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1
Introduction

This is a textbook about how to solve boundary-value problems in physics using the
method of separation of variables which goes beyond the few simple coordinate sys-
tems presented in most textbook discussions. Our goal is to present an application-
oriented approach to the study of the general theory of the method of separation of
variables, whereby the variety of separable orthogonal coordinate systems is includ-
ed to illustrate various aspects of the theory (e.g., lesser known coordinate systems,
the coupling of separation constants, and solving for the boundary-value problem
particularly for many-parameter surfaces) and also to discuss the variety of special
functions that can result (e.g., from transcendental to Lamé functions). We will
add, right upfront, that this is not a text about special functions, though sufficient
results about the latter are included to make the text as self-contained as possible.

In numerous areas of science and engineering, one has to solve a partial dif-
ferential equation (PDE) for some fairly regular shape. Examples include Newto-
nian gravity for an ellipsoidal meteorite [1], the temperature distribution over a
paraboloidal aircraft cone [2], the electric field in the vicinity of the brain modeled
as an ellipsoid [3], and the electronic structure of spherical quantum dots [4]. A very
powerful method is the method of separation of variables, whereby the PDE is sepa-
rated into ordinary differential equations (ODEs). The latter then need to be solved,
often in the form of power series, leading to special functions such as the Legen-
dre functions and the Baer functions, and, finally, boundary conditions are applied.
Even when the shape deviates from the ideal regular shape, a preliminary investi-
gation using the regular shape is often useful both as a validation technique for
some other, more numerical approach and as a first step in a, for example, pertur-
bative approach to the exact solution. Indeed, according to Morse and Feshbach [5],
the method of separation of variables is only one of two generally practical meth-
ods of solution, the other being the integral solution. Furthermore, practically all
mathematical physics texts discuss the method heuristically applied to one or more
of the following coordinate systems: rectangular, circular cylindrical, and spherical
polar. Nevertheless, the restriction to a few coordinate systems hides a number of
features of the method as well as, of course, its range of applicability. Discussion of
more advanced features of the method has been reserved to a few texts [5–9]. Thus,
the separability of the Helmholtz equation in 11 orthogonal coordinate systems is
not generally known in spite of the utility of many of these coordinate systems for
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applications. Even the formal definition of “separation of variables” is rarely given.
It has been argued that such a definition is needed before general results can be
demonstrated [10, 11].

In this book, the problem of separating the Laplacian in various orthogonal co-
ordinate systems in Euclidean 3-space is presented and the resulting ODEs for a
number of PDEs of physical interest are given. Explicit solutions in terms of spe-
cial functions are then described. Various physical problems are discussed in de-
tail, including in acoustics, in heat conduction, in electrostatics, and in quantum
mechanics, as the corresponding PDEs represent three general forms to which
many other differential equations reduce (Laplace, Helmholtz, and Schrödinger).
Furthermore, they represent two classes of differential equations (elliptic and hy-
perbolic) and different types of boundary conditions. A unique feature of our book
is the part devoted to the differential geometric formulation of PDEs and their so-
lutions for various kinds of confined geometries and boundary conditions. Such a
treatment, though not entirely new, has recently been extended by a few authors,
including us, and has mostly only appeared in the research literature.

There are obviously many applications of the method of separation of variables,
particularly for the common rectangular, circular cylindrical, and spherical polar
coordinate systems. The general theory has also been worked out and discussed
in the mathematical physics literature. Our treatment follows closely the books by
Morse and Feshbach [5] and Moon and Spencer [6] in covering more than just the
standard coordinate systems. The former gives an exposition of the method as ap-
plied to the Laplace, Helmholtz, and Schrödinger equations, whereas the latter lists
the coordinate systems, resulting ODEs, and series solutions in a very compact and
formal form, leading occasionally to less practical solutions (see, e.g., the “correc-
tions” in [12]). We extend their treatments by giving many examples of boundary-
value problems and include some more recent results mostly in the field of nan-
otechnology. Our book is not a comprehensive review of all the special-function
literature, nor is the formal mathematical theory presented. The former is done
in the many books on special functions, whereas the latter is presented in a nice
book by Miller [8]. It is also worthwhile pointing out that the method of separation
of variables has been applied to other PDEs such as the Dirac equation and the
Klein–Gordon equation. One of the foci of the book is to emphasize that there are
three distinct separability problems: that of the differential equations, that of the
separation constants, and that of the boundary conditions. The separability of the
differential equations is addressed by presenting the results in 11 coordinate sys-
tems (even though there can be separability in additional coordinate systems for
special cases such as the Laplace equation).

The consequence of a varying degree of separability of the separation constants is
made clear in connection with the boundary-value problem; this is an aspect that is
missing in Moon and Spencer’s treatment. Finally, the separability of the boundary
conditions relates to the choice of the coordinate system. Last but not least, we
present a variety of computational algorithms for the more difficult boundary-value
problems that should be of practical help to readers for a complete solution to
such problems. In this respect, we show the limited practical value of the series
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solutions in the book by Moon and Spencer and the usefulness but also restricted
applicability of the algorithms given by Zhang and Jin [13]. This aspect is also not
covered in the book by Morse and Feshbach.

The book is divided into four parts. The first part deals with the general theory
of the method of separation of variables and also has a brief summary of the areas
of physical applications discussed in the book. Part Two presents the technique in
two dimensions. The solutions of the resulting ODEs are discussed in some de-
tail, particularly when a special function appears for the first time. Part Three con-
siders the three-dimensional coordinate systems, which include the simple three-
dimensional extension of the two-dimensional systems of Part Two (rectangular
and cylindrical systems) and of systems with rotational symmetry, and also the
lesser known conical, ellipsoidal, and paraboloidal systems. Part Four provides an
alternative formulation of the method of separation of variables in terms of differ-
ential geometry. Illustrations are provided for problems with nanowire structures
and a recent perturbative theory is discussed in detail. Finally, a few key results
on special functions are included in the appendices. Functions that appear directly
as solutions to the separated ODEs are described in separate appendices (except
for Appendix I on elliptic functions) and other useful functions which show up
occasionally are collected in Appendix A on the hypergeometric function.

In summary, it is intended that this book not only contains the standard intro-
ductory topics to the study of separation of variables but will also provide a bridge
to the more advanced research literature and monographs on the subject. The fun-
damental material presented and a few of the coordinate systems can serve as a
textbook for a one-semester course on PDEs either at the senior undergraduate lev-
el or at the graduate level. It is also expected to complement the many books that
have already been published on boundary-value problems and special functions
(e.g., [5–9, 14–19]), particularly in the treatment of the Helmholtz problem. The
chapters not covered in a course would be appropriate for self-study and even serve
as sources of ideas for both undergraduate- and graduate-level research projects.




