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Preface
The analysis of electronic relaxation processes, especially of
radiationless transitions in molecular systems, has rapidly
evolved in the last few decades and today plays a central
role in almost all investigations of molecular physics and
spectroscopy. The development of lasers has significantly
contributed to this evolution. The purpose of this book is to
give a self-contained and unified presentation of this
development, with applications to molecular and solid-state
physics. It is primarily intended for graduate students in
theoretical physics and chemistry, who are beginning their
research careers, although it is hoped that any physicist and
chemist working with lasers, molecular spectroscopy, and
solid-state physics will also find it useful. The greatest
possible emphasis has been placed on clarity, and to this
end, presentation is often made in strict mathematical
detail. I hope that the reader will thus be able to rederive
many of the formulas presented without much difficulty.
Some basic understanding of symmetry principles in solid
state and molecular physics may be helpful for the reader.

The book consists of eight chapters and several
appendices. In Chapter 1, the different basis sets used to
classify molecular eigenstates and to study molecular
dynamics, including molecular vibrations, are discussed
within the context of the Duschinsky mixing effect. This
mixing caused by the normal coordinate rotation has been
elucidated further in following chapters.

In Chapter 2, the treatment of radiationless transition
probability is presented on the basis of Green's function
formulation for the transition amplitude, in which the states
of interest are selected by suitable projection operators. A
discussion of the proper basis set for describing electronic
relaxation processes in large molecules is given for each of
the cases treated.



Chapter 3 provides a detailed description of radiationless
processes in a statistical large molecule embedded in an
inert medium. In this chapter, we are for the first time able
to express the vibrational overlap between the electronic
states under consideration in terms of intramolecular
distributions in the full harmonic approximation taking into
account the effects of vibrational frequency distortion,
potential surface displacement, and the Duschinsky
rotation.

Chapter 4 deals in greater detail with the symmetry
properties, the evaluation and presentation of the
intramolecular distributions for arbitrary vibrational degrees
of freedom.

An important example of the utility and power of the
aforementioned intramolecular distributions is presented in
Chapter 5. This chapter, which is of a more advanced
nature, is entirely devoted to the investigation of the
nuclear dependence of the electronic matrix element for
radiationless transitions. It leads the reader, employing a
class of integrals found in Appendix D, to a fix-point
theorem for determining the q-centroid at which the
electronic matrix element is to be evaluated. It is not
recommended that the reader uninterruptedly attempt to
master all of these derivations that lead to the proofs of the
fundamental theorems. Instead, this chapter or a part of it,
may be bypassed on the first reading, proceeding to the less
complex following chapters and referring back, as
necessary.

Chapter 6 deals with the time evolution of radiative
decaying states of polyatomic molecules with special
emphasis on radiative decay in internal conversion. The
decay of a manifold of closely spaced coupled states is
handled by the Green's function formalism, where the
matrix elements are displayed in an energy representation
that involves either the Born–Oppenheimer or the molecular



eigenstate basis set. The features of radiationless
transitions in large, medium-sized, and small molecules are
elucidated, deriving general expressions for the radiative
decay times and for the fluorescence quantum yields.

Chapter 7 introduces the reader to solutions of many
selected problems in molecular physics. In particular, the
following important problems are studied in detail: the
fluorescence spectrum of p-terphenyl crystal, the vibrational
fine structure of the spin-allowed absorption band of trans-
[Co(CN)2(tn)2]Cl3H2O, and transport phenomena of
electronic excitation in pentacene-doped molecular crystals.
It is followed by an analysis of phosphorescence and
radiationless transition in aromatic molecules with
nonbonding electrons as well as predissociation of the 2B2
state of H2O+ by nonadiabatic interaction via conical
intersection.

Finally, Chapter 8 deals with the evaluation of
multidimensional Franck–Condon integrals. As an illustration
of the complexity of the latter upon the normal mode
rotation, a study of sequential two photon processes is
presented.

