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XI

Preface

Following the appearance of the first two very successful volumes of
Reviews of Nonlinear Dynamics and Complexity, it is now my plea-
sure to introduce the third volume, beginning with an outline of the
aims and purpose of this new series.

Nonlinear behavior is ubiquitous in nature and ranges from fluid dy-
namics, via neural and cell dynamics, to the dynamics of financial mar-
kets. The most prominent feature of nonlinear systems is that small
external disturbances can induce large changes in behavior. This can
and has been used for effective feedback control in many systems, from
lasers to chemical reactions and the control of nerve cells and heart-
beats. A new hot topic involves nonlinear effects that appear on the
nanoscale. Nonlinear control of the atomic force microscope has im-
proved its accuracy by orders of magnitude. The nonlinear electrome-
chanical oscillations of nano-tubes, the turbulence and mixing of fluids
in nano-arrays and the nonlinear effects in quantum dots are further
examples.

Complex systems consist of large networks of coupled nonlinear de-
vices. The observation that scale-free networks describe the behavior of
the internet, cell metabolisms, financial markets and economic and eco-
logical systems, has led to new discoveries concerning their behavior,
such as damage control, optimal spread of information, or the detec-
tion of new functional modules that are pivotal for their description
and control.

This shows that the field of Nonlinear Dynamics and Complexity
consists of a large body of theoretical and experimental work with
many applications, which is nevertheless governed and held together
by some very basic principles, such as control, networks and opti-
mization. The individual topics are definitely interdisciplinary, which
makes it difficult for researchers to discover the new solutions – which
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could be most relevant for them – that have been found by their sci-
entific neighbors. Therefore, its seems that there is an urgent need to
provide Reviews of Nonlinear Dynamics and Complexity where re-
searchers or newcomers to the field can find the most important recent
results, described in a fashion which breaks down the barriers between
the disciplines.

This third volume contains new topics ranging from chaotic comput-
ing, via random dice tossing and stochastic limit-cycle oscillators, to a
number theoretic example of self-organized criticality, wave localiza-
tion in complex networks and anomalous diffusion. I would like to
thank all the authors for their excellent contributions. If readers take
some inspiration for their further research from these interdisciplinary
reviews, then this volume will have fully served its purpose.

I am grateful to all members of the Editorial Board, and the staff of
Wiley-VCH, for their excellent help, and would like to invite my col-
leagues to contribute to the next volumes.

Kiel, January 2010 Heinz Georg Schuster
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1
The Chaos Computing Paradigm
William L. Ditto, Abraham Miliotis, K. Murali, and Sudeshna Sinha

1.1
Brief History of Computers

The timeline of the history of computing machines can probably be
traced back to early calculation aids, varying in sophistication from
pebbles or notches carved in sticks to the abacus, which was used as
early as 500 B.C.! Throughout the centuries computing machines be-
came more powerful, progressing from Napier’s Bones and the slide
rule, to mechanical adding machines and on to the modern day com-
puter revolution.

The ‘first generation’ of modern computers, were based on wired cir-
cuits containing vacuum valves and used punched cards as the main
storage medium. The next major step in the history of computing was
the invention of the transistor, which replaced the inefficient valves
with a much smaller and more reliable component. Transistorized (still
bulky) computers, normally referred to as ‘Second Generation’, domi-
nated the late 1950s and early 1960s.

The explosion in the use of computers began with ‘Third Genera-
tion’ computers. These relied on the integrated circuit or microchip.
Large-scale integration of circuits led to the development of very small
processing units. Fourth generation computers were developed, using
a microprocessor to locate much of the computer’s processing abilities
on a single (small) chip, allowing the computers to be smaller and faster
than ever before. Although processing power and storage capacities
have increased beyond all recognition since the 1970s the underlying
technology of LSI (large-scale integration) or VLSI (very-large-scale in-
tegration) microchips has remained basically the same, so it is widely
regarded that most of today’s computers still belong to the fourth gen-
eration.
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One common thread in the history of computers, be it the abacus or
Charles Babbage’s mechanical ‘anlytical engine’ or modern micropro-
cessors, is this: computing machines reflect the physics of the time and are
driven by progress in the understanding of the physical world.

