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Preface

Nonlinear mesoscopic elasticity (NME) is the identifier of a collection of ex-
treme/unusual elastic behaviors. The purpose of this book is to describe these
behaviors as seen in particular physical systems, to suggest generalization beyond
the particular based on a simple picture of the underlying physics, and to provide
an analysis/theoretical framework for assessment of behavior and for the descrip-
tion of experiments. Thus we begin here with a brief (so that those who realize
they are in the wrong place find that out sooner rather than later) description of
the physical systems that are candidates for NME; six examples are shown. The
behaviors that are associated with NME are many; eight examples are shown. The
physical state of NME systems is specified in a multidimensional space of pa-
rameters, for example, length scale, time scale, the size of stress/strain fields, the
strength of internal forces, etc. The boundaries of this space are set. At the end of
the following overview we will provide an outline of the book.

Robert A. Guyer, Amherst
Paul A. Johnson, Los Alamos
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1
Introduction

1.1
Systems

Figures 1.1 to 1.6 show six examples of systems that have NME: powdered alu-
minum, thermal barrier coating, sandstone, cement, ceramic, and soil. For each
figure there is a scale bar or caption that makes it clear that the systems of interest
have noticeable inhomogeneities on a length scale smaller than the sample size, say
100 µm, but much larger than the microscopic scale, 0.1 nm. We imagine the phys-
ical systems that possess NME to have very approximately a bricks-and-mortar char-
acter. The bricks [quartz grains in the case of rocks, packets of crystallites (quartz,
feldspar, . . . ) with clay particles in the case of soils, single crystals of aluminum in
the case of powdered aluminum, . . . ] interface with one another across a distinc-
tive, elastically different system, the mortar (a system of asperities in the case of
rocks, a system of fluid layers and fillets in the case of (wet) soil, a layer of defective
material in the case of aluminum powder, etc.). We are interested in these systems
on a length scale that is large compared to that of their bricks. Systems built up to
this length scale have important elastic features conferred by the geometry of the
system that are strikingly different from those of their bricklike constituents.

For example, in the case of a Berea sandstone, the typical elastic modulus is an
order of magnitude smaller than the corresponding modulus of quartz, that is, the

Fig. 1.1 Porous aluminum powder [9]. (Please find a color
version of this figure on the color plates)
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2 1 Introduction

Fig. 1.2 Thermal barrier coating [10, 11]. (Please find a color
version of this figure on the color plates)

Fig. 1.3 Sandstone (typical grain size 100 µm) [12]. (Please find
a color version of this figure on the color plates)

bricks. This means that a given force, say across a sample, produces ten times as
much displacement as it would if applied across the quartz alone. This displace-
ment must reside in the mortar as the assembly process could not have altered the
stiffness of the bricks. The mortar is a minor constituent of the whole comprising,
perhaps, 10% of the volume. Ten times as much displacement due to 10% of the
volume means that the mortar is very soft and that it carries strains approximately
two orders of magnitude greater than those in the bricks. Accompanying the in-
homogeneity in the structure is an inhomogeneity in the strain. There is a further
important point. Ten percent by volume of soft material randomly distributed in
otherwise hard material could not markedly modify the response of the assembly.
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Fig. 1.4 Cement [13]. (Please find a color version of this figure on the color plates)

Fig. 1.5 Ceramic [14]. (Please find a color version of this figure on the color plates)

Fig. 1.6 Soil (sieved, typical grain size 1 mm) [15, 16]. (Please
find a color version of this figure on the color plates)

The bricks-and-mortar picture captures an essential aspect of the way in which
NME materials are constructed, that is, in such a way that the minority component
(by volume) can effectively shunt the behavior of the majority component.



4 1 Introduction

In identifying systems of interest with these simple ideas we cast a net that in-
cludes ceramics, soils, rocks, etc. But we do not pretend in any way to do justice
to the disciplines of ceramic science, soil science, concrete science, . . . , or even to
elasticity in ceramics, soils, concretes, . . . These are highly developed fields com-
prised of many subdisciplines. The discussion we present will be relevant more or
less as dictated by the specific types of soil/ceramic/concrete/. . .

1.2
Examples of Phenomena

In Figure 1.7 we illustrate schematically eight examples of elastic behavior that we
associate with NME. These include behavior that is quantitatively different from
the usual behavior, behavior that is qualitatively different from the usual behavior,
behavior that brings to the fore the importance of time scale and behavior in aux-
iliary fields. Not all NME materials possess these behaviors to the same degree.
We sketch what is being illustrated schematically in each panel below. In the fig-
ure caption, information is given that locates an example of these experiments and
characterizes them quantitatively.

