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Preface

Traveller, there are no paths.
Paths are made by walking.
Antonio Machado (1875–1939)

The present book is devoted to the mathematical analysis of evolution, information
and complexity. The time evolution of systems or processes is a central question
in science and covers a broad range of problems including diffusion processes,
neural networks, quantum theory and cosmology. Analysis of information is need-
ed in data compression, channel encoding, cryptography and often in the analysis
of information processing in the computer or in the brain. Finally, the analysis of
complexity is important for computer science, in particular algorithms, but more
generally also for the investigation of complex and chaotic systems.

Since 2004 the University of Ulm has operated a graduate school dedicated to
the field of Mathematical Analysis of Evolution, Information and Complexity. This
program brings together scientists from the disciplines of mathematics, electri-
cal engineering, computer science and physics. Our rather unique school address-
es topics that need a unified and highly interdisciplinary approach. The common
thread of these problems is mathematical analysis demonstrating once more the
newly emerging notion of mathematics as technology.

Our book highlights some of the scientific achievements of our school and there-
fore bears its name Mathematical Analysis of Evolution, Information and Complexity.
In order to introduce the reader to the subject we give elementary and thus accessi-
ble introductions to timely themes taken from different parts of science and tech-
nology such as information theory, neuro-informatics and mathematical physics.

Each article in the book was prepared by a team in which at least two differ-
ent disciplines were represented. In this way mathematicians have collaborated on
a chapter with physicists, or physicists have worked with electrical engineers and
so on. Moreover, we have installed the rule that with every senior scientist there
would be a graduate student working on this article. We hope that this rule has led
to easily understandable contributions.

Mathematical Analysis of Evolution, Information and Complexity does not only rep-
resent the program of our school and has become the title of the book but has
also served as the guiding principle for its organization. Indeed, we have chosen
the three pillars “evolution”, “information” and “complexity” of the school as titles
for the three parts of the book. For each one we have identified one or two major
themes as shown in Table 0.1.
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Table 0.1 Organization of the book outlining its three pillars

with their themes. The number above each topic indicates the

chapter.

Evolution Information Complexity

Spectral analysis Networks Pattern
recognition

Signal
analysis

Algorithms

1
Weyl’s law

4
biological neural
networks

7
speech
recognition:
remote access

12
Shannon’s
theorem

15
Shor algorithm

2
differential
equations

5
gene regulation

8
speech
recognition:
machine
learning

13
codes

16
quantum and
classical
algorithms

3
cosmology

6
quantum graphs

9
cluster analysis
in genomics

14
signal
processing in
the brain

17
sorting
algorithms

10
image analysis
in computer
science and
cosmology

11
data analysis
and learning

We have taken the liberty to assign each article to one of these themes. However,
in many instances the contributions could have also been attributed to another
theme. This feature is certainly a trade mark of an interdisciplinary article. These
articles form the individual chapters of the book.

The topics addressed in each pillar range from quantum physics via bio-
informatics to computer science and electrical engineering. The common element
linking all chapters is mathematical analysis. To quote Galileo Galilei:

“Egli [il libro che è l’universo] è scritto in lingua matematica.”

(“The book which is the universe is written in mathematical language.”)

In order to bring out most clearly the interconnections between the chapters of
the book, we now briefly summarize the essential ideas of each contribution. We
start with the pillar “evolution” consisting of the two themes of spectral analysis
and networks.

Weyl’s law describes the asymptotic distribution of the eigenvalues of the Lapla-
cian. It has played an important role in the development of quantum theory. Chap-
ter 1 gives a comprehensive summary of the history of Weyl’s law, its generalization
based on trace formulae, its application in quantum chaos, as well as a modern
proof. A review and comparison of different methods of solving systems of linear
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ordinary differential equations is the topic of Chapter 2. Applications and exten-
sions to partial differential equations such as the heat equation or the Schrödinger
equation are given. The theme on evolution concludes in Chapter 3 with an in-
troduction into general relativity with an alternative approach based on the scalar-
tensor theory and the Higgs potential.

