Edited by Frank Emmert-Streib and Matthias Dehmer

Medical Biostatistics for Complex Diseases

Edited by Frank Emmert-Streib and Matthias Dehmer

Medical Biostatistics for Complex Diseases

Related Titles

Emmert-Streib, F., Dehmer, M. (eds.)

Analysis of Microarray Data

A Network-Based Approach

2008 ISBN: 978-3-527-31822-3

Dehmer, M., Emmert-Streib, F. (eds.)

Analysis of Complex Networks

From Biology to Linguistics

2009 ISBN: 978-3-527-32345-6

Biswas, A., Datta, S., Fine, J. P., Segal, M. R. (eds.)

Statistical Advances in the Biomedical Sciences

Clinical Trials, Epidemiology, Survival Analysis, and Bioinformatics

2008 ISBN: 978-0-471-94753-0

Knudsen, S.

Cancer Diagnostics with DNA Microarrays

2006 ISBN: 978-0-471-78407-4

Nagl, S. (ed.)

Cancer Bioinformatics: From Therapy Design to Treatment

2006 ISBN: 978-0-470-86304-6 Edited by Frank Emmert-Streib and Matthias Dehmer

Medical Biostatistics for Complex Diseases

The Editors

Prof. Dr. Frank Emmert-Streib

Queen's University Cancer Research School of Medicine & Biomedical Sciences 97, Lisburn Road Belfast BT9 7BL United Kingdom

Prof. Dr. Matthias Dehmer

Universität für Gesundheitswissenschaften UMIT Institut für Bioinformatik Eduard Wallnöfer Zentrum 1 6060 Thaur Austria

Cover

A heatmap of residuals diagnosing model fit in gene-set expression analysis, as described in chapter 5 by A.P. Oron. It was produced using the R open-source statistical language, via the 'heatmap' function. The reader can produce a similar heatmap by running the tutorial script for the 'GSEAlm' package, available at the Bioconductor repository: http://www.bioconductor.org/packages/2.6/bioc/ vignettes/GSEAlm/inst/doc/GSEAlm.R (Copyright 2008 by Oxford University Press). Limit of Liability/Disclaimer of Warranty: While the publisher and authors have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty can be created or extended by sales representatives or written sales materials. The Advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical, and Medical business with Blackwell Publishing.

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition Thomson Digital, Noida, India Printing and Binding Strauss GmbH, Mörlenbach Cover Design Grafik-Design Schulz, Fußgönheim

Printed in the Federal Republic of Germany Printed on acid-free paper

ISBN: 978-3-527-32585-6

Foreword

The evolution of disease in cancer, metabolic disorders, and immunological disorders is still poorly understood. During the past few decades research has revealed that, in most instances, a complex interaction network of micro-environmental factors including cytokines and cytokine receptors as well as a complex network of signaling pathways and metabolic events contribute to disease evolution and disease progression. In addition, the genetic background, somatic mutations, and epigenetic mechanisms are involved in disease manifestation and disease progression. The heterogeneity of disease points to the complexity of events and factors that may all act together to lead to a frank disorder in the individual patient. Based on this assumption, the evaluation of such complex diseases with respect to the affected cells and cell systems by appropriate biostatistical analysis, including high capacity assays and highly developed multi-parameter evaluation-assays, is a clear medical need.

v

This book, Medical Biostatistics for Complex Diseases, reviews statistical and computational methods for the analysis of high-throughput data and their interpretation with special emphasis on the applicability in biomedical and clinical science. One major aim is to discuss methodologies and assays in order to analyze pathwayspecific patterns in various disorders and disease-categories. Such approaches are especially desired because they avoid many problems of methods that focus solely on a single-gene level. For example, detecting differentially expressed genes among experimental conditions or disease stages has received tremendous interest since the introduction of DNA microarrays. However, the inherent problem of a causal connection between a genetic characteristic and a phenotypic trait becomes especially problematic in the context of complex diseases because such diseases involve many factors, externally and internally, and their collective processing. For this reason pathway-approaches form an important step towards a full integration of multilevel factors and interactions to establish a systems biology perspective of physiological processes. From an educational point of view this point cannot be stressed enough because the gene-centric view is still prevalent and dominant in genetics, molecular biology, and medicine. That is why this book can serve as a basis to train a new generation of scientists and to forge their way of thinking.

VI Foreword

Deciphering complex diseases like cancer is a collaborative endeavor requiring the coordinated effort of an interdisciplinary team and highly developed multivariate methods through which the complexity of disorders can be addressed appropriately. For this reason it is notable that the present book also provides a brief introduction to the molecular biological mechanisms of cancer and cancer stem cells. This will be very helpful for biostatisticians and computational biologists, guiding their interpretations with related projects.

It will be very interesting to observe the development of this field during the next few years and to witness, hopefully, many exciting results that blossom from the methods and concepts presented in this book.

Vienna, February 2010

Peter Valent

Acknowledgments

I would like to thank Matthias Dehmer and Frank Emmert-Streib for fruitful discussions.

Contents

Foreword V Preface XIX List of Contributors XXIII

Part One General Biological and Statistical Basics 1

1	The Biology of MYC in Health and Disease: A High Altitude View 3
	Brian C. Turner, Gregory A. Bird, and Yosef Refaeli
1.1	Introduction 3
1.2	MYC and Normal Physiology 4
1.3	Regulation of Transcription and Gene Expression 4
1.4	Metabolism 6
1.5	Cell-Cycle Regulation and Differentiation 7
1.6	Protein Synthesis 7
1.7	Cell Adhesion 7
1.8	Apoptosis 8
1.9	MicroRNAs 9
1.10	Physiological Effects of Loss and Gain of <i>c-myc</i> Function in Mice 9
1.10.1	Loss of Function 9
1.10.2	Gain of Function: Inducible Transgenic Animals 10
1.11	Contributions of MYC to Tumor Biology 11
1.12	Introduction of Hematopoietic Malignancies 12
1.13	Mechanisms of MYC Dysregulation in Hematological Malignancies 13
1.14	Mutation(s) in the MYC Gene in Hematological Cancers 14
1.15	Role of MYC in Cell Cycle Regulation and Differentiation
	in Hematological Cancers 14
1.16	Role of BCR Signaling in Conjunction with MYC
	Overexpression in Lymphoid Malignancies 15
1.17	Deregulation of Auxiliary Proteins in Addition to MYC
	in Hematological Cancers 16

VII

VIII Contents

1.18	Conclusion 17
	References 18
2	Cancer Stem Cells – Finding and Capping the Roots of Cancer 25
	Eike C. Buss and Anthony D. Ho
2.1	Introduction – Stem Cells and Cancer Stem Cells 25
2.1.1	What are Stem Cells? 25
2.1.2	Concept of Cancer Stem Cells (CSCs) 25
2.2	Hematopoietic Stem Cells as a Paradigm 28
2.2.1	Leukemia as a Paradigmatic Disease for Cancer Research 28
2.2.2	CFUs 29
2.2.3	LTC-ICs 29
2.2.4	In Vivo Repopulation 30
2.2.5	Importance of the Bone Marrow Niche 30
2.2.6	Leukemic Stem Cells 31
2.2.6.1	Leukemic Stem Cells in the Bone Marrow Niche 31
2.2.7	CML as a Paradigmatic Entity 32
2.3	Current Technical Approach to the Isolation and Characterization
	of Cancer Stem Cells 33
2.3.1	Tools for the Detection of Cancer Stem Cells 33
2.3.2	Phenotype of Cancer Stem Cells 34
2.4	Cancer Stem Cells in Solid Tumors 35
2.4.1	Breast Cancer 36
2.4.2	Prostate Cancer 36
2.4.3	Colon Cancer 37
2.4.4	Other Cancers 37
2.5	Open Questions of the Cancer Stem Cell Hypothesis 37
2.6	Clinical Relevance of Cancer Stem Cells 38
2.6.1	Diagnostic Relevance of Cancer Stem Cells 38
2.6.2	Therapeutic Relevance – New Drugs Directed Against Cancer
	Stem Cells 39
2.7	Outlook 40
	References 40
3	Multiple Testing Methods 45
	Alessio Farcomeni
3.1	Introduction 45
3.1.1	A Brief More Focused Introduction 46
3.1.2	Historic Development of the Field 47
3.2	Statistical Background 48
3.2.1	Tests 48
3.2.2	Test Statistics and <i>p</i> -Values 49
3.2.3	Resampling Based Testing 49
3.3	Type I Error Rates 50
3.4	Introduction to Multiple Testing Procedures 52