1. The velocities of sound, c, of a sandstone are a factor of 2 to 4 less than those
of the major constituent, for example, a quartz crystal. Thus the elastic con-
stants of NME materials, K, K ∝ c2, might be less than the elastic constants
of the parent material by an order of magnitude (even more for a soil).

2. When the pressure, P, is changed from 1 bar to 200 bar, the velocity of sound
of a sandstone changes by a factor of 2. The same pressure change produces
a 1% change in the velocity of sound in quartz (water, other homogeneous
materials). Thus elastic nonlinearity, measured by γc = d ln(c)/d ln(P ), is
very large for NME materials, often several orders of magnitude larger than
that of the parent material.

3. When a sandstone (soil) is taken through a pressure loop, the strain that
results is a hysteretic function of the pressure. In addition, when there are
minor pressure loops within the major loop, the strain at the endpoints of
the minor loop is “remembered”. NME materials can have hysteretic qua-
sistatic equations of state with endpoint memory.

4. A sample is subjected to a step in stress. Accompanying that step is a prompt
step in strain followed by a slow further strain increase that evolves approx-
imately as log(t). Recovery from the release of the step stress has a similar
prompt step in strain and log(t) further reduction in strain. NME materials
exhibit slow dynamics in response to transient loading.

5. The resonance of a bar of NME material is swept over at a sequence of fixed
drive amplitudes. As the drive amplitude is increased, the resonant frequen-
cy shifts (to a lower frequency) and the effective Q of the system, measured
by the amplitude at resonance, decreases. In a plot of the detected amplitude
per unit drive, this is seen as a shift in the resonance peak accompanied by
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Fig. 1.7 Eight experiments. The eight ex-
periments of interest are: (1) The velocity of
sound, hence elastic constants, of a sand-
stone is a factor of 2 to 4 less than that of
the major constituent, for example, a quartz
crystal [1]. (2) When the pressure is changed,
the velocity of sound of a sandstone changes
by a factor of 2 for the application of 200 bar,
whereas the same pressure change produces
a 1% change in the velocity of sound in quartz
(water, other homogeneous materials) [2]. (3)
When a sandstone (soil) is taken through
a pressure loop, the strain that results is
a hysteretic function of the pressure and ex-
hibits elastic endpoint memory [3]. (4) Accom-
panying the step in stress is a step in strain
followed by a slow further strain response,
that is, more strain, that evolves as log(t).
Recovery from the release of the step stress
has a similar strain step and log(t) further

strain [4]. (5) The resonance of a bar of mate-
rial is swept over at a sequence of fixed drive
amplitudes. As the drive amplitude increas-
es, the resonant frequency shifts (to lower
frequency) and the effective Q of the system
decreases [5]. (6) The slow evolution of the
elastic state, brought about by an AC drive
(compare to panel 4), can be seen in experi-
ments in which the elastic state, once estab-
lished, is probed by a low drive sweep over
a resonance [6]. (7) When the temperature is
changed slightly, the elastic response to that
change involves a broad spectrum of time
scales (compare to panels 4 and 6), suggest-
ing log(t) behavior. In addition, the elastic
response to temperature is asymmetric in
the sign of the temperature change [7]. (8)
A stress/strain loop similar to that in panel 3
is changed markedly by the configuration of
fluid in the pore space [8].
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a reduction of the amplitude at resonance. This behavior, which follows the
fast motion of the drive, is an example of fast dynamics.

6. A bar of NME material is brought to steady state in response to a large-
amplitude AC drive. The AC drive is turned off and the subsequent elastic
state of the bar is probed with a low-amplitude drive that is swept over a res-
onance. The resonance, initially with resonance frequency shifted to a lower
frequency as in panel 5, evolves back to a higher frequency approximately as
log(t). The elastic state of the bar, established by a fast dynamics drive, relaxes
once that drive is turned off by slow dynamics.

7. When the temperature of an NME material is changed slightly, the elastic
response to that change, brought about by the temperature-induced inter-
nal forces, involves a broad spectrum of time scales (compare to panels 4
and 6), suggesting log(t) behavior at the longest times. In addition, the elas-
tic response to temperature is asymmetric in the sign of the temperature
change.