The theme of evolution in networks addresses biological neural networks, gene
regulation and quantum graphs. For example, Chapter 4 provides an overview over
models describing biological and computational neural networks. Here the central
topic is the specific model developed in Ulm using neural populations as asso-
ciative memories. Another example of a network of signalling compounds with-
in the kernel of a cell is summarized in Chapter 5. The mathematical model of
Boolean networks describes the gene regulation in living organisms. Quantum
graphs, the topic of Chapter 6, represent yet another network. They are a toy model
for a Schrödinger operator on a thin, quasi-one-dimensional network. The article
studies the symmetries that emerge in such quantum networks.

A major portion of the book is dedicated to the mathematical analysis of infor-
mation. Here the topics range from speech recognition via cluster analysis to signal
processing in the brain. Usually speech recognition is implemented on powerful
computers. In Chapter 7 tools are developed which allow remote access, for ex-
ample, using cellular phones. Here, the Ulm technology of associative memories
plays an important role. Spoken language dialogue systems are interactive, voice-
based interfaces between humans and computers. They allow humans to carry out
tasks of diverse complexity such as the reservation of tickets or the performance
of bank transactions. Chapter 8 describes different appproaches for the categoriza-
tion of caller utterances in the framescope of a technical support dialog system,
with special focus on categorizers using small amounts of labeled examples. Func-
tional genomics aim to provide links between genomic information and biological
functions. One example is the connection between gene patterns and tumor status.
Cluster analysis generates a structure of data solely exploring distances or similar-
ities. A special feature of Chapter 9 is the demonstration that already sparse ad-
ditional information leads to stable structures which are less susceptible to minor
changes. Image analysis tries to detect complex structures in high-dimensional
data. Chapter 10 compares and contrasts approaches developed in computer vi-
sion and cosmology. We conclude the theme of pattern recognition by discussing
in Chapter 11 the fundamental method of classification in data analysis. Unfortu-
nately, the true concept of classification is often not known. A method of combining
several such concepts, called boosting, which leads to highly accurate classifiers, is
described here.

Another important theme in the part on information is represented by signal
analysis covering the topics of Shannon’s sampling theorem, codes and signal pro-
cessing in the brain. The sampling theorem shows how a signal can be reproduced
by a finite number of measurements. Chapter 12 gives a historical overview and
provides two proofs. Coding theory tells us how, by adding redundancy and cor-
recting errors, information can be transmitted accurately. An overview of codes
with emphasis on algebraic geometric codes is given in Chapter 13. This section
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concludes with Chapter 14 describing a model of how the human cortex process-
es its sensor signals. Mathematically this model consists of a system of coupled
nonlinear ordinary differential equations whose long time behavior is discussed.

The last part addresses the topic of complexity focusing on classical as well as
quantum algorithms. A central task in computer science is to find efficient algo-
rithms. Chapter 15 lays the foundation of this chapter by explaining the famous
Shor algorithm to factor numbers from a physics point of view. In the same vein
Chapter 16 describes the state of the art of two famous problems, integer factoriza-
tion and the graph isomorphism problem. It points out similarities and differences
between these two problems when approached by classical or quantum computing.
The QuickSort algorithm is a most efficient sorting method. It relies on dividing
the sequence into parts of smaller lengths. In Chapter 17 the complexity of the
method is studied with a special emphasis on varying the random source which
governs the division.

We would like to take the opportunity to thank the authors for their contribu-
tions, enthusiasm and reliability in producing this volume. Moreover, we are most
grateful to Robin Nittka for his competent help in putting this book together. Final-
ly, we appreciate the support of the Ministerium für Wissenschaft, Forschung und
Kunst, Baden-Württemberg in the framework of the Promotionskolleg Mathemati-
cal Analysis of Evolution, Information and Complexity.