- 3.4.1 Adjusted *p*-values 52
- 3.4.2 Categories of Multiple Testing Procedures 52
- 3.4.3 Estimation of the Proportion of False Nulls 53
- 3.5 Multiple Testing Procedures 55
- 3.5.1 Procedures Controlling the FWER 55
- 3.5.2 Procedures Controlling the FDR 56
- 3.5.3 Procedures Controlling the FDX 59
- 3.6 Type I Error Rates Control Under Dependence 61
- 3.6.1 FWER Control 62
- 3.6.2 FDR and FDX Control 62
- 3.7 Multiple Testing Procedures Applied to Gene Discovery in DNA Microarray Cancer Studies 63
- 3.7.1 Gene identification in Colon Cancer 64
- 3.7.1.1 Classification of Lymphoblastic and Myeloid Leukemia 643.8 Conclusions 67
- References 69

Part Two Statistical and Computational Analysis Methods 73

- 4 Making Mountains Out of Molehills: Moving from Single Gene to Pathway Based Models of Colon Cancer Progression 75 Elena Edelman, Katherine Garman, Anil Potti, and Sayan Mukherjee
- 4.1 Introduction 75
- 4.2 Methods 76
- 4.2.1 Data Collection and Standardization 76
- 4.2.2 Stratification and Mapping to Gene Sets 77
- 4.2.3 Regularized Multi-task Learning 78
- 4.2.4 Validation via Mann–Whitney Test 79
- 4.2.5 Leave-One-Out Error 79
- 4.3 Results 80
- 4.3.1 Development and Validation of Model Statistics 82
- 4.3.2 Comparison of Single Gene and Gene Set Models 83
- 4.3.3 Novel Pathway Findings and Therapeutic Implications 84
- 4.4 Discussion 85 References 86

Assaf P. Oron

- 5.1 The Challenge 89
- 5.2 Survey of Gene-Set Analysis Methods 91
- 5.2.1 Motivation for GS Analysis 91
- 5.2.2 Some Notable GS Analysis Methods 92
- 5.2.3 Correlations and Permutation Tests 95
- 5.3 Demonstration with the "ALL" Dataset 97
- 5.3.1 The Dataset 97