8. When an NME material is subjected to the internal forces of fluid configu-
rations, a stress/strain loop similar to that in panel 3 is changed markedly.
Much like a sponge, a rock is softer when wet.

The sequence of experiments sketched here call attention to the physical variables
that are involved in the description of NME systems. The nature of a probe, the
pressure, the temperature, the fluid configurations, the probe size, the duration of
a probe, and the aftereffect of a probe having been present must all be considered
and examined.

1.3
The Domain of Exploration

NME materials are probed in the complex phase space illustrated in Figure 1.8,
that is:

1. Length. There are three length scales associated with NME materials, the
microscopic scale (interatomic spacing) a = 0.1 nm, the scale of inhomo-
geneity b W 1–100 µm, and the sample size L >> b . A quasistatic measure-
ment is at k → 0 (k = 2π/λ), whereas a resonant bar experiment is at
wavelengths related to the sample size, b << λ < L.

2. Strain. There are judged to be two strain values of importance. At strains ε <
10–7–10–6, the nonlinear effects are small and have a more or less traditional
behavior. At strains ε > 10–3–10–2 irreparable damage is done to a sample.
The middle ground 10–7 < ε < 10–3 is the strain domain of NME.

3. Force. The standard for the strength of forces is the pressure given by a typ-
ical elastic constant, K W ρc2, where ρ is the density and c is the speed of
sound, K W 1011 dyne/cm2 = 104 MPa for a sandstone (1 atmosphere is
106 dyne/cm2 = 10 MPa). NME materials may be subject to a wide range of
forces – applied forces, forces delivered to the interior of the systems from
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Fig. 1.8 Phase space. The materials of interest are probed on
different time scales, length scales, and strain scales and with
a variety of applied “fields”.

the complex thermal response of constituents, or forces delivered to the in-
terior of the system from arrangements of fluid in the pore space. The ap-
proximate strain consequence of a force (pressure) is found using ε W P/K ,
where P is the pressure. The strain range given above, 10–7 < ε < 10–2,
implies 10–3 MPa < P < 102 MPa.

4. Time. The fastest time scale relevant to NME materials is approximately the
time for sound to cross an inhomogeneity, τ v 100 µm/c W 10–7 s. A reso-
nant bar measurement is typically at 103–104 Hz (this scale is set by sample
size L), a quasistatic measurement of stress/strain may last 10 min, and the
strain response to a change in temperature may develop over a week. The
range of time scales is enormous, 10–7 to 106 s.

All of these scales – length, time, and force – are far removed from the correspond-
ing microscopic scales, for example, 0.1 nm is the microscopic length scale, 1012 Hz
(a typical Debye frequency) is the microscopic time scale, and a microscopic ener-
gy per microscopic volume (say 0.1 eV/(0.1 nm)3 W 10 GPa) is the microscopic force
scale (stated here in terms of pressure since force alone means little).

1.4
Outline

Our interest is in the nonlinear elasticity of mesoscopically inhomogeneous mate-
rials. We will discuss the theoretical apparatus that is used to describe these mate-
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rials, the phenomenology of the experiments conducted, and the large body of data
that illustrates the behavior that characterizes these materials.

In Part I, Chapters 1–5, we give a theoretical introduction to traditional linear
and nonlinear elasticity. We begin the discussion at the microscopic level. It is here
that the basic structure of linear and nonlinear elasticity is established and the
numbers that determine the magnitude of almost all quantities of interest are set.
It is a short step from a microscopic description to the continuum description that
corresponds to the traditional theory of linear/nonlinear elasticity. These topics are
covered in Chapter 2, which is followed, in Chapter 3, by a series of illustrations of
the consequences of the theory. To get to the domain of elasticity of mesoscopically
inhomogeneous materials we must jump a gap. Across this gap, where we will
work, we start with a theoretical apparatus, having the same form as the traditional
theory of linear/nonlinear elasticity, to which we will add a collection of ad hoc
ingredients that have no immediate source in the domain we have left behind.
A variety of mesoscopic elastic elements, contacts, interfaces, etc. are described in
Chapter 4. So also is an effective medium scheme for turning mesoscopic elastic
elements into elastic constants suitable for a theory of elasticity. The coupling of
the elastic field to auxiliary fields, particularly temperature and saturation, is taken
up in Chapter 5.