Ulm, August 2008 Wolfgang Arendt
Wolfgang Schleich
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Prologue

Milestones of Evolution, Information and Complexity
Wolfgang Arendt, Delio Mugnolo and Wolfgang Schleich

The modern world, our world of triumphant rationality,
began on November 10, 1619, with a revelation and
a nightmare. On that day, in a room in the small Bavarian
village of Ulm, René Descartes, a Frenchman, twenty-three
years old, crawled into a wall stove and, when he was
well-warmed, had a vision. It was not a vision of God, or of
the mother of God, or of the celestial chariots, or of the New
Jerusalem. It was a vision of the unification of all science.

Philip J. Davis and Reuben Hersh, Descartes’ Dream,
Penguin, London 1986

René Descartes laid the foundation of modern science not only by his natural phi-
losophy, but also by his mathematical contributions. For example, he addressed
the tangent problem, which was only solved in its entirety 50 years later by Leib-
niz and Newton. For this purpose both of them invented mathematical calculus.
In 1637 Descartes in his essay Discours de la méthode brought to light the physics
of diffraction. He was the first to explain the most beautiful spectral phenomenon,
the rainbow.

Δ Δ Δ

Since then, spectral analysis has come a long way. It has developed into one of
the most fruitful concepts in natural sciences and technology. The overtones of
an instrument, such as a tambourine or an organ pipe, and even the bodywork
of a Mercedes limousine, exhibit a spectrum. Also in the microscopic world the
concept of spectrum is useful. For example, the energy levels of the electron in
a hydrogen atom form a spectrum. This fact turned out to be a crucial stepping
stone for the development of quantum theory (Chapter 1).

Cosmic microwave background radiation was discovered in 1965 by Arno Pen-
zias and Robert Wilson. In accordance with the Big Bang Theory, it fills the whole
universe and is currently considered to be the major evidence for an expanding uni-
verse. For this discovery, Penzias and Wilson received the Nobel Prize in Physics
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in 1978 (Chapter 10). Such a microwave radiation possesses a spectrum which is
characteristic of a so-called black body. Black bodies have been first considered by
Gustav Kirchhoff in 1859 when he laid the foundation of the theory of thermal radi-
ation. Fourteen years earlier he had already introduced two famous laws describing
the time evolution of voltages and currents in electric circuits. In this way Kirchhoff
single-handedly established modern electrical engineering.

Black bodies have also played a central role in the creation of quantum mechan-
ics. Indeed, motivated by the problem of designing efficient lightbulbs, Max Planck
in 1900 discovered that the energy of oscillators is quantized. Building on Planck’s
insights, Albert Einstein, born in Ulm in 1879, could explain the photoelectric ef-
fect. This explanation together with his discovery of the momentum of the light
quantum opened the door to the development of quantum mechanics. For these
achievements he was awarded the Nobel Prize in 1921. Moreover, his groundbreak-
ing work on relativity, deeply rooted in Riemann’s geometric theory, completely
changed our understanding of the time evolution of the universe and marked the
birth of modern cosmology (Chapter 3).

Δ Δ Δ

To a large degree today’s electrical engineering lives off the spectral analysis of sig-
nals, for example, making cell phones work. It was Claude Shannon who in 1949
discovered that a finite number of samples suffices to capture a wave (Chapter 12).
Here he could build on the concept of the Fourier transform, which was introduced
by Joseph Fourier in 1822 in his Théorie analytique de la chaleur. Shannon’s sam-
pling theorem provides the basis for the technology of digitalising and eventually
perfectly reconstructing a signal. Moreover, in the very same paper entitled Com-
munication theory of secrecy systems, Shannon laid the mathematical foundation of
cryptography.

Still, signal processing faces a major theoretical limitation: The shorter a pulse in
time, the less well defined the frequency. Bounds of this kind are intimately related
to Shannon’s investigations collected in his seminal paper A mathematical theory of
communication from 1948. In this article he introduced the concept of information
entropy, a measure of the information contained in a random message. Today this
article is commonly considered to have initiated information theory.