1.2
The Conceptualization, Foundations, Design and Implementation of
Current Computer Architectures

Computation can be actually defined as finding a solution to a problem
from given inputs by means of an algorithm. This is what the theory
of computation, a subfield of computer science and mathematics, deals
with. For thousands of years computing was done with pen and paper,
or chalk and slate, or mentally, sometimes with the aid of tables.

The theory of computation began early in the twentieth century, be-
fore modern electronic computers had been invented. One of the far-
reaching ideas in the theory is the concept of a Turing machine, which
stores characters on an infinitely long tape, with one square at any
given time being scanned by a read/write head. Basically, a Turing
machine is a device that can read input strings, write output strings
and execute a set of stored instructions at a time. The Turing machine
demonstrated both the theoretical limits and potential of computing
systems and is a cornerstone of modern day digital computers.

The first computers were hardware-programmable. To change the
function computed, one had to reconnect the wires or even build a new
computer. John von Neumann suggested using Turing’s Universal Al-
gorithm. The function computed can then be specified by just giving
its description (program) as part of the input rather than by changing
the hardware. This was a radical idea which changed the course of
computing.

Modern day computers still largely implement binary digital com-
puting which is based on Boolean algebra; the logic of the true and
false. Boolean algebra shows how you can calculate anything (within
some epistemological limits) with a system of two discrete values.
Boolean logic became a fundamental component of modern computer
architecture, and is remarkable for its sheer conceptual simplicity. For
instance, it can be rigorously shown that any logic gate can be obtained
by adequate connection of NOR or NAND gates (i.e. any boolean cir-
cuit can be built using NOR/NAND gates alone). This implies that the
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capacity for universal computing can simply be demonstrated by the
implementation of the fundamental NOR or NAND gates [1].

1.3
Limits of Binary Computers and Alternative Approaches to
Computation: What Lies Beyond Moore’s Law?

The operation of any computing machine is necessarily a physical pro-
cess, and this crucially determines the possibilities and limitations of
the computing device. For the past 20 years, the throughput of digital
computers has increased at an exponential rate. Fuelled by (seemingly
endless) improvements in integrated-circuit technology, the exponen-
tial growth predicted by Moore’s law has held true. But Moore’s Law
will come to an end as chipmakers will hit a wall when it comes to
shrinking the size of transistors, one of the chief methods of making
chips that are smaller, more powerful and cheaper than their predeces-
sors.

As conventional chip manufacturing technology runs into physical
limits in the density of circuitry and signal speed, which sets limits to
binary logic switch scaling, alternatives to semiconductor-based binary
digital computers are emerging. Apart from analogue VLSI, these in-
clude bio-chips, which are based on materials found in living creatures;
optical computers that live on pure light; and quantum computers that
depend on the laws of quantum mechanics in order to perform, in the-
ory, tasks that ordinary computers cannot.

Neurobiologically inspired computing, quantum computing and
DNA computing differ in many respects, but they are similar in that
their aim, unlike conventional digital computers, is to utilize at the
basic level some of the computational capabilities inherent in the ba-
sic, analogue, laws of physics. Further, understanding of biological
systems, has triggered the question: what lessons do the workings of
the human mind offer for computationally hard problems? Thus the
attempt is to create machines that benefit from the basic laws of physics
and which are not just constrained by them.

Here we review another emerging computing paradigm: one which
exploits the richness and complexity inherent in nonlinear dynamics.
This endeavour also falls into the above class, as it seeks to extend the
possibilities of computing machines by utilizing the physics of the de-
vice.
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1.4
Exploiting Nonlinear Dynamics for Computations

We would now like to paraphrase the classic question ‘What limits do
the laws of classical physics place on computation’ to read ‘What op-
portunities do the laws of physics offer computation’.