In Part II, Chapters 6–9, we introduce hysteretic elastic elements, or strain ele-
ments with an elaborate stress response, Chapter 6. The dynamics of elastic sys-
tems carrying these elastic elements can be complex because of an internal field
that responds to stress slowly in time. A discussion of the resulting fast and slow
dynamics is given in Chapter 7. A set of practical matters related to data analysis
and modeling of data sets is taken up in Chapter 8. This is followed by a description
in Chapter 9 of a wide variety of considerations that relate to using data on elastic
systems for characterization (spectroscopy) and for location (tomography).

In Part III, Chapters 10–13, we discuss experiments. Quasistatic measurements,
including coupling to auxiliary fields, are described in Chapter 10. Dynamic mea-
surements, dynamic/quasistatic to dynamic/dynamic, are described in Chapter 11.
The current picture of fast/slow dynamics is given a full airing. In Chapter 12, field
experiments that touch on NME are described. The final chapter, Chapter 13, con-
tains a description of a wide variety of nondestructive evaluation applications of
NME.
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2
Microscopic/Macroscopic Formulation of the Traditional Theory
of Linear and Nonlinear Elasticity

Following Section 2.1, in which we make a few observations that place the discus-
sion of solids in the context of fluid/solid systems, there are two major sections.
Section 2.2 starts with the description of microscopic elasticity and elaborates on
the connection between the microscopic description of elasticity and the continu-
um description of elasticity, while Section 2.3 sets out the essentials of the continu-
um theory of elasticity, sans microscopic justification. (For those who want to skip
over the foundations in Section 2.2, this is the place to start. Of course, one will
have to be content to learn μ, λ, A, B, . . . , 	, . . . from experiments.) Many analytic
details, Section 2.4, and some useful numbers, Section 2.5, are found at the end of
the chapter.

In Section 2.2.1 we develop a description of the energy of a well-ordered solid,
in terms of small displacements from equilibrium sites, which is the basis of the
microscopic theory; in addition, we introduce the microscopic strains, etc. (Sec-
tion 2.2.1.1). The dynamics of small displacements, due to forces caused by mi-
croscopic strains, leads to the phonon picture, the interacting phonon picture, etc.
(Section 2.2.1.2). Some simple numerical estimates that tie microscopic numbers
to macroscopic numbers are illustrated, for example, a linear elastic constant or
a measure of the cubic anharmonicity. In Section 2.2.2, this mechanical (or quan-
tum mechanical) description is married to an approximate but practical description
of a solid in equilibrium with a temperature reservoir. In Section 2.2.2.1 we sketch
the principle of the Gruneisen approximation, and in Section 2.2.2.2 we examine
the resulting equations at reasonable temperatures, T W 300 K, and find the mi-
croscopic basis of other numbers, for example, the thermal expansion. We close
Section 2.2 with a formal treatment of the microscopic description that results in
the equations of continuum elasticity. Consequently, there is a microscopic link to
the parameters of linear and nonlinear continuum elasticity, for example, μ, λ, A,
B, . . . , 	, . . .

In Section 2.3 we sketch the theory of linear and nonlinear continuum elastic-
ity without recourse to a microscopic picture. The displacement field, strain, and
stress are introduced, as is the elastic energy density, an analytic function of the
strain field (Section 2.3.1). The dynamics of the displacement field are treated in
Section 2.3.2. The coupling of the displacement field to auxiliary fields, tempera-
ture, saturation, . . . is described in Section 2.3.3. The generalization to inhomo-
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Hamiltonian

2.2.1
phonon
model

2.2.2
phonons in 
thermal reservoir, 
quasi-harmonic

2.2.3
continuum elasticity
from Hamiltonian

2.3
phenomenology
continuum elasticity

2.3.3
couple
to auxiliary 
fields,
inhomogeneity

Fig. 2.1 Outline. The discussion in this chapter, from Hamilto-
nian to continuum elasticity, follows two routes, Sections 2.2.1
and Section 2.2.2, to the phenomenological model of elasticity.
These routes supply some of the quantitative underpinnings
of the phenomenological theory, which is able to stand on its
own.

geneous elastic systems is made in Section 2.3.4 (see Figure 2.1). In Sections 2.4
and 2.5 details used in the chapter are provided.