Δ Δ Δ

Also at the end of the 1940s, Donald Hebb was completing his most influential
study, The organization of behavior. Therein he proposed a quantitative approach to
the process of learning, thus giving birth to modern neuropsychology. Hebb was
the first to analytically investigate the dual nature of the brain – biological tissue as
well as source of perception – combining traditional behavioral studies and mod-
ern electrophysiology. His theory of learning suggested that synaptic connections
are strengthened or weakened in order to achieve more efficient apprehension.
Hebb’s work introduced the notion of synaptic plasticity and paved the road for the
interpretation of the brain as an ever-changing computing system.
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Shortly before, in 1943, the first artificial neural networks had been introduced by
Warren McCulloch and Walter Pitts in their article entitled A logical calculus of the
ideas immanent in nervous activity. It soon became clear that boolean logic could be
implemented in these theoretical devices, thereby enabling them to perform com-
plex computations. Unfortunately, the early neural networks lacked any form of
adaptation or learning features. It was Hebb’s research that filled this gap. Even
today Hebb’s laws in their mathematical formulation are among the favorite theo-
retical tools when setting up and tuning an artificial neural network (Chapters 4, 7
and 14). They allow one to translate learning phenomena into the time evolution
of a system of differential or difference equations (Chapter 2).

Δ Δ Δ

The spectrum of a wave can be viewed as a band of eigenfrequencies determined by
the Helmholtz equation. This distribution of eigenvalues provides us with a deeper
insight into the behaviour of light and matter and is described by Weyl’s law, proven
by Hermann Weyl in 1911. Surprisingly, there is a close analogue in number theory.
The prime numbers are intimately related to Riemann’s �-function whose non-
trivial zeros look very much like a spectrum encountered in atomic physics. In
this context Marcus de Sautoy talks about the music of primes, which is the title of
his book on the Riemann �-function. Much is known about the distribution of the
primes but the related Riemann’s hypothesis on the zeros of the �-function is still
a mystery. First formulated by Bernhard Riemann in 1859, it is probably the biggest
open problem in mathematics today – in fact, it has been dubbed a Millennium
Problem, whose solution would be rewarded with a $1 000 000 prize by the Clay
Mathematics Institute (Chapter 1).

Prime numbers and their distribution have fascinated mathematicians for gener-
ations. Today they serve us as a mathematical technology in cryptography. A mod-
ern life necessity is to transmit secret data, for example, for online banking purpos-
es. It is counterintuitive that encryption can be made safer and more efficient by
the use of public keys. In fact, cryptographic keys had to be kept strictly secret un-
til the 1970s. However, even codes based on secret keys are not secure. The most
prominent example is the Enigma code used by the Germany military in World
War II and broken by Alan Turing in 1943. Public keys constituted a breakthrough
and a radical change of the paradigm of secrecy. They were first proposed in 1976
in a famous paper by Whitfield Diffie and Martin Hellman entitled New directions
in cryptography. In Diffie’s and Hellman’s words, “each user of the network can,
therefore, place his enciphering key in a public directory. This enables any user of
the system to send a message to any other user in such a way that only the intend-
ed receiver is able to decipher it.” The actual realization of their project is due to
Ronald Rivest, Adi Shamir, and Leonard Adleman, who in 1978 developed the RSA
cryptographic system. This work won them the Turing Award in 2002. It is surpris-
ing that the long awaited solution of the most famous and originally thought to
be useless problem, the proof of Fermat’s Last Theorem by Andrew Wiles in the
1990s, also provided us with new tools for cryptography such as elliptic curves. In
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fact, their use for enciphering and deciphering was already implicitly contained in
the work of Diffie and Hellman (Chapter 16).

Efficient cryptography is just one problem of modern signal theory. Another one
is to find a language which permits error-free transmission of information in a pro-
cess called coding/encoding. And it is again number theory, but also Fourier anal-
ysis, that gives us the right tools to perform this task with enormous efficiency
(Chapter 13). Again, Shannon’s sampling theorem plays a decisive role in this con-
text.