At the beginning of each chapter, there is a brief summary
of what the reader will find in the particular chapter. These
summaries provide a detailed survey of the subject matter
covered in this book. No attempt was made to provide all-
inclusive references. References are not prioritized and are
presented as supplementary reading for students.

Some people have made important contributions to this
book at various stages of its development. In particular, I
would like to mention here my scientific colleagues G.
Olbrich, C. Kryschi, D. Gherban, A. Urushiyama, J. Degen, Th.
Ledwig, and P.H. Cribb. In addition, I wish to express my
deep appreciation to G. Moss for suggested improvements



to text readability and to G. Pauli for preparing most of the
graphics, which form an essential part of the presentation.

Hans J. Kupka
December 2008
Düsseldorf, Germany



1

Introduction

In this chapter we shall provide a brief overview of a number
of different basis sets to classify molecular eigenstates and
study molecular dynamics. The basic procedure is described
in Section 1.1, where the solution of the Schr€odinger
equation for the molecular system is given by separating
the electronic motion from the nuclear motion in the
molecule. This procedure, called the adiabatic description,
represents the basis set that most often describes the
initially excited states in large molecules. Alternatively,
Section 1.1.3 introduces the crude Born–Oppenheimer (BO)
basis, and Section 1.1.4 gives a description of the Herzberg–
Teller adiabatic approximation. Sections 1.2 and 1.3 are
devoted to the vibrational wavefunctions and their normal
coordinates as well as to the Duschinsky effect. Section 1.4
concludes the chapter with a mathematical analysis of two
strongly coupled adiabatic states, one of the fundamental
and difficult problems of physics. The analysis is performed
by using a diabatic basis set, and as an application a formal
and compact solution is derived for the predissociation of a
triatomic molecule via a conical intersection.

We assume that the reader is familiar with the basic
notions of quantum theory. However, to make our study
reasonably self-contained, we have included some of the
derivations in the appendices.



1.1 The Adiabatic Description of
Molecules

1.1.1 Preliminaries
In the treatment of electronic states in large molecules, one
usually neglects the details concerning the rotation and
translation motions and rather concentrates on the
dynamics of the electronic and vibrational motions. The
starting point for the description of these motions in a
molecule consisting of electrons and K nuclei is the
complete Hamiltonian H of the molecule. To write down the
Hamiltonian, the origin of the molecular coordinate system
is placed at the center of mass. It is assumed that the
positions of the K nuclei will deviate only by small amounts
from some reference configuration. The molecules with
large amplitude motions, such as internal rotations, are
therefore explicitly excluded. The nuclear inertia tensor is
then approximated by the inertia tensor of the reference
configuration and the axes of the internal coordinate system
are directed along the principal axes of this reference inertia
tensor. If now the center of mass motion is removed, the
nuclear motion can be described by a vector of 3K– 6
dimensions for a (nonlinear) system with K atoms. The latter
are normally taken as linear combinations of mass-weighted
vectors describing the displacements from the reference
configuration [1–3]. With this approximation and, for the
sake of simplicity, taking only the electrostatic Coulomb
interaction, the vibronic Hamiltonian can be written as

(1.1)
Here the vector r = (r1, r2,. . . , rn) where ri = (xi, yi, zi)
denotes collectively all electronic coordinates and the
coordinates of the nuclei are specified by q = (q1, q2, …
,qN), where N = 3K–6. In the following, we shall adopt the



convention that the components of the vector q are labeled
by Greek indices if they range from 1 to N, and the Latin
ones denote the components of the electronic coordinates.
The electronic kinetic energy operator Te(r) and the nuclear
kinetic operator TN(q) are presented in a diagonal form:

