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Preface
We became interested in the research that has has led to

this book in 2000, when the two of us met at the ferry

terminal in Tsim Tsai Tsui, Hong Kong, and discussed the

problem of separability of partial differential equations. This

was followed by a research visit by L.C.L.Y.V. to the Mads

Clausen Institute at Syddansk Universitet in 2003, a visit

funded by the Balslev Foundation. It is only fitting that

L.C.L.Y.V. was invited back to the Mathematical Modeling

Group of the Mads Clausen Institute on the beautiful new

campus of Syddansk Universitet at Alsion to finish work on

the book.

Our interaction during that time has led to numerous

publications, including a few on the topic of this book and

another book on the electronic properties of

semiconductors. Whereas our earlier work followed the

exposition of Morse and Feshbach and that of Moon and

Spencer closely, we have since incorporated a more general

differential-geometric approach. Both approaches are

featured in this book. As mathematical physicists, it was a

pleasure to put together a book that blends together

knowledge in mathematics and physics going back 100

years.

The research and book writing has received generous

financial support over the years. The work of M.W. has been

supported by Syddansk Universitet and Sønderborg

Kommune. The work of L.C.L.Y.V. has been funded by the

National Science Foundation (USA), the Balslev Foundation,

and Sønderborg Kommune. L.C.L.Y.V. would also like to

thank the College of Science and Mathematics at Wright

State University for release from duties to write this book

and the hospitality of the Mads Clausen Institute at

Syddansk Universitet, where most of the writing took place.

Two individuals have contributed to some parts of this work.

First, Prof. Jens Gravesen was an indispensable collaborator



in our work on the differential-geometric formulation and

this is obvious from his coauthorship of many of our joint

papers in this area. Second, we would like to thank Lars

Duggen for his help in making some of the figures in the

book.

Of course, none of this would have been possible without

the encouragement and support of our families. Finally, we

would like to thank our editors at Wiley-VCH for their

wonderful job, not only with the nice product, but also with

their professionalism in keeping us on track.

October 2010

Morten Willatzen

Lok C. Yan Voon
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Chapter 1

Introduction

This is a textbook about how to solve boundary-value

problems in physics using the method of separation of

variables which goes beyond the few simple coordinate

systems presented in most textbook discussions. Our goal is

to present an application-oriented approach to the study of

the general theory of the method of separation of variables,

whereby the variety of separable orthogonal coordinate

systems is included to illustrate various aspects of the

theory (e.g., lesser known coordinate systems, the coupling

of separation constants, and solving for the boundary-value

problem particularly for many-parameter surfaces) and also

to discuss the variety of special functions that can result

(e.g., from transcendental to Lamé functions). We will add,

right upfront, that this is not a text about special functions,

though sufficient results about the latter are included to

make the text as self-contained as possible.

In numerous areas of science and engineering, one has to

solve a partial differential equation (PDE) for some fairly

regular shape. Examples include Newtonian gravity for an

ellipsoidal meteorite [1], the temperature distribution over a

paraboloidal aircraft cone [2], the electric field in the vicinity

of the brain modeled as an ellipsoid [3], and the electronic

structure of spherical quantum dots [4]. A very powerful

method is the method of separation of variables, whereby

the PDE is separated into ordinary differential equations

(ODEs). The latter then need to be solved, often in the form

of power series, leading to special functions such as the

Legendre functions and the Baer functions, and, finally,



boundary conditions are applied. Even when the shape

deviates from the ideal regular shape, a preliminary

investigation using the regular shape is often useful both as

a validation technique for some other, more numerical

approach and as a first step in a, for example, perturbative

approach to the exact solution. Indeed, according to Morse

and Feshbach [5], the method of separation of variables is

only one of two generally practical methods of solution, the

other being the integral solution. Furthermore, practically all

mathematical physics texts discuss the method heuristically

applied to one or more of the following coordinate systems:

rectangular, circular cylindrical, and spherical polar.

