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  Modern materials science and engineering technology rely on the three principal 
classes of material, distinguished by their nature of chemical bonding: metals; 
ceramics and polymers; and the alloys and composites of these materials. The aim 
of this treatise is to educate not only graduate and doctoral students but also pro-
fessionals in mineralogy, chemistry, materials science and related disciplines on 
the subject of ceramics, both traditional and advanced. Hopefully, it will also serve 
as a primer for more involved studies in ceramic engineering  proper , and thus lay 
the foundation for a more detailed knowledge acquisition. 

  Ceramics , by defi nition, are inorganic, nonmetallic and predominantly polycrys-
talline materials that may be shaped at room temperature from a variety of raw 
materials. They obtain their typical properties by sintering at high temperatures. 
Unlike the German custom of distinguishing between inorganic (poly)crystalline 
(ceramics  sensu strictu ) and noncrystalline (glasses) materials, the English usage 
includes glasses in the generic term  “ ceramics. ”  However, in this treatise the 
author will follow the German tradition, and consequently glasses and other 
amorphous materials will be excluded from the discussions. Nonetheless, silicate -
 based  chemically bonded ceramic s ( CBC s) such as cements/concrete will be 
included as, with time, they undergo crystallization processes. 

  Ceramics  are the oldest man - made materials, dating back to the dawn of human 
civilization. They possess an overwhelmingly wide variability in terms of their 
origin, history, utilization, and mechanical, thermal, optical, biological and elec-
tronic properties. Traditional ceramics are based almost exclusively on naturally 
occurring raw materials, most commonly silicaceous minerals such as clays, 
micas, quartz and feldspars, although for special applications synthetically pro-
duced clay minerals may also be utilized. A smattering of other nonsilicate miner-
als may also be included, such as gibbsite, magnesite, calcite, and dolomite. In 
contrast to this, advanced ceramics are produced predominantly from chemically 
synthesized micro -  or nanoscaled pure alumina, titania, zirconia, magnesia and 
other oxides and their compounds, as well as from the carbides and nitrides of 
silicon, boron and aluminum, and a host of transitional elements. The processing 
technologies used include the high - temperature transformation of raw materials 
into desired ceramic bodies, with highly controlled mechanical, thermal, electrical, 
tribological and optical properties, in addition to the low - temperature hydrolysis 
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of calcium silicates and aluminates to synthesize CBCs such as concrete. Hence, 
the application of ceramics spans the chasm between traditional silicate - based 
structural materials such as bricks, earthenware, stoneware, porcelain and con-
crete, and  “ high - tech ”  functionally advanced ceramics such as thermal barrier 
coatings for aerospace gas turbine blades, electrolyte layers for high - temperature 
solid oxide fuel cells, ferroic ceramics for sensor and actuator applications, 
diamond single crystals for future carbon - based integrated circuits, and biocon-
ductive monolithic parts and coatings for bone reconstruction and dental and 
endoprosthetic hip implants. 

 The aim of this book is to cover pertinent aspects of the processing, structure, 
technology and properties of classic and advanced ceramic materials, but without 
claiming to exhaust the topic even remotely in an encyclopedic fashion. Instead, 
typical examples will be described that stand  pars pro toto  for the totality of ceramic 
materials in existence today. Consequently, special emphasis is placed on the 
mineralogy of the materials described, the basic crystallographic aspects of the 
thermal transformation processes during the fi ring of natural ceramic raw materi-
als to arrive at traditional structural ceramics, as well as on the general physical 
principles of functionally advanced ceramics such as zirconia or silicon nitride, 
the technically important class of ferroic and superconducting ceramic materials 
on which many modern  “ high - tech ”  applications such as sensors and actuators 
are based, and last    –    but not least    –    bioceramics to replace diseased bone and restore 
lost functions of the human body. 