(1.2)
and

(1.3)
where m is the mass of the electron and qμ are mass-
weighted (dimensioned) nuclear coordinates given by

where R and R0 are (3K–6)-dimensional column vectors of
the instantaneous and equilibrium Cartesian coordinates,
respectively, associated with the nonzero frequency normal
modes. M is the (3K–6) × (3K–6) mass-weighted matrix, A is
the orthogonal transformation that diagonalizes the mass-
weighted Cartesian force constant matrix, and q is the
dimensioned normal coordinate vector. U(r, q) in Equation
1.1 is the total (internal) potential energy and includes all
the electron-electron, nucleus–nucleus, and electron-nucleus
interactions. In spite of the approximation already made, the
exact molecular vibronic eigenstates Ψ(r, q) in a stationary
state satisfy the time-independent Schrodinger equation

(1.4)
Serious approximations become necessary when one tries to
solve Equation 1.4. One of these solutions is the adiabatic
separation, which will be outlined below. This outline will
serve as a guide to the possible classifications of molecular
states and as an aid to the solution of specific quantum
mechanical problems.



1.1.2 The Born–Oppenheimer
Approximation

The first step of the adiabatic description is the Born–
Oppenheimer approximation, according to which

the nuclear kinetic energy is neglected, and
the nuclear configuration is fixed at the position R.

The adiabatic approximation is based on the fact that
typical electronic velocities are much greater than typical
nuclear (ionic) velocities. (The significant electronic velocity
is v = 108 cm/s, whereas typical nuclear velocities are at
most of order 105 cm/s.) One therefore assumes that,
because the nuclei have much lower velocities than the
electrons, at any moment the electrons will be in their
ground state for that particular instantaneous nuclear
configuration.

Under circumstances where TN(q) = 0, and at particular
arrangement of the ion cores, we can separate electronic
and nuclear motions. This can be accomplished by selecting
some basis set of electronic wavefunctions φa (r; q), which
satisfy the partial Schrödinger equation

(1.5)
where Ea(q) corresponds to the electronic energy at this
fixed nuclear configuration. The configuration q is chosen
arbitrarily, but for the solution of Equation 1.5 it must be
fixed. In other words, the electronic wavefunction φa(r;q)
depends on the electronic coordinate r and parametrically
on the nuclear coordinates. For any value of q, the φa are
assumed to be orthonormal and complete (i.e., span the
subspace defined by the electronic coordinates r). They are
also assumed to vary in a continuous manner with q. The



total (molecular) wavefunction Ψ(r, q) can be expanded in
terms of the electronic basis function [4, 5]

(1.6)
where the nuclear wavefunctions χbv(q) are initially treated
as coefficients in the series (1.6). These coefficients are
selected such that Equation 1.4 is satisfied. We have to
substitute Equation 1.6 for Ψ(r, q) in Equation 1.4.
Remarking that

(1.7)
and

we find according to Equation 1.6 that

In deducing this result, we have used Equation 1.5 and the
fact that the wavefunction φb, is an eigenfunction of
Equation 1.5. Multiplying from the left by  and integrating
over the electronic coordinates, we obtain the usual set of
coupled equations for the χav [4, 5] (see also Ref. [6] with
modifications given by McLachlan [7] and Kolos [8]):

(1.8a)
The restriction b ≠ a in Equation 1.8a is a consequence of
the orthonormality of the φb 〈φb|φa〉r = δab. Here and in



Equation 1.8a, angle brackets indicate integration over the
electronic coordinates only. To avoid confusion resulting
from numerous subscripts, it is often convenient to adopt a
matrix notation, writing Equation 1.8a as

(1.8b)
where Xab, = –〈φa|[TN,φb]〉r and [A, B] = AB–BA. The
adiabatic approximation (or BO adiabatic approximation in
the nomenclature of Ballhausen and Hansen) is obtained by
neglecting the coupling term in Equation 1.8a (the
expression in the curly brackets). The molecular
wavefunction now reduces to the simple product

(1.9)
and the corresponding equation for the nuclear function
χav(q) in this approximation has the form