Δ Δ Δ

Quantum theory, even though formulated in a quite abstract mathematical lan-
guage, has reached a state of broad technological applications. In 1965, Richard
Feynman received the Nobel Prize in Physics for his work on quantum electrody-
namics. Seventeen years later he was one of the first to recognize the potential of
a quantum computer. In all digital computers, starting from the Zuse Z3 and the
ENIAC of the early 1940s to modern miniaturised devices, the logic is based on
memory devices which store either a 0 or a 1, forming a bit of information. In
a quantum computer this on/off dichotomy is replaced by the possibility of a quan-
tum bit being in a superposition state. Abecedarian forms of such a quantum device
exist to date in research labs only. Nevertheless, they have already been studied ex-
tensively at a theoretical level.

Once available, a quantum computer would substantially simplify large data
analysis. Applications known today include, but are not limited to, the determi-
nation of shortest paths in networks or even the factorization of large numbers,
for instance, by means of the algorithm discovered by Peter Shor in 1994 (Chap-
ter 15). For this work he was awarded the Gödel Prize in 1999. It is remarkable that
Shor’s algorithm, implemented on a reasonably large quantum computer, could
easily break common cryptographic techniques, including both RSA and methods
based on elliptic curves. Possible remedies are random number generators based
on Riemann’s �-function. A fascinating relation between elliptic curves and the �-
function is suggested by the Birch and Swinnerton–Dyer conjecture, formulated
in the 1960s. It is still open and represents another of the Millennium Problems
named by the Clay Institute.

However, not even quantum computers have an infinite potential. They may be
exponentially faster when confronted with certain tasks, but they are not inherently
more powerful than today’s computers. Whenever we have to solve a problem with
the help of a machine, even an ideal one such as a universal Turing machine, we have
to use an algorithm which should be optimized. To quantify the intrinsic efficiency
of algorithms to be implemented on computers is the goal of algorithmic complexity
theory, founded by Juris Hartmanis and Richard Stearns in 1965. Their paper On
the computational complexity of algorithms earned them the Turing Award in 1993.

Δ Δ Δ

Obviously, to determine the explicit solution of a problem in a short time, such
as factoring of a large number, or to check whether given data indeed solve the
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problem, for example whether the product of a given set of primes yields the orig-
inal large number, represent two different tasks. The problems which are solvable
by a fast algorithm constitute the class P, whereas NP consists of those problems
which allow for a fast algorithm that is able to check whether a given possible
answer is indeed a solution of the problem. Here an algorithm is called fast if it can
be performed in a time which grows at most polynomially with the input size.

While algorithms for finding prime numbers were already known to the ancient
Greek, checking whether a given number is actually a prime seems to be demand-
ing. Nevertheless, it is only a P-problem as shown by Manindra Agrawal in 2002
after his post-doc stay at the University of Ulm. This stunning discovery won him
the Clay Research Award in the same year and the Gödel Prize (together with his
coauthors) in 2006. Another example of the P vs. NP question is the prime fac-
torization of large numbers (Chapters 15 and 16). Today most of the cryptography
devices rely upon the belief that factorization into primes, which is clearly an NP
problem, is not a P problem. Still, all attempts to prove this hypothesis have re-
mained unsuccessful. In 1956, Gödel conjectured in a letter to von Neumann that,
in general, it should be possible to replace trial and error approaches by efficient
algorithms – as for example done for various problems in number theory – thus
implicitly suggesting that P = NP. Still, more than fifty years later we do not yet
know the answer to the P vs. NP problem.

While it is clear that each P problem is also NP, most computer scientists firm-
ly believe that the converse is not true, that is P =/ NP. This question represents
a major research field of theoretical computer science and is also one of the seven
Millennium Problems of the Clay Institute.