 The plethora of excellent books on ceramics produced during the past thirty 
years have been devoted predominantly to either the fundamentals, to the process 
technology, or to the engineering applications of their subject matter, while paying 
considerably less attention to other subjects. Likewise, books on advanced ceram-
ics are generally replete with highly complex solid - state physics that do not always 
match the level of interest, let alone the comprehension of their intended audience, 
from areas of mineralogy, chemistry, and materials engineering. Instead, the 
present book attempts to take a  “ middle road ”  between process engineering and 
solid - state physics approaches by providing a technical (applied) mineralogy 
approach. The intention is, therefore, to bridge the perceived abyss between the 
more deductively oriented realm of physics, chemistry and materials science, and 
the more inductively and empirically oriented realm of the geosciences. As inher-
ent in the role of technical mineralogy, this different approach will combine    –    in a 
synergistic manner    –    the viewpoints and expertise of geosciences and materials 
science, and will therefore fi nd its main audience among graduate and doctoral 
students and professionals of mineralogy that, in this context, can be defi ned as 
 “ the materials science of the solid earth. ”  

 The text is largely based on a series of lectures given to graduate students of 
geosciences at Technische Universit ä t Bergakademie Freiberg between 1993 and 
2004, to undergraduate and graduate students of physics and chemistry at Chiang 
Mai University, Chiang Mai, Thailand, and to graduate students of materials 
science at Chulalongkorn University, Bangkok, Thailand between 1998 and 2001. 
The subject matter of ceramics    –    and in particular of advanced ceramics    –    is a lively 
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area of research and development endeavor, with several thousands of reports 
made annually among a host of scientifi c and trade journals. It would be futile to 
attempt to cover even a small fraction of this trove of information in a single book; 
hence, what is provided in the following pages is a mere  “ snapshot ”  of past and 
ongoing developments    –    no more, no less. 

 Since in the previous paragraphs the viewpoints of technical (applied) mineral-
ogy have been invoked, a general paradigmatic positioning of this specifi c disci-
pline should be appended here. Research, development and teaching in the fi eld 
of technical mineralogy provide a modern, tractable bridge between the classical 
geosciences and modern materials science. Technical (applied) mineralogy can be 
defi ned as that discipline of  “ mineralogical sciences ”  that studies the mineralogical 
structure and properties, the technological fundamentals, and the characterization 
of raw materials, technical products and processes that include the mineralogy of 
residual and waste product streams, and pertinent environmental issues. Hence, 
it is positioned at all crossroads of the  “ modern materials cycle ”  (Figure  P.1 ). In 
particular, it assists in the enhancement of traditional materials, and in the devel-
opment of novel advanced materials.   

 The arena of activities of technical mineralogists in academia, government, and 
industry is extremely diverse and includes, but is not limited to: 

   •      The benefi ciation of raw materials (ore, industrial minerals, coal, salts, stone, 
clay).  

   •      The design, development, synthesis, processing, testing and quality manage-
ment of technical products (ceramics  per se , glass, cement, construction materi-
als, pigments), including single crystal growth and mass crystallization as well 
as their characterization with polarization microscopy and X - rays, but also 
increasingly modern high - resolution analytical surface techniques.  

   •      The control, remediation, and risk analysis of historical and modern tailings 
of mining, and ore dressing and smelting activities, as well as the development 
and validation of environmentally safe materials for sound disposal concepts 
of domestic and industrial wastes, including radioactive matter.  

   •      Environmental activities to foster a sustainable raw materials and energy 
economy, including the management of minerals that occur as secondary 
products of industrial processes, such as gypsum derived from fl ue gas desul-
furization  , and other residual and waste materials.  

   •      Damage analysis and the restoration of ancient monuments, as well as the 
determination of provenance, age, type of material, and manufacturing tech-
nologies of historical objects of art (archaeometry).    