⁵ Gene-Set Expression Analysis: Challenges and Tools 89

X Contents

6Multivariate Analysis of Microarray Data Using Hotelling's T^2 Test 113 Yan Lu, Peng-Yuan Liu, and Hong-Wen Deng6.1Introduction 1136.2Methods 1146.2.1Wishart Distribution 1146.2.2Hotelling's T^2 Statistic 1156.2.3Two-Sample T^2 Statistic 1156.2.4Multiple Forward Search (MFS) Algorithm 1166.2.5Resampling 1176.3Validation of Hotelling's T^2 Statistic 1186.3.1Human Genome U95 Spike-In Dataset 1186.3.2Identification of DEGs 1186.4Application Examples 1186.4.1.1Dataset 1186.4.1.2Identification of DEGs 1206.4.1.3Classification of Human Liver Tissues 1226.4.2Human Breast Cancers 1246.4.2.2Cluster Analysis 1246.5Discussion 124 References 1287Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim7.1Coexpression and Differential Expression Analysis 1337.3Differential Coexpression Analysis 1347.4Differential Coexpression of Gene Sets 136	5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.4	The Gene-Filtering Dilemma 97 Basic Diagnostics: Testing Normalization and Model Fit 99 Pinpointing Aneuploidies via Outlier Identification 102 Signal-to-Noise Evaluation: The Sex Variable 103 Confounding, and Back to Basics: The Age Variable 106 How it all Reflects on the Bottom Line: Inference 107 Summary and Future Directions 108 References 111
Yan Lu, Peng-Yuan Liu, and Hong-Wen Deng6.1Introduction 1136.2Methods 1146.2.1Wishart Distribution 1146.2.2Hotelling's T^2 Statistic 1156.2.3Two-Sample T^2 Statistic 1156.2.4Multiple Forward Search (MFS) Algorithm 1166.2.5Resampling 1176.3Validation of Hotelling's T^2 Statistic 1186.3.1Human Genome U95 Spike-In Dataset 1186.3.2Identification of DEGs 1186.4Application Examples 1186.4.1Human Liver Cancers 1186.4.1.2Identification of DEGs 1206.4.1.3Classification of Human Liver Tissues 1226.4.2Human Breast Cancers 1246.4.2.1Dataset 1246.4.2.2Cluster Analysis 1246.5Discussion 124 References 1287Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim7.1Coexpression and Differential Expression Analysis 1337.3Differential Coexpression Analysis 1347.4Differential Coexpression Analysis 136	6	Multivariate Analysis of Microarray Data Using Hotelling's T^2 Test 113
6.1Introduction1136.2Methods1146.2.1Wishart Distribution1146.2.2Hotelling's T^2 Statistic1156.2.3Two-Sample T^2 Statistic1156.2.4Multiple Forward Search (MFS) Algorithm1166.2.5Resampling1176.3Validation of Hotelling's T^2 Statistic1186.3.1Human Genome U95 Spike-In Dataset1186.3.2Identification of DEGs1186.3.4Application Examples1186.4.1Human Liver Cancers1186.4.1.2Identification of DEGs1206.4.1.3Classification of Human Liver Tissues1226.4.2Human Breast Cancers1246.4.2.1Dataset1246.4.2.2Cluster Analysis1246.5Discussion124References1287Interpreting Differential Coexpression of Gene Sets1317.1Coexpression and Differential Expression Analyses1317.2Gene Set-Wise Differential Expression Analysis1337.3Differential Coexpression Analysis of Paired Gene Sets1357.5Measuring Coexpression of Gene Sets136		Yan Lu Peng-Yuan Liu and Hong-Wen Deng
6.1Information 1136.2Methods 1146.2.1Wishart Distribution 1146.2.2Hotelling's T^2 Statistic 1156.2.3Two-Sample T^2 Statistic 1156.2.4Multiple Forward Search (MFS) Algorithm 1166.2.5Resampling 1176.3Validation of Hotelling's T^2 Statistic 1186.3.1Human Genome U95 Spike-In Dataset 1186.3.2Identification of DEGs 1186.3.4Application Examples 1186.4.1Human Liver Cancers 1186.4.1.2Identification of DEGs 1206.4.1.3Classification of Human Liver Tissues 1226.4.2Human Breast Cancers 1246.4.2.1Dataset 1246.4.2.2Cluster Analysis 1246.5Discussion 124 References 1287Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim7.1Coexpression and Differential Expression Analyses 1317.2Gene Set-Wise Differential Expression Analysis 1337.3Differential Coexpression Analysis 1347.4Differential Coexpression of Gene Sets 136	61	Introduction 113
6.2Methods1146.2.1Wishart Distribution1146.2.2Hotelling's T^2 Statistic1156.2.3Two-Sample T^2 Statistic1156.2.4Multiple Forward Search (MFS) Algorithm1166.2.5Resampling1176.3Validation of Hotelling's T^2 Statistic1186.3.1Human Genome U95 Spike-In Dataset1186.3.2Identification of DEGs1186.4Application Examples1186.4.1Human Liver Cancers1186.4.1.1Dataset1186.4.1.2Identification of DEGs1206.4.1.3Classification of Human Liver Tissues1226.4.4Human Breast Cancers1246.4.2.1Dataset1246.4.2.2Cluster Analysis1246.5Discussion124References1287Interpreting Differential Coexpression of Gene Sets131Ju Han Kim, Sung Bum Cho, and Jihun Kim1337.1Coexpression and Differential Expression Analysis1337.3Differential Coexpression Analysis1347.4Differential Coexpression of Gene Sets1357.5Measuring Coexpression of Gene Sets136	6.2	Methods 114
6.2.1Wishart Distribution1146.2.2Hotelling's T^2 Statistic1156.2.3Two-Sample T^2 Statistic1156.2.4Multiple Forward Search (MFS) Algorithm1166.2.5Resampling1176.3Validation of Hotelling's T^2 Statistic1186.3.1Human Genome U95 Spike-In Dataset1186.3.2Identification of DEGs1186.4Application Examples1186.4.1Human Liver Cancers1186.4.1.1Dataset1186.4.1.2Identification of DEGs1206.4.1.3Classification of Human Liver Tissues1226.4.4Human Breast Cancers1246.4.2.1Dataset1246.4.2.2Cluster Analysis1246.5Discussion124References1287Interpreting Differential Coexpression of Gene Sets131 ju Han Kim, Sung Bum Cho, and Jihun Kim7.1Coexpression and Differential Expression Analyses1317.2Gene Set-Wise Differential Expression Analysis1337.3Differential Coexpression Analysis of Paired Gene Sets1357.5Measuring Coexpression of Gene Sets1367.5Measuring Coexpression of Gene Sets136	6.2.1	Wishart Distribution 114
6.2.2Flotting's P Justice 1136.2.3Two-Sample T^2 Statistic 1156.2.4Multiple Forward Search (MFS) Algorithm 1166.2.5Resampling 1176.3Validation of Hotelling's T^2 Statistic 1186.3.1Human Genome U95 Spike-In Dataset 1186.3.2Identification of DEGs 1186.4Application Examples 1186.4.1Human Liver Cancers 1186.4.1.1Dataset 1186.4.1.2Identification of DEGs 1206.4.1.3Classification of Human Liver Tissues 1226.4.4Human Breast Cancers 1246.4.2Human Breast Cancers 1246.4.2.2Cluster Analysis 1246.5Discussion 124References 1287Interpreting Differential Coexpression of Gene Sets 1317.1Coexpression and Differential Expression Analyses 1337.2Gene Set-Wise Differential Expression Analysis 1337.3Differential Coexpression Analysis 1347.4Differential Coexpression of Gene Sets 136	622	Hotelling's T^2 Statistic 115
6.2.5Two-ballipte T Statistice 1136.2.4Multiple Forward Search (MFS) Algorithm 1166.2.5Resampling 1176.3Validation of Hotelling's T^2 Statistic 1186.3.1Human Genome U95 Spike-In Dataset 1186.3.2Identification of DEGs 1186.4Application Examples 1186.4.1Human Liver Cancers 1186.4.1Dataset 1186.4.1.1Dataset 1186.4.1.2Identification of DEGs 1206.4.1.3Classification of Human Liver Tissues 1226.4.4Human Breast Cancers 1246.4.2.1Dataset 1246.4.2.2Cluster Analysis 1246.5Discussion 124References 1287Interpreting Differential Coexpression of Gene Sets 1317.1Coexpression and Differential Expression Analyses 1337.2Gene Set-Wise Differential Expression Analysis 1337.3Differential Coexpression Analysis 1347.4Differential Coexpression of Gene Sets 1367.5Measuring Coexpression of Gene Sets 136	6.2.2	Two-Sample T^2 Statistic 115
6.2.4Multiple Folward Scalen (MFS) Algorithm 1106.2.5Resampling 1176.3Validation of Hotelling's T^2 Statistic 1186.3.1Human Genome U95 Spike-In Dataset 1186.3.2Identification of DEGs 1186.4Application Examples 1186.4.1Human Liver Cancers 1186.4.1Dataset 1186.4.1.2Identification of DEGs 1206.4.1.3Classification of Human Liver Tissues 1226.4.4Human Breast Cancers 1246.4.2Human Breast Cancers 1246.4.2.1Dataset 1246.4.2.2Cluster Analysis 1246.5Discussion 124 References 1287Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim7.1Coexpression and Differential Expression Analysis 1337.3Differential Coexpression Analysis 1347.4Differential Coexpression of Gene Sets 1357.5Measuring Coexpression of Gene Sets 136	624	Multiple Forward Search (MES) Algorithm 116
6.3.Kesamping1176.3.Validation of Hotelling's T^2 Statistic1186.3.1Human Genome U95 Spike-In Dataset1186.3.2Identification of DEGs1186.4.Application Examples1186.4.1Human Liver Cancers1186.4.1Dataset1186.4.1.1Dataset1186.4.1.2Identification of DEGs1206.4.1.3Classification of Human Liver Tissues1226.4.1Dataset1246.4.2Human Breast Cancers1246.4.2.1Dataset1246.4.2.2Cluster Analysis1246.5Discussion124References1287Interpreting Differential Coexpression of Gene Sets131Ju Han Kim, Sung Bum Cho, and Jihun Kim7.1Coexpression and Differential Expression Analysis1337.3Differential Coexpression Analysis1347.4Differential Coexpression of Gene Sets1357.5Measuring Coexpression of Gene Sets136	6.2.5	Resempling 117
 6.3.1 Human Genome U95 Spike-In Dataset 118 6.3.2 Identification of DEGs 118 6.4 Application Examples 118 6.4 Application Examples 118 6.4.1 Human Liver Cancers 118 6.4.1 Dataset 118 6.4.1.2 Identification of DEGs 120 6.4.1.3 Classification of Human Liver Tissues 122 6.4.2 Human Breast Cancers 124 6.4.2.1 Dataset 124 6.4.2.2 Cluster Analysis 124 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 135 7.5 Measuring Coexpression of Gene Sets 136 	6.3	Validation of Hotelling's T^2 Statistic 118
 i.i. Fitnman octionic OSS splitc-in Dataset 110 i.i. Identification of DEGs 118 Application Examples 118 Human Liver Cancers 118 Identification of DEGs 120 Identification of DEGs 120 Identification of Human Liver Tissues 122 Identification of Human Liver Tissues 124 Identification Interpreting Differential Coexpression of Gene Sets 131 Identification Differential Coexpression Analysis 134 Identification Set 136 Identification Coexpression of Gene Sets 136 	631	Human Cenome 1195 Snike. In Dataset 118
 6.4 Application of DECS 110 6.4 Application Examples 118 6.4.1 Human Liver Cancers 118 6.4.1 Dataset 118 6.4.1.1 Dataset 118 6.4.1.2 Identification of DEGs 120 6.4.1.3 Classification of Human Liver Tissues 122 6.4.2 Human Breast Cancers 124 6.4.2.1 Dataset 124 6.4.2.2 Cluster Analysis 124 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 135 7.5 Measuring Coexpression of Gene Sets 136 	632	Identification of DECs 118
 A. Human Liver Cancers 118 A.1. Human Liver Cancers 118 A.1.1 Dataset 118 A.1.2 Identification of DEGs 120 A.1.3 Classification of Human Liver Tissues 122 A.2 Human Breast Cancers 124 A.2.1 Dataset 124 A.2.2 Cluster Analysis 124 C.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 136 	6.4	Application Examples 118
 6.4.1.1 Dataset 118 6.4.1.2 Identification of DEGs 120 6.4.1.3 Classification of Human Liver Tissues 122 6.4.1 Dataset 124 6.4.2.1 Dataset 124 6.4.2.2 Cluster Analysis 124 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 136 	6.4.1	Human Liver Cancers 118
 6.4.1.2 Identification of DEGs 120 6.4.1.3 Classification of Human Liver Tissues 122 6.4.2 Human Breast Cancers 124 6.4.2.1 Dataset 124 6.4.2.2 Cluster Analysis 124 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 136 	6411	Dataset 118
 6.4.1.3 Classification of D1205 1120 6.4.1.3 Classification of Human Liver Tissues 122 6.4.2 Human Breast Cancers 124 6.4.2.1 Dataset 124 6.4.2.2 Cluster Analysis 124 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 136 	6412	Identification of DEGs 120
 6.4.2 Human Breast Cancers 124 6.4.2.1 Dataset 124 6.4.2.2 Cluster Analysis 124 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 136 	6413	Classification of Human Liver Tissues 122
 6.4.2.1 Dataset 124 6.4.2.2 Cluster Analysis 124 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 136 	642	Human Breast Cancers 124
 6.4.2.2 Cluster Analysis 124 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 136 7.5 Measuring Coexpression of Gene Sets 136 	6421	Dataset 124
 6.5 Discussion 124 References 128 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 136 7.5 Measuring Coexpression of Gene Sets 136 	6422	Cluster Analysis 124
 7 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression of Gene Sets 135 7.5 Measuring Coexpression of Gene Sets 136 	6.5	Discussion 124
 Interpreting Differential Coexpression of Gene Sets 131 Ju Han Kim, Sung Bum Cho, and Jihun Kim Coexpression and Differential Expression Analyses 131 Gene Set-Wise Differential Expression Analysis 133 Differential Coexpression Analysis 134 Differential Coexpression Analysis of Paired Gene Sets 135 Measuring Coexpression of Gene Sets 136 	0.0	References 128
Ju Han Kim, Sung Bum Cho, and Jihun Kim7.1Coexpression and Differential Expression Analyses7.2Gene Set-Wise Differential Expression Analysis7.3Differential Coexpression Analysis7.4Differential Coexpression Analysis of Paired Gene Sets7.5Measuring Coexpression of Gene Sets7.6Coexpression of Gene Sets7.7	7	Interpreting Differential Conversion of Conversion 121
 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression Analysis of Paired Gene Sets 135 7.5 Measuring Coexpression of Gene Sets 136 	/	Interpreting Differential Coexpression of Gene Sets 151
 7.1 Coexpression and Differential Expression Analyses 131 7.2 Gene Set-Wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression Analysis of Paired Gene Sets 135 7.5 Measuring Coexpression of Gene Sets 136 	71	Coorprogrian and Differential Expression Analyzed 121
 7.2 Gene Set wise Differential Expression Analysis 133 7.3 Differential Coexpression Analysis 134 7.4 Differential Coexpression Analysis of Paired Gene Sets 135 7.5 Measuring Coexpression of Gene Sets 136 	7.1	Come Set Wige Differential Expression Analysis 122
 7.5 Differential Coexpression Analysis 134 7.4 Differential Coexpression Analysis of Paired Gene Sets 135 7.5 Measuring Coexpression of Gene Sets 136 7.6 Differential Coexpression of Gene Sets 136 	7.2	Differential Coourreggion Analysis 124
 7.4 Differential Coexpression Analysis of Parled Gene Sets 135 7.5 Measuring Coexpression of Gene Sets 136 7.6 Differential Coexpression of Gene Sets 136 	7.5	Differential Coexpression Analysis 134
7.5 Micasuring Cockpression of Gene Sets 150	7. 4 7.5	Massuring Coexpression of Cana Sate 126
/ 6 Measuring Ditterential Coeveression of Cene Sets 127	7.5	Measuring Differential Coeveression of Cone Sets 137
7.7 Cana Pair-Wise Differential Coeveression 139	7.0	Cone Pair Wise Differential Coeveression 139
7.8 Datasets and Cone Sets 130	7.8	Datasets and Gene Sets 130
7.8 1 Datasets 139	7.81	Datasets 139
7.8.2 Gene Sets 139	7.8.2	Gene Sets 139

