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IX

Preface

After the publication of the first most successful volume of Reviews of Nonlin-
ear Dynamics and Complexity, it is my pleasure to introduce now the second
volume, beginning with an outline of the aims and purpose of this new series.

Nonlinear behaviour is ubiquitous in nature and ranges from fluid dynam-
ics, via neural and cell dynamics to the dynamics of financial markets. The
most prominent feature of nonlinear systems is that small external distur-
bances can induce large changes in their behaviour. This can and has been
used for effective feedback control in many systems, from Lasers to chemi-
cal reactions and the control of nerve cells and heartbeats. A new hot topic
is nonlinear effects that appear on the nanoscale. Nonlinear control of the
atomic force microscope has improved its accuracy by orders of magnitude.
Nonlinear electromechanical oscillations of nano-tubes, turbulence and mix-
ing of fluids in nano-arrays and nonlinear effects in quantum dots are further
examples.

Complex systems consist of large networks of coupled nonlinear devices.
The observation that scalefree networks describe the behaviour of the inter-
net, cell metabolisms, financial markets and economic and ecological systems
has lead to new findings concerning their behaviour, such as damage control,
optimal spread of information or the detection of new functional modules,
that are pivotal for their description and control.

This shows that the field of Nonlinear Dynamics and Complexity consists of
a large body of theoretical and experimental work with many applications,
which is nevertheless governed and held together by some very basic prin-
ciples, such as control, networks and optimization. The individual topics are
definitely interdisciplinary which makes it difficult for researchers to see what
new solutions – which could be most relevant for them- have been found by
their scientific neighbours. Therefore its seems quite urgent to provide Reviews
of Nonlinear Dynamics and Complexity where researchers or newcomers to the
field can find the most important recent results, described in a fashion which
breaks the barriers between the disciplines.



X Preface

This second volume contains new topics ranging from human mobility
and spatial disease dynamics, via stochastic evolutionary game dynamics and
epilepsy to fractal models of earthquake dynamics and adaptive networks.
I would like to thank all authors for their excellent contributions. If readers
take from these interdisciplinary reviews some inspiration for their further
research this volume would fully serve its purpose.

I am grateful to all members of the Editorial Board and the staff of Wiley-
VCH for their excellent help and would like to invite my colleagues to con-
tribute to the next volumes.

Kiel, March 2009 Heinz Georg Schuster
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1
Human Mobility and Spatial Disease Dynamics
Dirk Brockmann

1.1
Introduction and Motivation

The understanding of human mobility and the development of qualitative
models as well as quantitative theories for it is of key importance in the re-
search of human infectious disease dynamics on large geographical scales.
Xia et al. state succintly [1]:

“Spatial transmission of directly transmitted infectious diseases is ulti-
mately tied to movement by the hosts. The network of spatial spread
(the disease’s spatial coupling) may therefore be expected to be related
to the transportation network within the host metapopulation”

In our globalized world, mobility and traffic have reached a complexity and
volume of unprecedented degree. More than 60 million people travel billions
of miles on more than 2 million international flights each week as illustrated
in Figure 1.1. Hundreds of millions of people commute on a complex web
of highways and railroads, most of which operate at their maximum capac-
ity. Despite this increasing connectivity and our ability to visit virtually ev-
ery place on this planet in a matter of days, the magnitude and intensity of
modern human traffic has made human society more susceptible to threats
intimately connected to human travel. For instance, long-range human mobil-
ity is responsible for the geographical spread of emergent infectious diseases
and plays a key role in human mediated bioinvasion, the dominant factor in
the global biodiversity crisis. The prime example of modern epidemics is the
severe acute respiratory syndrome (SARS). The SARS virus first appeared in
a Chinese province from where it reached Hong Kong in 2003. It proliferated
and spread around the world in a matter of weeks infecting nearly 10 000 in-
dividuals worldwide with a mortality of approximately 10%. Since then, epi-
demiologist have devoted an increasing amount of attention and modeling
effort to understand in what way and to what extent modern traffic networks
impact and determine the dynamics of emergent diseases, particularly facing
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Figure 1.1 The worldwide air transportation network. More than three
billion passengers travel on this network each year, on flights connect-
ing approximately 4000 airports. The heterogeneity of the network is
reflected by the flux of individuals between nodes, ranging from a few
to more than 10 000 passengers per day between nodes.

an immanent H5N1 flu pandemic and the potential threat of the use of small-
pox in bioterroist attacks [2, 3].