2.1
Prefatory Remarks

First we step back from our immediate goal to look around. What distinguishes
liquids and solids from gases at the atomic level is that in liquids and solids the
particles (atoms or molecules) are self-bound. This means that the attractive forces
between particles are sufficiently strong that they hold the particles near one anoth-
er while the kinetic energy of the particles (their thermal motion, characterized by
the temperature) causes them to move around, to attempt to fly apart. The particles
in a gas are not self-bound; you have to put a gas of particles in a container with
a lid to keep them together. To remove a particle from a liquid/solid you must reach
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in and pull with a force strong enough to liberate it from its neighbors. The basic
physical state of a collection of particles is determined by the ratio of the strength of
the attractive forces, stated as an energy, and the energy of thermal motion, set by
the temperature. Sometimes the thermal motions of the particles in a liquid/solid
will conspire to deliver a large amount of kinetic energy to one particle and allow it
to spontaneously leave the system, that is, evaporate.

And the difference between a liquid and a solid? It is one of degree and struc-
ture [1, 2]. In a solid the attractive forces between particles are sufficiently strong,
compared to the disordering effect of the thermal motion, that a particular spatial
arrangement of particles, each particle sitting advantageously in the attractive po-
tential well of a regular array of neighbors, is the lowest energy state. The energy
of a solid arrangement of particles differs from the energy of a liquid arrangement
of particles by an amount that is small compared to the energy of either; the heat
of fusion (roughly a measure of the energy difference between solid and liquid) is
small compared to the heat of vaporization (by, say, a factor of 10 or so, the familiar
80 cal/g and 540 cal/g of freshman physics). The particles in a solid sit at well-
defined places relative to their neighbors, and this local arrangement of particles is
repeated again and again throughout space, that is, the solid, if it is a single crystal,
has translational symmetry [3, 4]. Thus in a solid, where a particle should be is well
defined; the departure of a particle from where it should be is also well defined.
When you reach into a solid and pull a particle away from where it should be, its
neighbors pull back. A set of internal forces arises in reaction to your pull with an
accompanying set of displacements. The particle on which you are pulling is dis-
placed and so are the particles that contribute the force trying to hold it in place.
These are the manifestations of stress (the forces) and strain (the displacements)
at the microscopic level. A description of what is happening at this level, a job for
a chemist or a band structure physicist, involves looking at a material electron by
electron, chemical bond by chemical bond.

2.2
From Microscopic to Continuum

2.2.1
A Microscopic Description

2.2.1.1 Microscopic Energy and Microscopic Strain
A crystal is an assembly of particles that to good approximation can be taken to
reside near a set of lattice sites that are regularly arrayed in space. The symmetry of
the crystal, for example, cubic, hexagonal, . . . , describes the geometry of this regu-
lar array. Since the crystal is self-bound, it is characterized by atomic scale energies,
forces, and lengths, ε0, ε0/a, and a, respectively, where a is the interparticle spacing.
The typical particle is at a distance of a few Angstroms, tenths of a nanometer, from
its neighbors and involved in an interparticle interaction of strength ε0 W 0.5 eV.
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The forces between particles have strength ε0/a of order 0.5 eV/0.1 nm or 0.1 nN
(nanonewton) or 1000 K/Å or 0.1 (GPa)m2. (The many units displayed here are a re-
minder that the measure of the importance of any energy/force is its size relative
to another, for example, a photon energy in eV, a particle kinetic energy in Kelvin,
an applied pressure in Pa, etc.)

The motion of particle R, at xR , near the lattice site with which it is associated, R,
is described by displacement uR , xR = R+uR , and the corresponding momentum is
pR = mu̇R . The motion of particles away from their lattice sites is small. Typically at
melting one has |uR | W (0.20 – 0.25)a [5]. Thus particle motions are a small fraction
of the intersite distance, and the energy of interaction among the particles can be
developed as a series in the displacements, uR . For the energy in the assembly of
particles we have

E =
∑

R

p2
R

2m
+

1
2

∑
R

∑
R′

V (R – R′ – uR + uR′ ) = K + U , (2.1)

where V (xRR′ ) is the interaction energy between particles separated by xRR′ = xR –
xR′ W R – R′, the equilibrium spacing between the lattice sites associated with the
particles, Figure 2.2. Using Δα = uα

R – uα
R′ (α = x , y , z) we can write

V (xR – xR′ ) = Φ0(R – R′) +
1
2!

Φα	(R – R′) Δα Δ	

+
1
3!

Φα	γ(R – R′) Δα Δ	Δγ

+
1
4!

Φα	γδ(R – R′) Δα Δ	ΔγΔδ

+ . . . ,

(2.2)
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y

z

R
uR
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Fig. 2.2 Lattice. The set of vectors R and the displacements uR
allow one to track the particle at xR = R + uR .