Contents XI

7.9	Simulation Study 139
7.10	Lung Cancer Data Analysis Results 140
7.11	Duchenne's Muscular Dystrophy Data Analysis Results 142
7.12	Discussion 145
	References 150
8	Multivariate Analysis of Microarray Data: Application
	of MANOVA 151
	Taeyoung Hwang and Taesung Park
8.1	Introduction 151
8.2	Importance of Correlation in Multiple Gene Approach 152
8.2.1	Small Effects Coordinate to Make a Big Difference 154
8.2.2	Significance of the Correlation 155
8.3	Multivariate ANalysis of VAriance (MANOVA) 155
8.3.1	ANOVA 156
8.3.2	MANOVA 157
8.4	Applying MANOVA to Microarray Data Analysis 159
8.5	Application of MANOVA: Case Studies 160
8.5.1	Identifying Disease Specific Genes 160
8.5.2	Identifying Significant Pathways from Public Pathway
	Databases 161
8.5.3	Identification of Subnetworks from Protein-Protein
	Interaction Data 162
0.6	
8.6	Conclusions 163
8.6	Conclusions 163 References 165
8.6	Conclusions 163 References 165
8.6 9	Conclusions 163 References 165 Testing Significance of a Class of Genes 167
9.6	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai
9.1	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167
8.699.19.29.2	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169
 8.6 9 9.1 9.2 9.3 9.1 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171
 8.6 9 9.1 9.2 9.3 9.4 	Conclusions163References165Testing Significance of a Class of Genes167James J. Chen and Chen-An Tsai11Introduction167Competitive versus Self-Contained Tests169One-Sided and Two-Sided Hypotheses171Over-Representation Analysis (ORA)171
 8.6 9 9.1 9.2 9.3 9.4 9.5 9.5 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 <i>James J. Chen and Chen-An Tsai</i> Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172
 8.6 9 9.1 9.2 9.3 9.4 9.5 9.5.1 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 <i>James J. Chen and Chen-An Tsai</i> Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174
 8.6 9 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.1 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174 OLS Global Test 174
 8.6 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.2 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174 OLS Global Test 174 GSEA Test 175
 8.6 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.2 9.5.2 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174 OLS Global Test 174 GSEA Test 175 Two-Sided Test 175
 8.6 9 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.2 9.5.2 9.5.2.1 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174 OLS Global Test 174 GSEA Test 175 Two-Sided Test 175 MANOVA Test 175
 8.6 9 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.2 9.5.2 9.5.2.1 9.5.2.2 9.5.2.1 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 <i>James J. Chen and Chen-An Tsai</i> Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174 OLS Global Test 174 GSEA Test 175 Two-Sided Test 175 MANOVA Test 175 SAM-GS Test 176
 8.6 9 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.2 9.5.2 9.5.2.1 9.5.2.3 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174 OLS Global Test 174 GSEA Test 175 Two-Sided Test 175 MANOVA Test 175 SAM-GS Test 176 ANCOVA Test 177
 8.6 9 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.2 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.6 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174 OLS Global Test 174 GSEA Test 175 Two-Sided Test 175 MANOVA Test 175 SAM-GS Test 176 ANCOVA Test 177 Applications 177
 8.6 9 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.2.2 9.5.2.1 9.5.2.2 9.5.2.3 9.6 9.6.1 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 172 One-Sided Test 174 GSEA Test 175 Two-Sided Test 175 MANOVA Test 175 SAM-GS Test 176 ANCOVA Test 177 Diabetes Dataset 177
 8.6 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.2 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.6 9.6.1 9.6.2 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 172 One-Sided Test 174 GSEA Test 175 Two-Sided Test 175 MANOVA Test 175 SAM-GS Test 176 ANCOVA Test 177 Applications 177 Diabetes Dataset 180
 8.6 9.1 9.2 9.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.2 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.6 9.6.1 9.6.2 9.7 	Conclusions 163 References 165 Testing Significance of a Class of Genes 167 James J. Chen and Chen-An Tsai Introduction 167 Competitive versus Self-Contained Tests 169 One-Sided and Two-Sided Hypotheses 171 Over-Representation Analysis (ORA) 171 GCT Statistics 172 One-Sided Test 174 OLS Global Test 174 GSEA Test 175 Two-Sided Test 175 MANOVA Test 175 SAM-GS Test 176 ANCOVA Test 177 Diabetes Dataset 177 p53 Dataset 180 Discussion 181