 This wide professional range attesting to the heterogeneity of the discipline 
creates lively interdisciplinary collaboration among neighboring fi elds of scientifi c 
and engineering endeavors. These fi elds include solid - state chemistry and physics, 
materials technology and engineering, process engineering, mining, geology 
and geophysics, geoecology, biology, medicine, environmental sciences, as well 
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as archeology and social and cultural sciences. Hence, the curriculum of technical 
(applied) mineralogy is both versatile and involved. As opposed to chemistry 
or mechanical engineering, the lack of an industry that directly mirrors the scope 
of academic research within technical mineralogy somewhat impedes any fruitful 
research interaction with colleagues in industry. Yet, whilst the variability of 
the fi elds of endeavor of technical mineralogy and increasing cross - pollination 
among neighboring disciplines preclude a clear distinction of responsibilities, 
the old adage still applies:  “ Technical mineralogy is what technical mineralogists 
do. ”  

 I am highly indebted to Prof. Dr Dr.h.c. Walter Heywang (M ü nchen), Prof. 
Horst J. Pentinghaus (Karlsruhe), Prof. Herbert P ö llmann (Halle) and Dipl. - Phys. 
Wolfram Wersing (Bergen, Chiemgau) for providing advice and valuable critical 

     Figure P.1     The domain of technical 
mineralogy within the materials cycle. During 
all operations, from mining to the production 
of raw and refi ned materials to the manufac-
ture of end products and to their eventual 
disposal and/or recycling, several waste 

material streams are created that challenge 
R & D in technical (applied) mineralogy. The 
sizes of the circles symbolize the different 
relative volumina of the mass streams, 
whereby the contribution of the Earth ’ s crust 
is grossly underrepresented.  
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Introduction to Classic Ceramics     

    1.1 
Ceramics through the Ages, and Technological Progress 

 Throughout the ages of humankind, materials have been the overwhelmingly 
crucial determinant of the competitiveness of individuals and societies. Today, a 
better understanding of the atomic and molecular structure of materials is becom-
ing indispensable for the development of new materials, and the improvement of 
existing materials. As a result, materials are being tailored to meet specifi c applica-
tions to address pressing industrial and societal challenges in the highly competi-
tive contemporary world. In this process, ceramics technology plays a particularly 
important role, and hence has emerged as a driver of technological progress in 
many industrial sectors. 

 It is a widely accepted paradigm that such technological progress takes place 
in a highly competitive environment where only a limited amount of the required 
resources exist. Hunger for raw materials has always been a strong driving force 
in world history. Throughout the history of humankind, the information con-
tained within each newly developed or signifi cantly improved material or technol-
ogy has increased exponentially. Figure  1.1  suggests that the knowledge required 
to make pottery    –    that is, the mining/collecting, processing, forming, and fi ring 
of clay, including the knowledge and skill to construct and operate kilns and 
fl ues    –    were orders of magnitude higher than those needed to fashion rather 
simple tools and implements from bone or stone. The quantifi cation of the  “ tech-
nology information content, ”  plotted logarithmically on the ordinate of Figure 
 1.1 , is    –    of course    –    highly subjective. Nevertheless, it suggests that the knowledge 
acquired in pottery making has later been put to use to mine, dress, and smelt 
ore, and to purify and alloy metals. As is evident from the fi gure, technological 
development stagnated in the Western societies during the Dark and Middle ages, 
but eventually took off dramatically during the Renaissance and the emerging 
Age of Science. Since the rate of change in materials technology is ever - 
accelerating, the increase in information content    –    that is, entropy    –    leads to an 
ever - decreasing technological half - life of newly invented materials and tech-
nologies. The consequences of this effect have been estimated and projected 
onto future economical and societal trends of developed and developing nations 
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(see, for example, Hench,  1988 ; Franklin,  1990 ; Heimann,  1991 ; Marchetti,  1997 ; 
Heimann,  2004 ).   

 The rate of change in the information content of advanced materials duplicates 
the equally fast rate of information and technology transfer within societies of the 
developed world (Heimann,  1991 ). As pointed out by Hench  (1988) , a positive 
feedback mode connects the two rates, leading to an autocatalytic relationship 
between materials and technology. This relationship thrives in technological 
niches that compete with each other for survival and growth, and is controlled by 
complicated mechanisms involving small random effects which, however, can 
accumulate and become magnifi ed by positive feedbacks (Arthur,  1990 ). 