In a number of recent studies the statistical properties of particular human
transportation networks were investigated in detail with a focus on air trans-
portation and long-distance traffic [4–7]. However, human mobility occurs on
many length scales, ranging from commuting traffic on short distances to long-
range travel by air, and involves diverse methods of transportation (public
transportation, roads, highways, trains, and air transportation). No compre-
hensive study exists that incorporates traffic on all spatial scales. This would
require the collection and compilation of data for various transportation net-
works into a multi-component dataset; a difficult, if not impossible, task partic-
ularly on an international scale. Whereas central statistical features of air trans-
portation networks have been studied in detail, it remains unclear whether
these properties remain unchanged in traffic networks that comprise all other
means of transportation and spatial scales. How do these properties depend on
the length scale? Are they universal? In what way do they change as a function
of length scale? What are the national and regional differences and similarities?
In order to understand human mobility in the 21st century and the dynamics of
associated phenomena, particularly the geographic spread of modern diseases,
it is of fundamental importance to answer these questions.
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Once a more comprehensive understanding of human mobility exists, the
next step in the context of spatial epidemics is the translation of traffic infor-
mation and topological features of complex traffic networks into dynamical
components of models that can account for the spatial spread of infectious
diseases. These type of models have been devised in the past on a wide range
of complexity levels. On one end of the spectrum are reaction diffusion models
in which local nonlinear infection dynamics is coupled with diffusive disper-
sal. Spatial heterogeneity in the host population is generally neglected in these
models [8]. The type of questions which these models address are, for exam-
ple; Under what circumstance does a propagating epidemic wave develop?
How does the speed of the wave depend on the parameters of the model?
What impact does spatial heterogeneity have on the disease dynamics, and
what are the statistical regularities in spatial patterns?

On the other end of the spectrum are sophisticated models that are con-
structed with a high degree of detail [2, 3, 9, 10]. Examples of these models
are agent-based simulation frameworks in which social, spatial and tempo-
ral heterogeneity are taken into account. Frequently these models contain en-
tire global transportation networks and extrapolations where empirical data
is lacking based on known statistics.

This chapter contains two parts. In the first part I will discuss recent pro-
gess in the study of multi-length scale transportation networks. I will show
that, despite their complexity, these networks exhibit a set of scaling relations
and statistical regularities. In the second part I will review how the topologi-
cal features of traffic networks can be incorporated in models for disease dy-
namics and show that the way topology is translated into dynamics can have
a profound impact on the overall disease dynamics.

1.2
Quantitative Assessments of Human Mobility

1.2.1
Preliminary Considerations

Formally we can address the issue of mobile individuals by the collection of
individual trajectories of each of N individuals of a population, that is the col-
lection {�xi(t)}i=1,...,N where each individual is labeled i. Clearly the measure-
ment and the prediction of each individual’s location �xi(t) as a function of time
is beyond a researcher’s grasp. Some very recent experiments, however, em-
ploying high-precision measurements based on GPS (global positioning via
satellite) or using cell phone location as a proxy for �xi(t) have made it possi-
ble at least to measure, individual trajectories with unexpected accuracy [11].
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The next best approach to human mobility is based on population averages.
To this end it is useful to define the microscopic time dependent density of
individuals

u(�x, t) =
1
A

N
∑

i
δ(�x −�xi(t)) (1.1)

where A is the spatial area under consideration. The global density of individ-
uals in A is given by the integral of u, that is

u0 =
N
A

=
∫

d�xu(�x, t) . (1.2)

The expecation value 〈u(�x, t)〉 of the microscopic density is related to the prob-
ability pi(�x, t) of individual i being located at �x by

〈u(�x, t)〉 =
1
A

N
∑

i
〈δ(�x − �xi(t))〉

=
1
A

N
∑

i
pi(�x, t) (1.3)

Because for each i even the quantitiy pi(�x, t) is usually inaccessible to measure-
ment, a widespread assumption made in models is that individuals are indis-
tinguishable and that although �xi(t) �= �xj(t) one assumes pi(�x, t) = pj(�x, t)
and thus

〈u(�x, t)〉 =
1
A

p(�x, t) . (1.4)

Despite its simplicity, this equation is fundamental to the probabilistic inter-
pretation of models that are based on the time-evolution of concentrations. It
connects the probabilistic quantity p(�x, t) to the measurable density of indi-
viduals. The second assumption in the conceptual setup of analyzing human
mobility is an ergodicity assumption, that is given by

1
ΔA

∫
dAu(�x, t) ≈ 〈u(�x, t)〉 , (1.5)

in which ΔA � A is an area small in comparison to the spatial size of the
entire system but large enough such that sufficient individuals reside in it at
all times such that the spatial average (left-hand side of (1.5)) is approximately
equal to the expected density. The degree to which these assumptions are ful-
filled determines the right choice of model. Two structurally different models
reflect a range of possibilities.