XII Contents

10	Differential Dependency Network Analysis to Identify Topological
	Changes in Biological Networks 185
	Bai Zhang, Huai Li, Robert Clarke, Leena Hilakivi-Clarke, and Yue Wang
10.1	Introduction 185
10.2	Preliminaries 187
10.2.1	Probabilistic Graphical Models and Dependency Networks 187
10.2.2	Graph Structure Learning and ℓ_1 -Regularization 188
10.3	Method 188
10.3.1	Local Dependency Model in DDN 188
10.3.2	Local Structure Learning 189
10.3.3	Detection of Statistically Significant Topological Changes 191
10.3.4	Identification of "Hot Spots" in the Network and Extraction
	of the DDN 192
10.4	Experiments and Results 192
10.4.1	A Simulation Experiment 192
10.4.1.1	Experiment Data 193
10.4.1.2	Application of DDN Analysis 193
10.4.1.3	Algorithm Analysis 195
10.4.2	Breast Cancer Dataset Analysis 196
10.4.2.1	Experiment Background and Data 196
10.4.2.2	Application of DDN Analysis 197
10.4.3	In Utero Excess E2 Exposed Adult Mammary Glands Analysis 198
10.4.3.1	Experiment Background and Data 198
10.4.4	Application of DDN Analysis 198
10.5	Closing Remarks 199
	References 200
11	An Introduction to Time-Varying Connectivity Estimation
	for Gene Regulatory Networks 205
	André Fujita, João Ricardo Sato, Marcos Angelo Almeida Demasi,
	Satoru Miyano, Mari Cleide Sogayar, and Carlos Eduardo Ferreira
11.1	Regulatory Networks and Cancer 205
11.2	Statistical Approaches 207
11.2.1	Causality and Granger Causality 207
11.2.2	Vector Autoregressive Model – VAR 209
11.2.2.1	Estimation Procedure 210
11.2.2.2	Hypothesis Testing 211
11.2.3	Dynamic Vector Autoregressive Model – DVAR 211
11.2.3.1	Estimation Procedure 214
11.2.3.2	Covariance Matrix Estimation 215
11.2.3.3	Hypothesis Testing 215
11.3	Simulations 216
11.4	Application of the DVAR Method to Actual Data 218
11.5	Final Considerations 222
11.6	Conclusions 224

11.A	Appendix 225
	References 227
12	A Systems Biology Approach to Construct A Cancer-Perturbed
	Protein–Protein Interaction Network for Apoptosis by Means
	of Microarray and Database Mining 231
	Liang-Hui Chu and Bor-Sen Chen
12.1	Introduction 231
12.2	Methods 233
12.2	Microarray Experimental Data 233
12.2.1	Construction of Initial Protein_Protein Interaction (PPI)
12.2.2	Networks 233
1223	Nonlinear Stochastic Interaction Model 233
12.2.5	Identification of Interactions in the Initial Protein_Protein
12.2.7	Interaction Network 236
1225	Modification of Initial PPI Networks 238
12.2.5	Regulte 230
12.5	Construction of a Cancer Perturbed PPI Network for Apontosis 230
12.3.1	Drediction of Apoptosis Drug Targets by Means
12.3.2	of Cancor Dorturbod DDL Networks for Apoptosis 241
12221	Common Dethway: CASD2 244
12.3.2.1	Exterioric Dethuron and Cross Tells TNE 244
12.3.2.2	Extrinsic Patriway and Cross-raik. TNF 244
12.3.2.3	Anontogia Dogulatorg, TD52, MVC, and ECED 244
12.3.2.4 13 2 3 E	Apoptosis Regulators: TP35, MTC, and EGFR 243 Strong Induced Signaling MADK1 and MADK2 245
12.3.2.3	Stless-induced Signaling. MAPKI and MAPK5 243
12.3.2.0	Dudistica of Mars Assets in Drug Tarasta ha Despession
12.3.3	the Degree of Porturbation 246
1 2 2 2 1	Degree of Perturbation 240
12.3.3.1	the Degree of Perturbation 246
17 2 2 7	Prediction of New CO Annotations of the Four Proteins:
12.5.5.2	CDKN1A, CCND, PRKCD, and PCNA 246
12.4	Apoptosis Mechanism at the Systems Level 247
12.4.1	Caspase Family and Caspase Regulators 247
12.4.2	Extrinsic Pathway, Intrinsic Pathway, and Cross-Talk 248
12.4.3	Regulation of Apoptosis at the Systems Level 248
12.5	Conclusions 248
1210	References 249
13	A New Gene Expression Meta-Analysis Technique and Its Application to
	Co-Analyze Three Independent Lung Cancer Datasets 253
	Irit Fishel, Alon Kaufman, and Eytan Ruppin
13.1	Background 253
13.1.1	DNA Microarray Technology 253
12111	DNA M'

13.1.1.1 cDNA Microarray 253

XIV Contents

13.1.1.2	Oligonucleotide Microarray 255
13.1.2	Machine Learning Background 255
13.1.2.1	Basic Definitions and Terms in Machine Learning 255
13.1.2.2	Supervised Learning in the Context of Gene Expression Data 256
13.1.3	Support Vector Machines 256
13.1.4	Support Vector Machine Recursive Feature Elimination 258
13.2	Introduction 259
13.3	Methods 260
13.3.1	Overview and Definitions 260
13.3.2	A Toy Example 261
13.3.3	Datasets 263
13.3.4	Data Pre-processing 263
13.3.5	Probe Set Reduction 264
13.3.6	Constructing a Predictive Model 264
13.3.7	Constructing Predictive Gene Sets 264
13.3.8	Estimating the Predictive Performance 266
13.3.9	Constructing a Repeatability-Based Gene List 266
13.3.10	Ranking the Joint Core Genes 267
13.4	Results 267
13.4.1	Unstable Ranked Gene Lists in a Tumor Versus Normal Binary
	Classification Task 267
13.4.2	Constructing a Consistent Repeatability-Based Gene List 268
13.4.3	Repeatability-Based Gene Lists are Stable 269
13.4.4	Comparing Gene Rankings between Datasets 269
13.4.5	Joint Core Magnitude 270
13.4.6	The Joint Core is Transferable 271
13.4.7	Biological Significance of the Joint Core Genes 272
13.5	Discussion 273
	References 275
14	Kernel Classification Methods for Cancer Microarray Data 279
	Isuyoshi Kato and Wataru Fujibuchi
14.1	Introduction 279
14.1.1	Notation 280
14.2	Support Vector Machines and Kernels 281
14.2.1	Support Vector Machines 281
14.2.2	Kernel Matrix 284
14.2.3	Polynomial Kernel and RBF Kernel 285
14.2.4	Pre-process of Kernels 286
14.2.4.1	Normalization 286
14.2.4.2	SVD Denoising 287
14.3	Metrization Kernels: Kernels for Microarray Data 288
14.3.1	Partial Distance (or kNND) 288
14.3.2	Maximum Entropy Kernel 289
14.3.3	Other Distance-Based Kernels 290