 Ceramics  sensu strictu  are the oldest man - made materials. By defi nition, they are 
inorganic, nonmetallic, silicate - based materials, insoluble in water and many acids 
and alkalis, and contain at least 30% crystalline compounds. In general, ceramics 
are shaped at ambient temperature from a specifi c raw materials mix by a large 
variety of forming techniques and tools (see, for example, Brownell,  1976 ), and 
obtain their typical properties by fi ring beyond 800    ° C (Hennicke,  1967 ). 

 While at the dawn of civilization naturally available  “ ceramics ”  such as hard rock 
and fl int were utilized for tools (Figure  1.2 ), with the advent of fi re it became appar-
ent that soft and pliable clay and loam raw materials could eventually be changed 
into hard, durable shapes that were capable of holding liquids, and consequently 
these were used as storage containers and cooking pots. This development is 
thought to have been triggered by the transition from hunter – gatherer to agrarian 
societies. Through the fi ring process, clay minerals generated by the weathering of 
granitic rocks could be transformed back into something resembling an artifi cial 
 “ stone ”  (Heimann and Franklin,  1979 ). Later, construction materials such as 
bricks, tiles, and pipes were produced from fi red clay. As early as 1600 B.C., the 
technology of glazing of bricks was known and exploited by the Babylonians.   

     Figure 1.1     Materials development over time: increase of technology information content. 
 Adapted from Hench  (1988) .   
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 The early history of the ceramic technology is diffi cult to assess in both geo-
graphical and temporal context. Arguably, among the fi rst objects fashioned from 
clay were maternal goddess images such as the famous Upper Paleolithic  “ Venus 
of Dolni V ĕ stonice, ”  Moravia, and fragments of animal and human fi gurines 
dating from between 25   000 and 29   000 years ago (Klima,  1962 ). Near the end of 
the Mesolithic (13   000 – 12   000 B.P.), hunter – gatherers living in Japan independ-
ently rediscovered ceramic technology, but this time applied it to manufacture the 
world ’ s oldest known ceramic vessels of the J ō mon culture (Chard,  1974 ; Sherratt, 
 1980 ). Very recently, still earlier remnants of ceramic technology were found in a 
cave in southern China and dated to between 18   300 and 15   430 cal B.P (Boaretto 
 et al. ,  2009 ). Since ceramic shards are well preserved in most soils, they are of 
overriding importance in archeology to date, and distinguish prehistoric cultures 
by the unique and enduring physical and stylistic features of their pottery. High-
lights in ceramic art and technology are the Greek Attic red - on - black and black -
 on - red vases of the sixth and fi fth centuries B.C., the Roman Terra sigillata ware 
(fi rst century B.C. to third century C.E.), Chinese Song (960 – 1279 C.E.) and Ming 
wares (1368 – 1644 C.E.), as well as the European developments surrounding the 
inventions of Faience and Majolica (late fi fteenth to early sixteenth century C.E.), 
soft - paste (S è vres, France) and triaxial hard - paste (Meissen, Saxony) porcelains of 
the eighteenth century C.E., and soapstone porcelain and bone china in eight-
eenth - century England. The art, structure and technology of these ceramics have 
been magnifi cently researched and displayed in the seminal work  “ Ceramic Mas-
terpieces ”  by Kingery and Vandiver  (1986) . The British development lines in 
particular were described by Freestone  (1999)  and Norton  (1978) . 

 In parallel, a second line of development emerged concerned with technical 
refractory ceramics for applications in ancient metal - working activities, including 

     Figure 1.2     Historical timeline of development of materials (Froes,  1990 ).  
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tuy è res, kilns, furnace linings, smelting and casting crucibles (Rehren,  1997 ), glass 
smelting pots, and saggars for fi ring delicate    –    and hence high - priced    –    pottery 
(Freestone and Tite,  1986 ). 