On one hand, if p(�x, t) varies little in magnitude and the global density
N/A is large enough, one can find a microscopic scale ΔA such that a suf-
ficient amount of individuals are always contained in each microscopic unit
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area for (1.5) to be valid. One a large scale one can then consider

n(�x, t) = ΔA〈u(�x, t)〉 (1.6)

a spatially continuous deterministic quantity and introduce dynamical equa-
tions for it.

Humans, however, are typically clustered in urban areas, cities, towns and
villages in which the density of individuals is high as opposed to areas in
between where is it negligible. In this case a metapopulation approach is more
suitable. In this approach communities are defined by p(�x, t) exceeding some
threshold in some spatially compact area Ωn and one labels these regions by
a discrete index n. The size of each community n is given by

Nn(t) = Ωn〈u(�x, t)〉 . (1.7)

In these models mobility of individuals is equivalent to exchange of them be-
tween the discrete set of communities. In metapopulation models Nn(t) is typ-
ically considered a deterministic quantity for which (1.5) holds. The coupling
of these communities is conveyed by mobility networks that quantify the ex-
change of individuals between them. Usually these traffic networks are quan-
tified by a matrix Wnm ≥ 0 whose elements reflect the traffic flux between
communities.

1.2.2
The Lack of Scale in Human Mobility

By far the most studied human mobility system, particularly in the context of
human infectious disease dynamics is the worldwide air transportation sys-
tem, see Figure 1.1. The network is defined by a passenger flux matrix each el-
ement Wnm of which quantifies the number of passengers that travel between
airport m and n. In a series of studies, air transportation networks were in-
vestigated using methods of complex network theory [4, 7, 12] and have been
employed as the backbone in a set of models that attempt to account for the
global spread of emergent human infectious diseases [5, 6, 13].

However, one of the central drawbacks of focusing on air transportation
alone is that only long-range traffic is covered by it. If, for instance, one sets
out to develop a model for disease dynamics on small to intermediate length
scales, for example in countries such as Germany or the UK, air transportation
does play a role, but an insignificant one compared to traffic on the network
of highways and railways. Confronted with the difficulty of compiling a com-
prehensive dataset of human mobility covering all length scales, the idea was
recently developed to employ proxies of human travel that indirectly pro-
vide information on mobility patterns of individuals. In [14] this idea was
employed for the first time by analyzing the geographical circulation of bank
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notes. In the study, data was analyzed which had been collected at the on-
line bill tracker www.wheresgeorge.com founded by Hank Eskin in 1998. The
idea of the game is simple. Individual dollars bills are marked and enter cir-
culation. When new users come into possession of a marked bill, they can
register at the site and report the current location of the bill by entering the
zip code. Successive reports of a bill yield a spatio-temporal trajectory with
a very high resolution. Since 1998 wheresgeorge.com has become the largest
bill-tracking website worldwide with more than three million registered users
and more than 140 million registered bills. Approximately 10% of all bills have
had hits yielding a total of more than 14 million single trajectories consisting
of origin �X1 (initial entry location) and destination �X2 (hit location). Figure 1.2
illustrates a sample of trajectories of bills with initial entries in five US cities.
Shown are journeys of bills that lasted a week or less. Clearly, the majority
of bills remains in the vicinity of their initial entry, yet a small but significant
number of bills traversed distances of the order of the size of the US, consis-
tent with the intuitive notion that short trips occur more frequently than long
ones. One of the key results of the 2006 study was the first quantitative esti-
mate of the probability p(r) of a bill traversing a distance r in a short period
of time, a direct estimate of the probability of humans performing journeys of
this distance in a short period of time. This quantity is shown in Figure 1.2.
This estimate was based on a dataset of 464 670 individual bills. On a range of
distances between 10 and 3500 km, this probability follows an inverse power
law, that is