(1.10)
where Eav is the eigenvalue for the nth vibrational level in
the ath electronic state. Thus, from Equations 1.5 and 1.10,
we see that, in the BO approximation, the nuclei move in an
effective potential Ea (q) generated by the electron
distribution, while the electron distribution is a function of
the nuclear configuration q. Ea(q) is designated as the
adiabatic potential surface of φa. The additional diagonal
term 〈φa|[TN,(q)φa]〉r in Equation 1.8 is omitted in the BO
approximation, as we have done in Equation 1.10.
Alternatively, if this term (designated as the adiabatic
correction to the potential energy surface) is taken into
account, we speak of the Born–Huang approximation [5].
From numerical calculations of the low-lying electronic
states of H2 + and H2, it is known that this correction is
invariably small [9, 10] and can usually be neglected.



The approximate wavefunctions of the adiabatic
approximation are characterized by the following off-
diagonal matrix elements between different electronic
states [11]:

(1.11)
(i.e., the adiabatic basis set is diagonal within the same
electronic configuration) and

(1.12)
In Equation 1.12, we have indicated convenient
abbreviations for the two integrals: 〈||〉 for the integral over
electronic coordinates and (||) for the integral over nuclear
coordinates. Equation 1.12 represents the so-called Born–
Oppenheimer coupling, which promotes transitions between
potential energy surfaces via the nuclear kinetic energy
operator. If these terms in the basis defined by Equation 1.9
are small relative to the separation of vibronic states Eav–
Ebv′, the BO approximation will give a very good
approximation and will lead to tremendous simplification. In
the case of close lying vibronic states belonging to different
electronic configurations Eav≈Ebv′ the adiabatic
approximation can fail. The interaction of nuclear vibrations
with the electronic motion in molecules gives rise to
interesting effects that have been attributed to linear and
quadratic terms in the nuclear displacements from the
equilibrium configuration. Linear vibronic coupling terms
lead to vibrational borrowing, an effect that appears most
clearly with forbidden electronic transitions made allowed
through the simultaneous excitation of certain asymmetric
vibrations. The other physical situations associated with
linear displacements along certain asymmetric normal
coordinates lead to the Jahn–Teller [12–25] and the pseudo-
Jahn–Teller effects (see Appendix K). The effect of quadratic



nuclear displacement terms is manifested in the Renner
effect [26]. Although the study of these effects is of
considerable interest, their observation is limited to systems
of high symmetry that have degenerate or nearly
degenerate electronic states.

Going back to expression (1.12) for the coupling term, we
shall now elucidate the situation that occurs when the
potential energy surfaces belonging to different electronic
states cross. This is easily obtained on introducing the
following expressions [27]:

(1.13)
and

(1.14)
In the region where the two potential energy surfaces do not
cross, Ea(q) ≠ Eb(q); Equation 1.13 may obviously be
rewritten as

(1.15)
and relation (1.15) is well behaved. At the surface
intersections Ea(q) ≠ Eb(q), relation (1.15) is not as such
without further ado valid. To see this, we differentiate the
general expression (1.13) with respect to qμ and then
evaluate the result at the surface intersection to yield

(1.16)
where we have assumed, for simplicity, that the intersection
surface results from the variation of a single coordinate qμ,
and that (∂Eb/∂qμ)c ≡ (∂Ea/∂μ)c at the intersection point c.
This means that  is well behaved over the whole
range of values of qμ. Indeed, Equation 1.16 can be
rederived directly from Equation 1.15 by applying
l’Hospital’s rule. Expression (1.15) should likewise be well
behaved (non-singular) in the more general case of



multidimensional surface intersections, where qμ in
Equation 1.16 denotes the coordinate normal to the
intersection surface defined by Ea (q) = Eb (q). The
property of  and its nonsingularity clearly follow in
a completely analogous way.