It was proposed in 1998 that chaotic systems might be utilized to de-
sign computing devices [2]. In the early years the focus was on proof-
of-principle schemes that demonstrated the capability of chaotic ele-
ments to do universal computing. The distinctive feature of this alter-
native computing paradigm was that it exploited the sensitivity and
pattern formation features of chaotic systems.

In subsequent years there has been much research activity to develop
this paradigm [3–17]. It was realized that one of the most promising
directions of this computing paradigm was its ability to exploit a sin-
gle chaotic element to reconfigure into different logic gates through a
threshold-based morphing mechanism [3, 4]. In contrast to a conven-
tional field programmable gate array element [18], where reconfigura-
tion is achieved through switching between multiple single-purpose
gates, reconfigurable chaotic logic gates (RCLGs) are comprised of
chaotic elements that morph (or reconfigure) logic gates through the
control of the pattern inherent in their nonlinear element. Two in-
put RCLGs have recently been realized and shown to be capable of
reconfiguring between all logic gates in discrete circuits [5–7]. Ad-
ditionally, such RCLGs have been realized in prototype VLSI circuits
(0.13 μm CMOS, 30 MHz clock cycles). Further, reconfigurable chaotic
logic gates arrays (RCGA) which morph between higher-order func-
tions such as those found in a typical arithmetic logic unit (ALU), have
also been designed [17].

In this review we first recall the theoretical concept underlying the
reconfigurable implementation of all fundamental logical operations
utilizing nonlinear dynamics [3]. We also describe specific realizations
of the theory in chaotic electrical circuits. Then we present recent re-
sults of a method for obtaining logic output from a nonlinear system
using the time evolution of the state of the system. Finally we discuss
a method for storing and processing information by exploiting nonlin-
ear dynamics. We conclude with a brief discussion of some ongoing
technological implementations of these ideas.
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1.5
General Concept

We outline below a theoretical method for obtaining all basic logic
gates with a single nonlinear system. The broad aim here is to use
the rich temporal patterns embedded in a nonlinear time series in a
controlled manner to obtain a computing device that is flexible and re-
configurable.

Consider a chaotic element (our chaotic chip or chaotic processor) whose
state is represented by a value x. In our scheme all the basic logic gate
operations (NAND, NOR, XOR, AND, OR, XNOR and NOT) involve
the following steps:

1) Inputs:

x → x0 + X1 + X2 for 2-input logic operations, such as the NAND,
NOR, XOR, AND, OR and XNOR operations,

and

x → x0 + X for 1-input operations, such as the NOT operation.

Here x0 is the initial state of the system, and

X = 0 when I = 0

and

X = Vin when I = 1

where Vin is a positive constant.

2) Dynamical update, i.e. x → f (x)

where f (x) is a nonlinear function.

3) Threshold mechanism to obtain output Z:

Z = 0 if f (x) ≤ E, and

Z = f (x)− E if f (x) > E

where E is a monitoring threshold.
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This is interpreted as logic output 0 if Z = 0 and logic ouput 1 if
Z > 0 (with Z ∼ Vin).

Since the system is strongly nonlinear, in order to specify the inital x0
accurately one needs a controlling mechanism. Here we will employ a
threshold controller [19, 20] to set the inital x0. Namely, we will use the
clipping action of the threshold controller to achieve the initialization
and subsequently to obtain the output as well.

Note that in our implementation we demand that the input and out-
put have equivalent definitions (i.e. one unit is the same quantity for input
and output), as well as among various logical operations. This requires
that constant Vin assumes the same value throughout a network, and
this will allow the output of one gate element to couple easily to an-
other gate element as input, so that gates can be wired directly into
gate arrays implementing compounded logic operations.