Δ Δ Δ

Consider the task of coloring a geographical map under the constraint that no two
adjacent countries can have the same color. To decide for a given map whether it is
possible to complete this task using only three different colors is at least as difficult
as any NP problem, whereas it is a P problem to find a four-coloring of the map.
The latter task is closely related to the four-color-theorem, stating that each map can
in fact be colored with a maximum of four colors. This theorem was first proposed
as a conjecture in 1852 and proven only in 1976 by Kenneth Appel and Wolfgang
Haken. Their proof is the first one ever to rely in an essential way upon computer
aid, rather than human thought, and has therefore started an everlasting debate in
the philosophy of science. The four-color-theorem represents the zenith of the in-
terplay between mathematics, logic and theoretical computer science. In contrast,
Kurt Gödel’s incompleteness theorem from 1931 was this interplay’s nadir. It was
a great enlightment to the scientific community to learn from Gödel that no auto-
matic, computer-based mathematics will ever be possible.

Coloring problems belong to graph theory, a field studying properties of discrete
structures. Also based on graph theoretical objects is a recent proof of the long
standing Horn conjecture on the distribution of eigenvalues of a sum of matrices.
This question was addressed by Weyl in 1912 but was not proven until the 1990s.
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One of the key elements of the proof are surprising connections between ideas
from discrete and continuous mathematics as well as from quantum mechanics.
For his contributions to the solution of the Horn conjecture, the Clay Research
Award was assigned to Terence Tao in 2003. He was also awarded the Fields Medal
in 2006 for his results in the arithmetic of prime numbers. It is remarkable that the
once abstract graph theory has also found useful applications in algorithmic com-
puter science, especially in data clustering (Chapters 8 and 9), sequencing (Chap-
ter 5), classification (Chapter 11), and sorting (Chapter 17).

Δ Δ Δ

In spite of its limitations in large data analysis, the most efficient system for infor-
mation processing and computing is still a natural one – the brain. Hermann von
Helmholtz was the first to suggest and eventually prove in 1852 that thoughts – or
rather neural transmissions – have a finite speed, in fact as slow as 30 m/s. In the
year of von Helmholtz’s discovery Santiago Ramón y Cajal, the father of modern
neurobiology, was born. To him we owe the insight that the nervous system is a fine
network consisting of neurons which communicate by means of synapses. For this
work, based on a biochemical technique developed by Camillo Golgi, both Golgi
and Ramón y Cajal were awarded the Nobel Prize in Medicine in 1906. In 1952
Alan Hodgkin and Andrew Huxley proposed a mathematical model for the propa-
gation of electrical pulses inside individual neurons. They were able to show that
the neural transmission happens by means of an ionic current, which can also be
modeled as a diffusion process and propagates as a wave. Their model won them
the Nobel Prize in Medicine in 1963 (Chapter 4).

The theory of diffusion was originated in 1822 by Fourier in his studies on heat
conduction. Eventually, thirty-three years later Adolf Fick formulated the law of dif-
fusion as a partial differential equation involving time as a variable. Such laws are
called evolution equations. Already Fick recognized that his model was not limited
to thermodynamics but had many more fields of application ranging from chem-
istry to finance. In fact, Fick’s law also agrees up to nonlinear correction terms
with Hodgkin’s and Huxley’s differential equations. Moreover, the signalling across
synapses is a chemical phenomenon that is partially based on diffusion. Further
Nobel Prizes in Medicine have been awarded for related discoveries in 1936, 1963,
and 1970, in a crescendo that was made possible by the development of electron mi-
croscopy. A hundred years after Ramón y Cajal, diffusion processes still belong to
the core of computational neuroscience – in a braid of chance, linear determinism,
and chaos.

Δ Δ Δ

In 1887, Henri Poincaré won a contest sponsored by the King of Sweden asking
for the solution of the famous three-body problem in celestial mechanics. In fact,
Poincaré did not present the solution, but rather indicated a major problem in the
mainstream approach to celestial mechanics itself. He pointed out that even a per-
fect deterministic theory would not yield a useful result, since usually the initial