- 14.4 Applications to Cancer Data 290
- 14.4.1 Leave-One-Out Cross Validation 291
- 14.4.2 Data Normalization and Classification Analysis 291
- 14.4.3 Parameter Selection 292
- 14.4.4 Heterogeneous Kidney Carcinoma Data 292
- 14.4.5 Problems in Training Multiple Support Vector Machines for All Sub-data 293
- 14.4.6 Effects of Partial Distance Denoising in Homogeneous Leukemia Data 293
- 14.4.7 Heterogeneous Squamous Cell Carcinoma Metastasis Data 295
- 14.4.8 Advantages of ME Kernel 296
- 14.5 Conclusion 296
- 14.A Appendix 298
 - References 300

15 Predicting Cancer Survival Using Expression Patterns 305 Anupama Reddy, Louis-Philippe Kronek, A. Rose Brannon, Michael Seiler, Shridar Ganesan, W. Kimryn Rathmell, and Gyan Bhanot

- 15.1 Introduction 305
- 15.2 Molecular Subtypes of ccRCC 307
- 15.3 Logical Analysis of Survival Data 308
- 15.4 Bagging LASD Models 311
- 15.5 Results 312
- 15.5.1 Prediction Results are More Accurate after Stratifying Data into Subtypes 313
- 15.5.2 LASD Performs Significantly Better than Cox Regression 313
- 15.5.3 Bagging Improves Robustness of LASD Predictions 314
- 15.5.4 LASD Patterns have Distinct Survival Profiles 314
- 15.5.5 Importance Scores for Patterns and an Optimized Risk Score 314
- 15.5.6 Risk Scores could be used to Classify Patients into Distinct Risk Groups 316
- 15.5.7 LASD Survival Prediction is Highly Predictive When Compared with Clinical Parameters (Stage, Grade, and Performance) 318
- 15.6 Conclusion and Discussion 318 References 322

16 Integration of Microarray Datasets 325

- Ki-Yeol Kim and Sun Young Rha
- 16.1 Introduction 325
- 16.2 Integration Methods 325
- 16.2.1 Existing Methods for Adjusting Batch Effects 326
- 16.2.1.1 Singular Value Decomposition (SVD) and Distance Weighted Discrimination (DWD) 326
- 16.2.1.2 ANOVA (Analysis of Variance) Model 327
- 16.2.1.3 Empirical Bayesian Method for Adjusting Batch Effect 327

XVI Contents

16.2.2	Transformation Method 329
16.2.2.1	Standardization of Expression Data 329
16.2.2.2	Transformation of Datasets Using a Reference Dataset 330
16.2.3	Discretization Methods 332
16.2.3.1	Equal Width and Equal Frequency Discretizations 332
16.2.3.2	ChiMerge Method 333
16.2.3.3	Discretization Based on Recursive Minimal Entropy 333
16.2.3.4	Nonparametric Scoring Method for Microarray Data 333
16.2.3.5	Discretization by Rank of Gene Expression in Microarray Dataset:
	Proposed Method 335
16.3	Statistical Method for Significant Gene Selection
	and Classification 336
16.3.1	Chi-Squared Test for Significant Gene Selection 336
16.3.2	Random Forest for Calculating Prediction Accuracy 337
16.4	Example 337
16.4.1	Dataset 338
16.4.2	Prediction Accuracies Using the Combined Dataset 339
16.4.2.1	Data Preprocessing 339
16.4.2.2	Improvement of Prediction Accuracy Using Combined Datasets
	by the Proposed Method 339
16.4.2.3	Description of Significant Genes Selected from a Combined Dataset
	by the Proposed Method 340
16.4.2.4	Improvement of Prediction Accuracies by Combining Datasets
	Performed using Different Platforms 340
16.4.3	Conclusions 341
16.5	Summary 342
	References 342
17	Model Averaging for Biological Networks with Prior Information 347
	Sach Mukherjee, Terence P. Speed, and Steven M. Hill
17.1	Introduction 347
17.2	Background 349
17.2.1	Bayesian Networks 349
17.2.2	Model Scoring 350
17.2.3	Model Selection and Model Averaging 351
17.2.4	Markov Chain Monte Carlo on Graphs 354
17.3	Network Priors 356
17.3.1	A Motivating Example 356
17.3.2	General Framework 357
17371	
17.3.2.1	Specific Edges 357
17.3.2.2	Specific Edges 357 Classes of Vertices 358
17.3.2.1 17.3.2.2 17.3.2.3	Specific Edges 357 Classes of Vertices 358 Higher-Level Network Features 358
17.3.2.2 17.3.2.3 17.3.2.4	Specific Edges 357 Classes of Vertices 358 Higher-Level Network Features 358 Network Sparsity 358
17.3.2.2 17.3.2.2 17.3.2.3 17.3.2.4 17.3.2.5	Specific Edges 357 Classes of Vertices 358 Higher-Level Network Features 358 Network Sparsity 358 Degree Distributions 359
17.1 17.2 17.2.1	Sach Mukherjee, Terence P. Speed, and Steven M. Hill Introduction 347 Background 349 Bayesian Networks 349
17.2.1	Bayesian Networks 349
17.2.1	Model Scoring 350
1723	Model Selection and Model Averaging 351
17.2.5	Markov Chain Monte Carlo on Craphs 354
17.2.7	Natural Drive 256
17.3	Network Priors 356
17.3.1	A Motivating Example 356
17.3.1	A monvaning Example 550
17.3.2	General Framework 357
17.3.2	General Framework 3.3/
17371	
1/	Specific Edges 357
17.3.2.1	Specific Edges 357
17.3.2.2	Specific Edges 357 Classes of Vertices 358
17.3.2.2	Specific Edges 357 Classes of Vertices 358
17.3.2.2 17.3.2.3	Specific Edges 357 Classes of Vertices 358 Higher-Level Network Features 358
17.3.2.2 17.3.2.3 17.3.2.4	Specific Edges 357 Classes of Vertices 358 Higher-Level Network Features 358 Network Sparsity 358
17.3.2.2 17.3.2.2 17.3.2.3 17.3.2.4 17.3.2.5	Specific Edges 357 Classes of Vertices 358 Higher-Level Network Features 358 Network Sparsity 358 Degree Distributions 359
17.3.2.2 17.3.2.2 17.3.2.3 17.3.2.4 17.3.2.5	Specific Edges 357 Classes of Vertices 358 Higher-Level Network Features 358 Network Sparsity 358 Degree Distributions 359

- 17.3.3 Prior-Based Proposals 359
- 17.4 Some Results 360
- 17.4.1 Simulated Data 360
- 17.4.1.1 Priors 361
- 17.4.1.2 MCMC 362
- 17.4.1.3 ROC Analysis 362
- 17.4.2 Prior Sensitivity 362
- 17.4.3 A Biological Network 362
- 17.4.3.1 Data 363
- 17.4.3.2 Priors 364
- 17.4.3.3 MCMC 365
- 17.4.3.4 Single Best Graph 365
- 17.4.3.5 Network Features 365
- 17.4.3.6 Prior Sensitivity 365
- 17.5 Conclusions and Future Prospects 366
- 17.6 Appendix 369
 - References 370

Index 373

Preface

This book, Medical Biostatistics for Complex Diseases, presents novel approaches for the statistical and computational analysis of high-throughput data from complex diseases. A complex disease is characterized by an intertwined interplay between several genes that are responsible for the pathological phenotype instead of a single gene. This interplay among genes and their products leads to a bio-complexity that makes a characterization and description of such a disease intricate. For this reason, it has been realized that single-gene-specific methods are less insightful than methods based on groups of genes [1]. A possible explanation for this is that the orchestral behavior of genes in terms of their molecular interactions form gene networks [2, 3] that are composed of functional units (subnetworks) that are called pathways. In this respect, analysis methods based on groups of genes may resemble biological pathways and, hence, functional units of the biological system. This is in the spirit of systems theory [4, 5], which requires that a functional part of a system under investigation has to be studied to gain information about its functioning. The transfer of this conceptual framework to biological problems has been manifested in systems biology [6-8]. For this reason, the methods presented in this book emphasize pathway-based approaches. In contrast to network-based approaches for the analysis of high-throughput data [9] a pathway has a less stringent definition than a network [10] which may correspond to the causal molecular interactions or merely to a set of genes constituting it while neglecting their relational structure. Hence, the methodological analysis methods for both types of approaches vary considerably. Further, the present book emphasizes statistical methods because, for example, the need to test for significance or classify robustly is omnipresent in the context of highthroughput data from complex diseases. In a nutshell, the book focuses on a certain perspective of systems biology for the analysis of high-throughput data to help elucidating aspects of complex diseases that may otherwise remain covered.

