluid motion (1.12), the perturbed fluid velocity satisfies

r\

Po-^ = -Vpi + J0 x B! -f Ji x £0. (2.4)

The perturbed electric and magnetic fields satisfy the equations

^ = -VxE1 (2.5)
<9t

and, from Eq. (1.8) with 77 = 0,

.E! = -i?! x BQ. (2.6)

If the wavelengths are much shorter than the scale-lengths over which the equilibrium
quantities po, Po and BQ change, these quantities can be assumed to be constants, and the
plasma is effectively uniform. The equilibrium current density JQ can therefore be neglected
in Eq. (2.4). If we also neglect the displacement current in Eq. (1.3), assuming the charac-
teristic speeds are much less than the speed of light in vacuo (we remove this assumption in
Chapter 8), we have from Eq. (1.4)

^ 0 J i = V x S i . (2.7)

The uniform equilibrium magnetic field is chosen to lie along the z-axis. It is then convenient
to use the following perturbation variables to describe the wave fields:

V - v i , vlz, Blz, Jlz, pi, Ci* (2.8)

where

Ci, = ( V x t > i ) , (2.9)

is the fluid vorticity in the magnetic field direction.
Equations (2.2)-(2.7) can then be manipulated to yield the following set of six differential

equations:

« - * = «

(2.12)
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-5T + *^""-T51J=0 <2-13'

Pv^T + cs^-- = 0 (2.14)dt dz

—^- +pQV-vi - 0. (2.15)
dt

It is seen that the two differential equations (2.10) and (2.11) for ("12 and J\z are uncou-
pled from the four differential equations (2.12)-(2.15) for V-v i , 5^, vi0 and pi. We should
also note that in the equations for Ciz and Jlz, the spatial derivatives are only in the equi-
librium magnetic field direction. Taking the Fourier transforms, defined in Eq. (1.32), of Eq.
(2.10) and Eq. (2.11) (or simply substituting the plane wave solution Eq. (1.34) into the dif-
ferential equations), we obtain a consistency equation for a nontrivial solution which relates
the frequency to the wavenumber. This is the dispersion equation for waves described by the
variables Ciz and J\z\

u2 ~ ^A*2 = 0 (2.16)

where the Alfven speed v& in the equilibrium plasma is given by

The dispersion equation (2.16) is independent of the components of the wavevector perpen-
dicular to the equilibrium magnetic field, and is also independent of the sound speed cs.

Taking the Fourier transforms of Eqs. (2.12)-(2.15) yields a separate dispersion equation
for waves described by the variables V -vi , B I Z , v\z and p\ :

u;4 - u2(vl + c2)fc2 + vlcl^kl = 0 (2.18)

where k — \k\. This dispersion equation does involve the perpendicular components of the
wavevector, and the sound speed, in contrast to Eq. (2.16).

It is evident that the two dispersion equations (2.16) and (2.18), together with their corre-
sponding sets of characteristic wave field variables, correspond to two distinct types of wave
mode. The waves described by Eq. (2.16) are called Alfven waves, and the waves described by
Eq. (2. 1 8) are called magnetoacoustic (or magneto sonic) waves (see Table 2. 1). The magneto-
acoustic mode may be further split up into two distinct modes, the fast and slow magneto-
acoustic waves. An arbitrary low-frequency disturbance can be represented as a superposition
of the Alfven wave and the fast and slow magnetoacoustic waves.

Let us define the angle 9 between the wavevector and the magnetic field BQ, so that kz —
k cos 9. The first dispersion equation (2.16) then gives the positive frequency solution

s0| (2-19)

of the Alfven mode. The second dispersion equation (2.18) gives two positive frequency
solutions: the fast magnetoacoustic mode, with

4 = y («i + cl + ((vl + c2)2 - 4t£c2 cos2 0) 1/2) (2.20)
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Table 2.1: The dispersion equations and characteristic variables for the Alfven and magnetoacoustic
modes in the ideal MHD model.

Alfven wave

Magnetoacoustic waves

Dispersion equation

"3Hr
Characteristic

Jlz, C

variables

lz

Biz, pi

and the slow magnetoacoustic mode, with

"i = y (»i +1 - (K + 4)2 - 4»k2 «»a 01/2) • (2.2D
We note that the phase velocity vp^ = uj/k is independent of k for all three modes, so all
the modes are nondispersive, although they are anisotropic because t>ph depends on the angle
of propagation 6. The characteristic phase velocity surfaces, that is, polar plots of the phase
velocities of the three modes against the angle 0, have often been presented in texts on MHD
(see for example Shercliff (1965)).

Defining 6 as the unit vector in the direction of jBo, and K. as the unit vector along the
wavevector k, we have K; • 6 = cos0. To discuss the polarization properties of the three
modes, it is convenient to define two mutually orthogonal unit vectors, each orthogonal to the
K. vector:

k X B° /o ooxa=-^^l (2-22)

and

t - a x K. (2.23)

Without loss of generality, for a uniform plasma we can choose the k vector to lie in the x-z
plane. We then have

b = (0 ,0 ,1 ) , *= (sin 0 ,0 , cos0) (2.24)

and the a and t vectors become

a = (0 ,1 ,0 ) , t= (cos0,0,-sin0). (2.25)

These vectors are shown in Figure 2.1. We now proceed to discuss the three modes in some
detail.

2.2.1 The Alfven Mode

If the wave is purely in the Alfven mode, we can assume the characteristic variables listed in
Table 2.1 for the magnetoacoustic mode to be zero. Thus we have (with ky — 0),

V I Z = Q and V-vi = ikxvix - 0. (2.26)