Nevertheless, the restriction to a few coordinate systems

hides a number of features of the method as well as, of

course, its range of applicability. Discussion of more

advanced features of the method has been reserved to a

few texts [5–9]. Thus, the separability of the Helmholtz

equation in 11 orthogonal coordinate systems is not

generally known in spite of the utility of many of these

coordinate systems for applications. Even the formal

definition of “separation of variables” is rarely given. It has

been argued that such a definition is needed before general

results can be demonstrated [10, 11].

In this book, the problem of separating the Laplacian in

various orthogonal coordinate systems in Euclidean 3-space

is presented and the resulting ODEs for a number of PDEs of

physical interest are given. Explicit solutions in terms of

special functions are then described. Various physical

problems are discussed in detail, including in acoustics, in

heat conduction, in electrostatics, and in quantum

mechanics, as the corresponding PDEs represent three

general forms to which many other differential equations

reduce (Laplace, Helmholtz, and Schrödinger). Furthermore,

they represent two classes of differential equations (elliptic

and hyperbolic) and different types of boundary conditions.



A unique feature of our book is the part devoted to the

differential geometric formulation of PDEs and their

solutions for various kinds of confined geometries and

boundary conditions. Such a treatment, though not entirely

new, has recently been extended by a few authors,

including us, and has mostly only appeared in the research

literature.

There are obviously many applications of the method of

separation of variables, particularly for the common

rectangular, circular cylindrical, and spherical polar

coordinate systems. The general theory has also been

worked out and discussed in the mathematical physics

literature. Our treatment follows closely the books by Morse

and Feshbach [5] and Moon and Spencer [6] in covering

more than just the standard coordinate systems. The former

gives an exposition of the method as applied to the Laplace,

Helmholtz, and Schrödinger equations, whereas the latter

lists the coordinate systems, resulting ODEs, and series

solutions in a very compact and formal form, leading

occasionally to less practical solutions (see, e.g., the

“corrections” in [12]). We extend their treatments by giving

many examples of boundary-value problems and include

some more recent results mostly in the field of

nanotechnology. Our book is not a comprehensive review of

all the special-function literature, nor is the formal

mathematical theory presented. The former is done in the

many books on special functions, whereas the latter is

presented in a nice book by Miller [8]. It is also worthwhile

pointing out that the method of separation of variables has

been applied to other PDEs such as the Dirac equation and

the Klein–Gordon equation. One of the foci of the book is to

emphasize that there are three distinct separability

problems: that of the differential equations, that of the

separation constants, and that of the boundary conditions.

The separability of the differential equations is addressed by



presenting the results in 11 coordinate systems (even

though there can be separability in additional coordinate

systems for special cases such as the Laplace equation).

The consequence of a varying degree of separability of the

separation constants is made clear in connection with the

boundary-value problem; this is an aspect that is missing in

Moon and Spencer’s treatment. Finally, the separability of

the boundary conditions relates to the choice of the

coordinate system. Last but not least, we present a variety

of computational algorithms for the more difficult boundary-

value problems that should be of practical help to readers

for a complete solution to such problems. In this respect, we

show the limited practical value of the series solutions in the

book by Moon and Spencer and the usefulness but also

restricted applicability of the algorithms given by Zhang and

Jin [13]. This aspect is also not covered in the book by Morse

and Feshbach.

The book is divided into four parts. The first part deals with

the general theory of the method of separation of variables

and also has a brief summary of the areas of physical

applications discussed in the book. Part Two presents the

technique in two dimensions. The solutions of the resulting

ODEs are discussed in some detail, particularly when a

special function appears for the first time. Part Three

considers the three-dimensional coordinate systems, which

include the simple three-dimensional extension of the two-

dimensional systems of Part Two (rectangular and cylindrical

systems) and of systems with rotational symmetry, and also

the lesser known conical, ellipsoidal, and paraboloidal

systems. Part Four provides an alternative formulation of the

method of separation of variables in terms of differential

geometry. Illustrations are provided for problems with

nanowire structures and a recent perturbative theory is

discussed in detail. Finally, a few key results on special

functions are included in the appendices. Functions that



appear directly as solutions to the separated ODEs are

described in separate appendices (except for Appendix I on

elliptic functions) and other useful functions which show up

occasionally are collected in Appendix A on the

hypergeometric function.