The behavior of 〈φ|∂/∂qμ|φb〉 and  has been
examined in Ref. [28] for H2 + as a function of the
internuclear distance R. Both these quantities were shown
to vary smoothly with R. Subsequently, Nitzan and Jortner
[29] have used Equation 1.15 in the whole range of values
of qμ, including the region of the intersection of the
adiabatic surfaces by assuming the principal value for
[Ea(q) – Eb (q)]–1 at the intersection point. This leads to a
finite but peaked value of (1.15) at the surface intersection.
A representative example of a similar situation will be
shown in Sections 1.6 and 7.6, where the nonadiabatic
coupling (1.15) near the conical intersection between states
2B2 and 2A1 of H2O+ is shown.

1.1.3 The Crude Born-Oppenheimer
Basis Set

In this and the following sections, we will discuss ways of
selecting the basis function φa by separating the nuclear
and electronic motions in a manner different from that in
the previous section. In the present approach, the electronic
Hamiltonian is assumed to be

(1.17)
where q0 is a reference configuration and ΔU= U(r, q) U(r,
q0) is taken as a perturbation. In what follows, we will first
briefly discuss the crude approximation and then the
improvement of the crude BO basis set by using the



Herzberg–Teller approximation. In addition to its practical
utility, the Herzberg–Teller approximation provides an
instructive way of viewing the (improved) crude BO basis
complementary to that of the adiabatic basis derived in
Section 1.1, permitting a reconciliation between the
apparently contradictory features of both the crude BO basis
set and the BO adiabatic basis set. The situation we have in
mind occurs in the case of widely separated electronic
states, which when mixed with each other give rise to
vibroni-cally induced allowed electronic transitions [30, 31]
(see, for example, the mixing of odd parity states with the
even parity states of transition metal complexes).

In the crude adiabatic (CA) approximation [1, 32–40], the
electronic wavefunctions  defined at a specific nuclear
configuration q0 satisfy the following Schrodin-ger equation:

(1.18)
where  is the ath eigenvalue and q0 implies all the
nuclear coordinate positions of the reference configuration.
Since these wavefunctions form a complete set (which span
the Longuet–Higgins space), the eigenstate of the total
Hamiltonian Ψv(r, q) may be expanded (analogous to
Equation 1.6) in terms of :

(1.19)
As before, χbv(q) are initially treated as expansion
coefficients, which must be determined. Inserting Equation
1.19 in Equation 1.4 results in the usual infinite set of
coupled equations for the χbv(q)

(1.20)
The functions χbv(q) are therefore determined by the set of
coupled equations (1.20). The potential functions 



are usually represented as power series expansions in the
normal coordinates qμ around q0, where q0 is usually
chosen at the minimum of the ground state.

Provided that
(1.21)

for a ≠ b, Equation 1.19 is simply written as a product
(1.22)

where the coefficient  is the eigenstate of the following
equation:

(1.23)
The diagonal matrix elements  are the effective
potential energy surface that governs nuclear motion. From
Equations 1.10 and 1.23, it is evident that the vibrational
wavefunction  differs from the adiabatic wavefunction .
As long as the basis set  is complete in the electronic
space, the CA basis is perfectly adequate (independent of
the choice of q0). The two matrix representations 1.8 and
(1.20) are merely two different representations of the same
operator.

1.1.4 Correction of the Crude
Adiabatic Approximation

The electronic wavefunction in the crude adiabatic
approximation is defined according to Equation 1.18 at a
specific nuclear configuration q0 and therefore it does not
depend on the nuclear coordinates {qμ}. To calculate
corrections to this extreme case, we apply the Rayleigh-
Schrodinger (RS) perturbation calculation, taking ΔU as
perturbation operator. This leads to

(1.24a)



where

(1.25)
and

The same procedure gives for the eigenvalues (in second
order)

(1.26)
where

(1.27)
Expansion of ΔU in the vicinity of q0 in terms of nuclear
coordinates {qμ} gives

(1.28)
After inserting (1.28) into (1.26), we have

(1.29)
with

(1.30)
and quadratic terms in qμ:

(1.31)
In writing Equation 1.29, we have taken into account the
linear terms from Equation 1.28 in second order and
quadratic terms in q in first order. Correspondingly, the
coefficients cba(q) in (1.25) are expressed as (in second
order)

(1.32)



The correction of the CA approximation performed above is
known as “vibronic coupling” and the wavefunction (1.24a)
is sometimes designated as the Herzberg–Teller
approximation. In this approximation, the corrected
molecular eigenfunction can be written as

(1.33)
and is still (of product form) adiabatic. Ballhausen and
Hansen [1] have introduced the term Herzberg–Teller
adiabatic approximation to emphasize the adiabatic nature
of Equation 1.33 [40].