In order to obtain all the desired input-output responses of the dif-
ferent gates, we need to satisfy the conditions enumerated in Table 1.1
simultaneously. So given a dynamics f (x) corresponding to the physi-
cal device in actual implementation, one must find values of the thresh-
old and initial state which satisfy the conditions derived from the Truth
Tables to be implemented (see Table 1.2).

Table 1.1 Truth table of the basic logic operations for a pair of inputs: I1, I2 [1]. The
1-input NOT gate is given by: NOT(0) is 1; NOT(1) is 0.

I1 I2 NAND NOR XOR AND OR XNOR

0 0 1 1 0 0 0 1

0 1 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 1 0 0 0 1 1 1

A representative example is given in Table 1.3, which shows the exact
solutions of the initial x0 and threshold E which satisfy the conditions in
Table 1.2 when the dynamical evolution is governed by the prototypical
logistic equation:

f (x) = 4x(1 − x)

The constant Vin = 1
4 is common to both input and output and to all

logical gates.
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Table 1.2 Necessary and sufficient conditions, derived from the logic truth tables, to
be satisfied simultaneously by the nonlinear dynamical element, in order to have the
capacity to implement the logical operations AND, OR, XOR, NAND, NOR and NOT
(cf. Table 1.1) with the same computing module.

Logic Operation Input Set (I1, I2) Output Necessary and Sufficient Condition

(0,0) 0 f (x0) < E

AND (0,1)/(1,0) 0 f (x0 + Vin) < E

(1,1) 1 f (x0 + 2Vin)− E = Vin

(0,0) 0 f (x0) < E

OR (0,1)/(1,0) 1 f (x0 + Vin)− E = Vin

(1,1) 1 f (x0 + 2Vin)− E = Vin

(0,0) 0 f (x0) < E

XOR (0,1)/(1,0) 1 f (x0 + Vin)− E = Vin

(1,1) 0 f (x0 + 2Vin) < E

(0,0) 1 f (x0) − E = Vin

NOR (0,1)/(1,0) 0 f (x0 + Vin) < E

(1,1) 0 f (x0 + 2Vin) < E

(0,0) 1 f (x0) − E = Vin

NAND (0,1)/(1,0) 1 f (x0 + Vin)− E = Vin

(1,1) 0 f (x0 + 2Vin) < E

NOT
0 1 f (x0) − E = Vin

1 0 f (x0 + Vin) < E

Above, we have explicitly shown how one can select temporal re-
sponses, corresponding to different logic gate patterns, from a nonlin-
ear system, and this ability allows us to construct flexible hardware.
Contrast our use of nonlinear elements here with the possible use of
linear systems on one hand and stochastic systems on the other. It is
not possible to extract all the different logic responses from the same el-
ement in the case of linear components, as the temporal patterns are
inherently very limited. So linear elements do not offer much flexibil-
ity or versatility. Stochastic elements on the other hand have many dif-
ferent temporal sequences. However, they are not deterministic and so
one cannot use them to design components. Only nonlinear dynamics
enjoys both richness of temporal behavior as well as determinism.
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Table 1.3 One specific set of solutions of the conditions in Table 1.2 which yield the
logical operations AND, OR, XOR, NAND and NOT, with Vin = 1

4 . Note that these
theoretical solutions have been fully verified in a discrete electrical circuit emulating
a logistic map [5].

Operation AND OR XOR NAND NOT

x0 0 1/8 1/4 3/8 1/2

E 3/4 11/16 3/4 11/16 3/4

Also note that, while nonlinearity is absolutely necessary for imple-
menting all the logic gates, chaos may not always be necessary. In the
representative example of the logistic map presented in Table 1.3, solu-
tions for all the gates exist only at the fully chaotic limit of the logistic
map but the degree of nonlinearity necessary for obtaining all the de-
sired logic responses will depend on the system at hand and on the
specific scheme employed to obtain the input-output mapping. It may
happen that certain nonlinear systems will allow a wide range of logic
responses without actually being chaotic.