The book is organized in the following way. The first part consists of three introductory chapters about basic cancer biology, cancer stem cells, and multiple correction methods for hypotheses testing. These chapters cover topics that recur during the book at various degrees and for this reason should be read first. The provided biological knowledge and the statistical methods are indispensable for a systematic design, analysis, and interpretation of high-throughput data from cancer but also other complex diseases. Despite the fact that the present book has a хіх

methodological focus on statistical analysis methods we consider it essential to include also some chapters that provide information about basic biological mechanisms that may be crucial to understand aspects of complex diseases.

The second part of the book presents statistical and computational analysis methods and their application to high-throughput data sets from various complex diseases. Specifically, biological data sets studied are from acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), breast cancer, cervical cancer, conventional renal cell carcinoma (cRCC), colorectal cancer, liver cancer, and lung cancer. In addition to these data sets from cancer, also microarray data from diabetes and Duchenne muscular dystrophy (DMD) are used. These biological datasets are complemented by simulated data to study methods theoretically. This part of the book presents chapters that apply and develop methods for identifying differentially expressed genes, integration of data sets, inference of regulatory network, gene set analysis, predicting disease stages or survival times, and pathway analysis. From a methodological point of view the chapters in the second part comprise, for example, analysis of covariance (ANCOVA), bagging, Bayesian networks, dynamic vector autoregressive model, empirical Bayes, false discovery rate (FDR), Granger causality, Hotelling's T^2 , kernel methods, least angle regression (LARS), least absolute shrinkage and selection operator (Lasso), Markov chain Monte Carlo (MCMC), model averaging, multiple hypotheses testing, multivariate analysis of variance (MANOVA), random forest, resampling methods, singular-value decomposition (SVD), and support vector machine (SVM).

Regarding the organization of each chapter we decided that the chapters should be presented comprehensively accessible not only to researchers from this field but also to researchers from related fields or even students that have passed already introductory courses. For this reason each chapter presents not only some novel results but also provides some background knowledge necessary to understand, for example, the mathematical method or the biological problem under consideration. In research articles this background information is either completely omitted or the reader is referred to an original article. Hence, this book could also serve as textbook for, e.g., an interdisciplinary seminar for advanced students, not only because of the comprehensiveness of the chapters but also because of its size, which allowing it to fill a complete semester.

The present book is intended for researchers in the interdisciplinary fields of computational biology, biostatistics, bioinformatics, and systems biology studying problems in biomedical sciences. Despite the fact that these fields emerged from traditional disciplines like biology, biochemistry, computer science, electrical engineering, mathematics, medicine, statistics, or physics we want to emphasize that they are now becoming independent. The reasons for this are at least three-fold. First, these fields study problems that cannot be assigned to one of the traditional fields alone, neither biologically nor methodologically. Second, the studied problems are considered of general importance, not only for science itself but society because of their immediate impact on public health. Third, biomedical problems *demand* the development of novel statistical and computational methodology for their problem-oriented and efficient investigation. This implies that none of the traditional

quantitative fields provide ready-to-use solutions to many of the urgent problems we are currently facing when studying the basic molecular mechanisms of complex diseases. This explains the eruption of methodological papers that appeared during the last two decades. Triggered by continuing technological developments leading to new or improved high-throughput measurement devices it is expected that this process will continue. The quest for a systematic understanding of complex diseases is intriguing not only because we acquire a precise molecular and cellular "picture" of organizational processes within and among cells but especially because of consequences that may result from this. For example, insights from such studies may translate directly into rational drug design and stem cell research.

Many colleagues, whether consciously or unconsciously, have provided us with input, help, and support before and during the formation of the present book. In particular we would like to thank Andreas Albrecht, Gökmen Altay, Gökhan Bakır, Igor Bass, David Bialy, Danail Bonchev, Ulrike Brandt, Stefan Borgert, Mieczysław Borowiecki, Andrey A. Dobrynin, Michael Drmota, Maria Duca, Dean Fennell, Isabella Fritz, Maria Fonoberova, Boris Furtula, Bernhard Gittenberger, Galina Glazko, Armin Graber, Martin Grabner, Earl Glynn, Ivan Gutman, Arndt von Haeseler, Peter Hamilton, Bernd Haas, Des Higgins, Dirk Husmeier, Wilfried Imrich, Puthen Jithesh, Patrick Johnston, Frank Kee, Jürgen Kilian, Elena Konstantinova, Terry Lappin, D. D. Lozovanu, Dennis McCance, Alexander Mehler, Abbe Mowshowitz, Ken Mills, Arcady Mushegian, Klaus Pawelzik, Andrei Perjan, Marina Popovscaia, William Reeves, Bert Rima, Armindo Salvador, Heinz Georg Schuster, Helmut Schwegler, Chris Seidel, Andre Ribeiro, Ricardo de Matos Simoes, Francesca Shearer, Brigitte Senn-Kircher, Fred Sobik, Doru Stefanescu, John Storey, Robert Tibshirani, Shailesh Tripathi, Kurt Varmuza, Suzanne D. Vernon, Robert Waterston, Bruce Weir, Olaf Wolkenhauer, Bohdan Zelinka, Shu-Dong Zhang, and Dongxiao Zhu, and apologize to all who have not been named mistakenly. We would like also to thank our editors Andreas Sendtko and Gregor Cicchetti from Wiley-VCH who have been always available and helpful. Last but not least we would like to thank our families for support and encouragement during all that time.

Finally, we hope this book helps to spread our enthusiasm and joy we have for this field and inspires people regarding their own practical or theoretical research problems.

Belfast and Hall/Tyrol January 2010 F. Emmert-Streib and M. Dehmer

References

- Emmert-Streib, F. (2007) The chronic fatigue syndrome: a comparative pathway analysis. *J. Comput. Biol.*, 14 (7), 961–972.
- 2 Barabási, A.L. and Oltvai, Z.N. (2004) Network biology: Understanding the cell's functional organization. *Nat. Rev. Genet.*, 5, 101–113.

- XXII Preface
 - 3 Kauffman, S.A. (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22, 437–467.
 - Bertalanffy, L.v. (1950) An outline of general systems theory. *Br. J. Philos. Sci.*, 1 (2), 134–165.
 - 5 Bertalanffy, L.v. (1976) General System Theory: Foundations, Development, Applications, revised edn, George Braziller, New York.
 - 6 Alon, U. (2006) An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC.

- 7 Kitano, H. (ed.) (2001) Foundations of Systems Biology, MIT Press.
- 8 Palsson, B.O. (2006) Systems Biology: Properties of Reconstructed Networks, Cambridge University Press, New York.
- 9 Emmert-Streib, F. and Dehmer, M. (eds) (2008) Analysis of Microarray Data: A Network-Based Approach, Wiley-VCH Verlag, Weinheim.
- 10 Dehmer, M. and Emmert-Streib, F. (eds) (2009) Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim.