An obvious generalization of Equation 1.24a results if we
choose

(1.24b)
for an adiabatic electronic wavefunction φa(r;q). Upon
substituting Equation 1.24b into Equation 1.6, we obtain

(1.34)
which can be compared with Equation 1.19 to yield the
relation

(1.35)
between the vibrational wavefunction in the CA
approximation and the vibrational wavefunction in the BO
approximation.

The classic cases of the Herzberg–Teller mechanism relate
to coupling between two electronic states of different
symmetry. An important example of this case occurs when
electric dipole transitions of one of the two states are
forbidden (e.g., the Laporte-forbidden d–d and f–f
transitions). In this case, the forbidden transition may
acquire absorption intensity by Herzberg–Teller mixing with
an allowed transition via a nontotally symmetric mode of
appropriate symmetry (the irreducible representation of the



active mode must be contained in the direct product of the
irreducible representations for the two states coupled by the
Herzberg–Teller mechanism). We shall illustrate our results
in Chapter 7 by evaluating the vibronic induced d–d
transitions in transition metal complexes.

1.2 Normal Coordinates and
Duschinsky Effect

Let us now return to Equation 1.29 for the potential energy
surface of the ath electronic state and reformulate it in a
more suitable (canonical) form:

(1.36)
with

and

(1.37)
In Equation 1.36, the boldface letters q and F are column
vector and square matrix, respectively. The superscript t
indicates matrix transposition. Apart from the linear terms in
qμ, the potential of the ath electronic state contains in the
harmonic approximation pure and mixed quadratic terms.
The linear terms lμ ≠ 0, especially for total symmetric
vibrational modes μ (see Equations 1.30 and 1.37) is closely
related to the geometrical displacement associated with the
electronic transition between the electronic ground state
and the ath electronic state. The pure quadratic force
constant coefficients  describe the curvature of the
potential energy surface of the ath electronic state along
the axes of the nuclear coordinate system, whereas the



mixed quadratic terms  are responsible for the
mixing of vibrational coordinates (modes) upon electronic
excitation (see later). Therefore, our first goal is to
transform them from the expression of Ea(q). Since Fa is a
real and symmetric square matrix, it can be diagonalized by
the following transformation:

(1.38)
where Aa is an orthogonal matrix that diagonalizes the
mass-weighted force constant matrix F. Applying Equation
1.38 on the electronic ground state a = 0 and noting that
(AB)t = BtAt for any two matrices, we have

(1.39)
In deriving (1.39), we have made use of the relation A–1 =
At for A being orthogonal. (The inverse of the matrix is its
transpose AtA = E.) The linear term in q in
Equation 1.39 vanishes, if

and hence
(1.40)

Inserting (1.40) into (1.39) yields

(1.41)



where  is composed of diagonal
elements λμ, which arises from the nonzero frequency
normal modes. Thus, Equation 1.41 represents the potential
surface of the ground electronic state in the diagonal
(canonical) form in mass-weighted ground-state normal
coordinates. The last term in Equation 1.41 is a constant
and can be included in E0(q0). Thus, the transformation
(1.38) that diagonalizes the potential energy for the nuclear
motion is determined uniquely by the coefficients  and  of
the respective electronic state. Equation 1.41 pertains to
the normal coordinates in the ground electronic state; an
analogous expression holds for any electronic state a, where
again Λa = AaFa(Aa)−1 = diag  and Aa is the
transformation matrix to mass-weighted coordinates,
defined by

(1.42)
It can be proved that

(1.43)
Combining (1.42) for a ≠ 0 and (1.38) leads to

which we abbreviate to
(1.44)

where W = Aa(A0)–1 thus formed is known as the
Duschinsky rotation matrix associated with the 0 → a
electronic transition and k0a is related to the geometrical
displacement vector between these states. (To simplify
notation, we shall henceforth drop the 0a superscript on k.)