In summary, it is intended that this book not only contains

the standard introductory topics to the study of separation

of variables but will also provide a bridge to the more

advanced research literature and monographs on the

subject. The fundamental material presented and a few of

the coordinate systems can serve as a textbook for a one-

semester course on PDEs either at the senior undergraduate

level or at the graduate level. It is also expected to

complement the many books that have already been

published on boundary-value problems and special functions

(e.g., [5-9, 14-19]), particularly in the treatment of the

Helmholtz problem. The chapters not covered in a course

would be appropriate for self-study and even serve as

sources of ideas for both undergraduate- and graduate-level

research projects.



Chapter 2

General Theory

2.1

Introduction

It is widely believed that the first systematic study of the

conditions required for a partial differential equation (PDE)

to be separable was carried out by Stäckel [20] for the

nonlinear Hamilton–Jacobi equation. This procedure was

applied by Robertson to the time-independent Schrödinger

equation [21], leading to the so-called Stäckel–Robertson

separability conditions. Eisenhart subsequently showed that

the Schrödinger equation is separable in exactly 11

curvilinear orthogonal coordinate systems, all derived from

confocal quadrics [22–24].

In this chapter, we will summarize the types of PDEs to be

discussed together with some possible physical applications

of the said equations. We will also present key results on

curvilinear differential operators and the general

separability conditions in Euclidean 2- and 3-spaces, as well

as the Frobenius method for series solutions.

2.2

Canonical Partial Differential

Equations

We will look at the mathematical solutions to three types of

canonical PDEs:



(2.1) 

(2.2) 

(2.3) 

where ∇2 is the Laplacian operator, ψ is a scalar field (we will

only rarely mention other types of field such as vector

fields), and k2 is either a constant or a function of the spatial

coordinates. The Laplace equation arises in potential-field

problems such as electrostatics and Newtonian gravitation.

The Helmholtz equation arises as the time-independent part

of the wave equation,

and the diffusion equation,

The Schrödinger equation is similar to the Helmholtz

equation except for the generalization of the wave number k

to be position dependent. As given, it is the time-

independent version of the time-dependent Schrödinger

equation,

This, of course, does not include all of the physical theories.

For example, first-order differential equations such as the

Dirac equation and higher-order equations such as for the

mechanics of beam bending will not be discussed to keep

this book manageable and focused.

2.3

Differential Operators in

Curvilinear Coordinates

Specific forms of the differential operators will be used in

the respective chapters on the various coordinate systems.



Here we provide a summary of the main expressions

needed, with emphasis on orthogonal systems, as general

expressions can be written down in terms of a metric.

Derivations of the results below can be found in any

standard mathematical physics or vector calculus textbook.

2.3.1

Metric

Given two coordinate systems, one can write the line

element in both systems as

(2.4) 

where x
i
(i = 1, 2, 3) represents the Cartesian set and the q

i

are known as curvilinear coordinates. Then

(2.5) 

g is known as the metric and, since we are only dealing with

Euclidean space in this book, no distinction is made

between covariant and contravariant indices (an exception

will be in the differential-geometric formulation). For

orthogonal systems,

(2.6) 

and we write h
ii
 = h

i
. The latter is also known as a scale

factor.

2.3.2

Gradient

The gradient of a scalar field is given by

(2.7) 

where the e
i
 are the unit vectors of the curvilinear

coordinates,

(2.8) 



It is often convenient to express the latter in terms of

Cartesian unit vectors since the latter are constant vectors.

In this case, one can write

(2.9) 

2.3.3

Divergence

The divergence of a vector field V(q
i
) is

(2.10) 

2.3.4

Circulation

The circulation of a vector field V is

(2.11) 

2.3.5

Laplacian

The Laplacian of a scalar field is obtained by combining Eqs.

(2.7) and (2.10):

(2.12) 

2.3.5.1 Example

As an example, consider the circular cylindrical coordinate

system with the following coordinates:

and the relationship to the Cartesian coordinates