 As indicated in Figure  1.2 , ceramics and ceramics - based composite materials 
played a very important role during the early technological development period of 
mankind until about 1500 C.E., when metals technology took over. This lasted 
until the 1970s, when the ubiquitous application of engineering polymers and 
their composites reduced the impact of metals (Figure  1.3 ). However, in parallel 
a second  “ ceramic age ”  emerged, highlighted by the development and practical 
use of tough engineering, functional, and other advanced ceramics. Today, the 
production volume of classic ceramics such as bricks, tiles and cement/concrete 
still drastically outperforms that of advanced ceramics. For example, the present 
world tonnage of cement produced is in excess of a staggering 2    ×    10 9  tons annu-
ally (see Section  5.2.1 ). In contrast, the volume of advanced ceramic materials 
produced is ridiculously small, although owing to their high value - added nature 
their sales fi gures approach those of classic ceramics (see Section  6.2 ).   

 Around 1970, metal technology    –    exemplifi ed by the most common construction 
materials of steel and iron    –    reached its maximum market penetration of approxi-
mately 75%, and then began to decline. Today, these materials are gradually being 
replaced by engineering plastics, the use of which is predicted to peak around the 
year 2050. Simultaneously, the use of advanced materials, including advanced 
ceramics, is on the rise and will presumably reach a market share of about 10% 
by the year 2050. This model is based on the logistic Volterra – Lotka equation 
(Prigogine and Stengers,  1984 ), that is a measure of the continuous competition 
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     Figure 1.3     Logistic substitution of structural 
engineering materials between 1886 and 
2050 plotted according to the Marchetti –
 Nakicenovic model (Marchetti and Nakicen-

ovic  1979 ; Marchetti,  1997 ). The maxima of 
the evolutionary curves are spaced about 75 
years apart (i.e., 1.5 times the Kondratieff 
cycle).  
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of materials and technologies, and the fi ght for technological niches (Heimann, 
 1991 ). The maxima of the overlapping logistic equations (Verhulst equations) are 
shown to be spaced approximately 75 years apart. This offset, however, does not 
match the well - known Kondratieff cycle of 50 – 55 years, which arguably is a series 
of recurring long - range economic cycles that have been shown to govern numer-
ous evolutionary developments, including discoveries (inventions), innovations, 1)  
industrial production fi gures, and primary energy uses (Figure  1.4 ) (Marchetti, 
 1981, 1997 ; see also Heimann,  1991, 2004 ).   

 In order to underscore the overriding role that raw materials play in society, two 
additional scenarios will be juxtaposed: (i) the worldwide industry production; and 
(ii) the individual use of raw materials per capita and lifetime in present - day 
Germany. The major growth industries are considered to be energy production 
and distribution, the chemical industry, and microelectronics. The proportions 
of these industrial sectors of the total industry production worldwide for 1960 
and 1990, and extrapolated to 2025, are shown in Table  1.1 . While the energy - 
producing and chemical industries are assumed to remain constant, microelec-
tronics are predicted to double between 1990 and 2025, whereas the metal - based 
industries (including processing and machining industries) will show a remark-
able decline.   

 Figure  1.5  lists the tonnage of raw materials used per capita within a person ’ s 
average lifetime of 70 years in contemporary Germany, representative of the raw 
materials  “ hunger ”  of a developed nation with a high technological and societal 
effi ciency (Millendorfer and Gaspari,  1971 ; Marchetti,  1981 ).    
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     Figure 1.4     Global use of primary energy sources since 1850 (Marchetti,  1989, 1997 ). The 
maxima of the Verhulst logistic curves are spaced 50 – 55 years apart (Kondratieff cycles). Data 
beyond 1970 are extrapolated.  

    1)      Innovations  start new industries;  inventions  are discoveries that are at the base of innovations 
(Marchetti,  1981 ).  
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     Figure 1.5     Per capita consumption of material resources in an average lifetime in Germany. 
 Data from  Bundesanstalt f ü r Geowissenschaften und Rohstoffe  ( BGR ), Hannover, Germany, 
Global - Report 2859, 1995).   