1.6
Continuous-Time Nonlinear System

We now present a somewhat different method for obtaining logic re-
sponses from a continuous-time nonlinear system. Our processor is
now a continuous-time system described by the evolution equation d x
/dt = F (x, t), where x = (x1, x2, . . . xN) are the state variables and F is
a nonlinear function. In this system we choose a variable, say x1, to be
thresholded. Whenever the value of this variable exceeds a threshold E
it resets to E, i.e. when x1 > E then (and only then) x1 = E.

Now the basic 2-input 1-output logic operation on a pair of inputs
I1, I2 in this method simply involves the setting of an inputs-dependent
threshold, namely the threshold is:

E = VC + I1 + I2
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where VC is the dynamic control signal determining the functionality
of the processor. By switching the value of VC one can switch the logic
operation being performed.

Again I1/I2 has the value 0 when the logic input is 0 and has the
value Vin when the logic input is 1. So the threshold E is equal to VC
when the logic inputs are (0, 0), VC + Vin when the logic inputs are (0, 1)
or (1, 0) and VC + 2Vin when the logic inputs are (1, 1).

The output is again interpreted as a logic output 0 if x1 < E, i.e. the
excess above threshold V0 = 0. The logic output is 1 if x1 > E, and the
excess above threshold V0 = (x1 − E) ∼ Vin. The schematic diagram of
this method is displayed in Figure 1.1.

Figure 1.1 Schematic diagram for implementing a morph-
ing 2 input logic cell with a continuous time dynamical sys-
tem. Here VC determines the nature of the logic response,
and the 2 inputs are I1, I2.

Now, for a NOR gate implementation (VC = VNOR) the following
must hold true (cf. truth table in Table 1.1):

• when input set is (0, 0), output is 1, which implies that for thresh-
old E = VNOR, output V0 = (x1 − E) ∼ Vin;

• when input set is (0, 1) or (1, 0), output is 0, which implies that
for threshold E = VNOR + Vin, x1 < E so that output V0 = 0;

• when input set is (1, 1), output is 0, which implies that for thresh-
old E = VNOR + 2Vin, x1 < E so that output V0 = 0.

For a NAND gate (VC = VNAND) the following must hold true (cf. truth
table in Table 1.1):
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• when input set is (0, 0), output is 1, which implies that for thresh-
old E = VNAND, output V0 = (x1 − E) ∼ Vin;

• when input set is (0, 1) or (1, 0), output is 1, which implies that
for threshold E = Vin + VNAND, output V0 = (x1 − E) ∼ Vin;

• when input set is (1, 1), output is 0, which implies that for thresh-
old E = VNAND + 2Vin, x1 < E so that output V0 = 0.

In order to design a dynamic NOR/NAND gate one has to find val-
ues of VC that will satisfy all the above input-output associations in a
robust and consistent manner.

1.7
Proof-of-Principle Experiments

1.7.1
Discrete-Time Nonlinear System

In this section, we describe an iterated map whose nonlinearity has
a simple (i.e. minimal) electronic implementation. We then demon-
strate explicitly how all the different fundamental logic gates can be
implemented and morphed using this nonlinearity. These gates pro-
vide the full set of gates necessary to construct a general-purpose, re-
configurable computing device.

Consider an iterated map governed by the following equation:

xn+1 =
αxn

1 + xβ
n

(1.1)

where α and β are system parameters. Here we will consider α = 2 and
β = 10 where the system displays chaos.

In order to realize the chaotic map above in circuitry, one needs two
sample-and-hold circuits (S/H): the first S/H circuit holds an input sig-
nal (xn) in response to a clock signal CK1. The output from this sample-
and-hold circuit is fed as input to the nonlinear device for subsequent
mapping, f (xn). A second sample-and-hold (S/H) circuit takes the out-
put from the nonlinear device in response to a clock signal CK2. In lieu
of control, the output from the second S/H circuit (xn+1) closes the loop
as the input to first S/H circuit. The main purpose of the two sample-