According to Equation 1.44, the normal coordinates of an
excited electronic state qa relative to those of the ground
electronic state q0 are rotated (rotation matrix W) and



displaced by the vector k This rotation is called the
Duschinsky rotation or Duschinsky mixing effect [41–44] (of
the vibrational modes among each other). This mixing effect
is subject to symmetry rules of the molecular symmetry
group. Since in the most common instances vibrational
modes of the same symmetry are mixed with each other
(Equations 1.29–1.31 and 1.37), the matrix W assumes the
quasi-diagonal form indicated below

where the elements outside the shaded area are zero, since
they correspond to modes of different symmetry. Simple
symmetry arguments show that  if qμ qv transform as
the totally symmetric transformation and  if qμ qv
transform as the direct product of φa and φb. Rotations of
normal coordinates in an excited electronic state relative to
the ground-state normal coordinate space can therefore be
expected for such a molecule if it possesses at least two
different modes transforming as the same irreducible
representation [41]. Cross-terms, and hence rotations in
totally symmetric modes, are generated by the  term in
Equation 1.29, whereas rotations in the nontotally
symmetric modes are generated by the terms in the
summation over b ≠ a. As we shall see, this feature plays a
crucial role in the derivation of transition probabilities.
Vibrational modes of the same symmetry species assigned
to the same shading fields in the matrix W cannot be
represented as single separable modes and are said to be
mixed or nonseparable modes.

A very thorough survey of the Duschinsky effect is given in
Refs [45–57]. A 8 × 8 Duschinsky matrix W has been
determined by quantum mechanical calculation of the
potential energy surfaces to interpret the vibronic structure



of the 1Bu← 1Ag transition of trans,trans-1,3,5,7-
octatetraene in alkane matrices at 4.2 K [45]. The mixed
modes are of a1g symmetry. Supersonic jet excitation and
single vibronic level dispersed fluorescence spectra of α-
and β-methyl naphthalene (S1 state) presented in Ref. [46]
reveal that mode mixing of the ground-state normal
coordinates and energy redistribution appear to be active in
the S1 state. The vibronic spectra and related phenomena
such as fluorescence-absorption mirror symmetry
breakdown are found in azulene and certain azaazulenes
[47–49]. On the basis of an analysis of vibronic spectra and
calculation of normal vibrations, a complete assignment of
the vibrational frequencies of s-tetrazine-d0 and s-tetrazine-
d8 in the 1B3u excited state is given in Ref. [50]. In this
connection, the rotation matrix W calculated from the data
on the intensities of the vibronic band is used to estimate
the force field in the excited electronic state. In Ref. [51], a
Duschinsky effect that results from two nontotally
symmetric vibrations involved in the vibronic coupling in the
S1-S0 systems of benzonitrile and phenyl acetylene is
reported. An ab initio calculation of multidimensional FC
(MFC) factors used to analyze the vibronic spectrum of
ethylene corresponding to the π-π* excitation was presented
in Ref. [52] taking into account 12 normal coordinates of
ethylene among which 4 totally symmetric modes are
mixed. Recently, in a study of the photoelectron spectra of 

 and D2O + , Jia-Lin Chang has calculated MFC
integrals including the Duschinsky effect. He found that the
photoelectron spectra were mainly composed of v2
progressions and combination bands of ω1 and ω2
vibrations [53]. The idea that the Duschinsky effect plays a
crucial role in the identification of band structures is also
confirmed by the vibrational assignment for the 