  Table 1.1    Proportion (%) of growth for industries of the total industry production worldwide.  
 Data from United Nations Yearbook  (1998) .   

   Industry     Year  

   1960     1990     2025  

  Energy    4.8    6.5    7.0  
  Chemistry    8.5    12.9    14.0  
  Microelectronics    1.9    10.3     25.0   
  Metal - based industries    26.5    23.0     9.4   

   1.2 
Classifi cation of Ceramics 

 A systematic treatment of inorganic – nonmetallic materials is best accomplished 
by considering a hierarchical approach, as shown in Figure  1.6 . The fi rst triangle 
of level 1 contains the three materials supergroups    –    metals, polymers, and ceram-
ics    –     sensu lato  that are distinguished by their differing chemical bonding relations. 
The second level of triangles shows at its apices the inorganic – nonmetallic materi-
als classes   n that is, ceramics  sensu strictu , glasses, and hydraulic adhesive materi-
als. These classes can further be subdivided into silicatic, oxidic, and nonoxidic 
materials (the third hierarchical triangle). Eventually, the chemical components 
characterize the individual properties (fourth hierarchical triangle). Figure  1.6  is 
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intended to show only the principle of the approach; in reality, such a succession 
of hierarchical triangles would be more complex. For example, the huge variation 
of chemical compositions inherent in silicate ceramics would require replacing 
the triangles by higher - dimensional shapes.   

 The three main groups of ceramics of level 2 are distinguished by their process-
ing temperatures, the succession of processing steps (F   =   forming, H   =   heating, 
P   =   powder production), and the time of invention (Table  1.2 ).   

Polymers cements

Plaster

Advanced oxide
ceramics

SiO2

Al2O3+
Fe2O3

B2O3

As2O3

Metals

P2O5
CaO + MgO

Advanced non-
oxide ceramics

Lime

Binary CNS glasses

Hydraulic
ceramics

ceramics

ceramics
sensu strictu

Glasses

Non-silicate glasses Silica glass
Classic silicate

ceramics

     Figure 1.6     Four levels of hierarchical 
triangles relating different groups of 
materials. Level 1 (materials supergroups): 
metals, polymers,  ceramics ; level 2 (ceramics 
 sensu lato ): glasses, hydraulic ceramics, 

 ceramics   sensu strictu ; level 3 (ceramic 
subgroups): advanced oxide ceramics, 
advanced non - oxide ceramics, classic silicate 
ceramics; level 4 (phase diagrams): SiO 2 , 
CaO   +   MgO, Al 2 O 3    +   Fe 2 O 3 .  

  Table 1.2    The three main groups of silicatic ceramic materials (level 2 of Figure  1.6 ). 

   Material      Processing steps  a)        T  max  ( ° C)     Time of invention  

  Ceramics  sensu strictu     P    F    H     < 1450     < 6000 B.C.  
  Glasses    P    H    F    1500     < 3000 B.C.  
  Cements (CBCs)  b)      H    P    F     > 1500    Around 1850  

   a)   P   =   powder production; H   =   heating; F   =   forming.  
  b)   CBC   =   chemically bonded ceramic.   
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 Historically, silicate - based ceramics have been classifi ed in various ways. One 
of the most useful schemes (Hennicke,  1967 ) divides different classic ceramic 
wares according to their starting powder grain sizes (coarse:  > 0.1  …  0.2   mm; fi ne: 
 < 0.1  …  0.2   mm), porosity of the fi red product, water absorption capacity ( < 2  …  
 > 6   mass%), and color of the fi red ceramic body (Figure  1.7 ).   

 A classifi cation of the fi eld of technical ceramics is shown in Figure  1.8 .   
 In the chapters following this introduction, the path will be traced from natural 

silicate - based ceramic raw materials, rheological principles of clay – water interac-
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     Figure 1.7     Classifi cation of silicate - based ceramics (after Hennicke,  1967 ).  
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     Figure 1.8     Classifi cation of technical ceramics (level 3 of Figure  1.6 ).  