List of Contributors

Gyan Bhanot

Rutgers University BioMaPs Institute for Quantitative Biology 610 Taylor Road Piscataway, NJ 08854 USA

Gregory A. Bird

University of Colorado Denver Department of Dermatology Charles C. Gates Program in Regenerative Medicine and Stem Cell Biology 12800 E. 19th Avenue Aurora, CO 80045 USA

A. Rose Brannon

University of North Carolina Lineberger Comprehensive Cancer CB 7295 Chapel Hill, NC 27599-7295 USA

Eike C. Buss

Heidelberg University Department of Internal Medicine V Im Neuenheimer Feld 410 69120 Heidelberg Germany

Bor-Sen Chen

National Tsing Hua University Department of Electrical Engineering 101, Section 2, Kuang-Fu Road Hsinchu 30013 Taiwan

James J. Chen

FDA/National Center for Toxicological Research Division of Personalized Nutrition and Medicine 3900 NCTR Road Jefferson, AR 72079 USA

Sung Bum Cho

Seoul National University College of Medicine Division of Biomedical and Healthcare Informatics 28 Yongon-dong, Chongno-gu Seoul 110-799 Korea XXIII

XXIV List of Contributors

Liang-Hui Chu

National Tsing Hua University Department of Electrical Engineering 101, Section 2, Kuang-Fu Road Hsinchu 30013 Taiwan

Robert Clarke

Georgetown University Medical Center Department of Oncology 3970 Reservoir Rd NW Washington DC, 20057 USA

Marcos Angelo Almeida Demasi

University of Sao Paulo Institute of Mathematics and Statistics Av. Prof. Lineu Prestes, 748 Butanta 05508-900 Sao Paulo Brazil

Hong-Wen Deng

University of Missouri-Kansas City Departments of Orthopedic Surgery and Basic Medical Sciences 2411 Holmes Street Kansas City, MO 64108 USA

Elena Edelman

Harvard Medical School Department of Medicine 185 Cambridge Street CPZN 4200 Boston, MA 02114 USA

Alessio Farcomeni

Sapienza - University of Rome Piazzale Aldo Moro, 5 00186 Rome Italy

Carlos Eduardo Ferreira

University of Sao Paulo Institute of Mathematics and Statistics Av. Prof. Lineu Prestes, 748 Butanta 05508-900 Sao Paulo Brazil

Irit Fishel

Tel Aviv University School of Computer Sciences and School of Medicine Schreiber Building Ramat Aviv 69978 Tel Aviv Israel

Wataru Fujibuchi

National Institute of Advanced Industrial Science and Technology (ASIT) Computational Biology Research Centre 2-42 Aomi, Koto-ku Tokyo 135-0064 Japan

André Fujita

University of Sao Paulo Institute of Mathematics and Statistics Av. Prof. Lineu Prestes, 748 Butanta 05508-900 Sao Paulo Brazil

Shridar Ganesan

Cancer Institute of New Jersey 195 Little Albany Street New Brunswick, NJ 08903 USA

Katherine Garman

Duke University Institute for Genome Sciences & Policy Department of Medicine 101 Science Drive Durham, NC 27708 USA

Leena Hilakivi-Clarke

Georgetown University Medical Center Department of Oncology 3970 Reservoir Rd NW Washington, DC 20057 USA

Steven M. Hill

University of Warwick Centre for Complexity Science Zeeman Building Coventry CV4 7AL UK

Anthony D. Ho

University of Heidelberg Department of Internal Medicine V Im Neuenheimer Feld 410 69120 Heidelberg Germany

Taeyoung Hwang

Seoul National University Department of Statistics 56-1 Shillim-Dong, Kwang-Gu Seoul 151-747 Korea

Tsuyoshi Kato

National Institute of Advanced Industrial Science and Technology (ASIT) Computational Biology Research Centre 2-42 Aomi, Koto-ku Tokyo 135-0064 Japan

Jihun Kim

Seoul National University College of Medicine Division of Biomedical and Healthcare Informatics 28 Yongon-dong, Chongno-gu Seoul 110-799 Korea

Ju Han Kim

Seoul National University College of Medicine Division of Biomedical and Healthcare Informatics 28 Yongon-dong, Chongno-gu Seoul 110-799 Korea

Ki-Yeol Kim

Yonsei University College of Dentistry Oral Cancer Research Institute 250 Seongsanno Seodaemun-gu Seoul 120-752 Korea

Louis-Philippe Kronek

G-SCOP, Grenoble-Science Conception Organization and Production 46 Avenue Viallet 38031 Grenoble France

Huai Li

Bioinformatics Unit National Institute on Aging National Institutes of Health Baltimore, MD 21224 USA

XXVI List of Contributors

Peng-Yuan Liu

Washington University School of Medicine Department of Surgery and the Alvin J. Siteman Cancer Center 660 South Euclid Avenue Campus Box 8109 St. Louis, MO 63110 USA

Yan Lu

Washington University School of Medicine Department of Surgery and the Alvin J. Siteman Cancer Center 660 South Euclid Avenue Campus Box 8109 St. Louis, MO 63110 USA

Satoru Miyano

University of Sao Paulo Institute of Mathematics and Statistics Av. Prof. Lineu Prestes, 748 Butanta 05508-900 Sao Paulo Brazil

Sach Mukherjee

University of Warwick Centre for Complexity Science Zeeman Building Coventry CV4 7AL UK

Sayan Mukherjee

Duke University Institute for Genome Sciences & Policy Departments of Statistical Science, Computer Science, and Mathematics 214 Old Chemistry Building Durham, NC 27708 USA

Assaf P. Oron

University of Washington Department of Statistics Box 354322 Seattle, WA 98195 USA

Taesung Park

Seoul National University Department of Statistics 56-1 Shillim-Dong, Kwang-Gu Seoul 151-747 Korea

Anil Potti

Duke University Institute for Genome Sciences & Policy Department of Medicine 101 Science Drive Durham, NC 27708 USA

W. Kimryn Rathmell

University of North Carolina Lineberger Comprehensive Cancer Center CB 7295 Chapel Hill, NC 27599 USA

Anupama Reddy

Rutgers University RUTCOR - Rutgers Center for Operations Research 640 Bartholomew Rd. Piscataway, NJ 08854 USA

Yosef Refaeli

University of Colorado Denver Department of Dermatology Charles C. Gates Program in Regenerative Medicine and Stem Cell Biology 12800 E. 19th Avenue Aurora, CO 80045 USA

Sun Young Rha

Yonsei University College of Medicine Yonsei Cancer Center 134 Shinchon-Dong Seodaemun-Ku Seoul 120-752 Korea

Eytan Ruppin

Tel Aviv University School of Computer Sciences and School of Medicine Schreiber Building Ramat Aviv 69978 Tel Aviv Israel

João Ricardo Sato

University of Sao Paulo Institute of Mathematics and Statistics Av. Prof. Lineu Prestes, 748 Butanta 05508-900 Sao Paulo Brazil

Michael Seiler

Rutgers University BioMaPs Institute for Quantitative Biology 610 Taylor Road Piscataway, NJ 08854 USA

Mari Cleide Sogayar

University of Sao Paulo Institute of Mathematics and Statistics Av. Prof. Lineu Prestes, 748 Butanta 05508-900 Sao Paulo Brazil

Terence P. Speed

Walter and Eliza Hall Institute of Medical Research 1G Royal Parade Parkville Victoria 3052 Australia

Chen-An Tsai

China Medical University Graduate Institute of Biostatistics & Biostatistics Center Taichung 91 Hsueh-Shih Road Taiwan 40402 R.O.C.

Brian C. Turner

University of Colorado Denver Department of Dermatology Charles C. Gates Program in Regenerative Medicine and Stem Cell Biology 12800 E. 19th Avenue Aurora, CO 80045 USA

Yue Wang

Virginia Polytechnic Institute and State University Department of Electrical and Computer Engineering 4300 Wilson Blvd. Arlington, VA 22203 USA

XXVIII List of Contributors

Bai Zhang

Virginia Polytechnic Institute and State University Department of Electrical and Computer Engineering 4300 Wilson Blvd., Suite 750 Arlington, VA 22203 USA