p(r) ∼ 1
r1+μ

(1.8)

with an exponent μ ≈ 0.6. Despite the multitude of means of transportation
involved, the underlying complexity of human travel behavior and the strong
spatial heterogeneity of the United States, the probability follows this simple
mathematical law indicating that human mobility is governed by underlying
universal rules. Moreover, the specific functional form has important conse-
quences. If one assumes that individual bills perform a spatial random walk
with an arbitrary probability distribution p(r) for distances at every step, one
can ask: What is the typical distance |�X(t)| from the initial starting point as
a function of time? For ordinary random walks (Brownian motion) which are
ubiquitous in the natural sciences, the behavior of |�X(t)| is determined by the
standard deviation σ =

√
〈r2〉 − 〈r〉2 of the single steps and irrespective of the

particular shape of the distance scales according to the “square-root law”, that
is |�X(t)| ∼ √

t, a direct consequence of the central limit theorem [15]. How-
ever, for a power law of the type observed in the dispersal of bank notes the
variance diverges for exponents μ < 2 and the situation is more complex. It
implies that the dispersal of bank notes lacks a typical length scale, is frac-
tal and the trajectories of bills are reminiscent of a particular class of random
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Figure 1.2 Short time trajectories of dollar
bills in the United States. (a) Lines connect
origin and destination locations of bills that
traveled for less than a week. The majority
of bills remain in the vicinity of their starting
point, yet a small but significant fraction of
bills travel long distances. (b) The probability
p(r) of traveling a distance r in a short period
of time of T less than a week. The dashed
line indicates the inverse power law of Equa-
tion (1.8) in the text. The colors encode the
subsets of trajectories that started in large

cities (blue), intermediate cities (green) and
small towns (red). Despite systematic de-
viations for small distances, the asymptotic
power law behavior is the same for all sub-
sets indicating the universality of dispersal.
(c) Two-dimensional trajectory of and ordinary
random walk or Brownian motion. (d) Trajec-
tory of a superdiffusive Lévy flight. The Lévy
flight geometry consists of small clusters
interconnected by long leaps. The dispersal
of bank notes is reminiscent of Lévy flight
trajectories such as the one depicted.

walks known as Lévy flights [16, 17]. Lévy flights, as opposed to ordinary
random walks are anomalously diffusive, they exhibit a scaling relation that
depends on the exponent:

|�X(t)| ∼ t1/μ . (1.9)

Because Lévy flights are superdiffusive, they disperse faster than ordinary
random walks, and their geometrical structure differs considerable from ordi-
nary random walks, see Figure 1.2. The discovery that the dispersal of bank
notes and therefore human travel behavior lacks a scale and is related to Lévy
flights was a major breakthrough in understanding human mobility on global
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scales. This result is particularly intriguing because power laws of the type
above and Lévy flight dispersal have been observed in foraging animals such
as the albatross, deer and marine predators as well [18–20] and have since
then been validated by a recent study on mobile phone dynamics [11], indi-
cating that emergent mobility patterns are determined by similar underlying
rules.

1.3
Statistical Properties and Scaling Laws in Multi-Scale Mobility Networks

Figure 1.3 illustrates a proxy network obtained from the flux of dollars in the
United States, including all spatial scales. This network is defined by 3109
nodes (counties in the United States excluding Alaska and Hawaii) connected
by weights Wnm that represent the flux rate of bills from county m to n in
units of bills per day. The entire network structure is thus encoded in the
3109 × 3109 flux matrix �W. As each location has a well-defined geographi-
cal position, this multi-scale US traffic network can be visualized as a geo-
graphically embedded network as shown in the figure. Qualitatively, one can
see that prominent East coast–West coast fluxes exist in the network. Yet the
strongest connections are the short to intermediate length scale connections,
as opposed to the air transportation network that serves long distance only.
Although every day 2.35 million passengers travel on the US air transporta-
tion network, this represents only a small subset of the multi-scale traffic net-
work. The histogram in Figure 1.3 illustrates these properties more quan-
titatively, comparing the relative frequency of distances in the multi-scale
wheresgeorge network to the air transportation network. Clearly, the majority
of distances served by air transportation, peaks around 1000 km, whereas dis-
tances in the multi-scale network are broadly distributed across a wide range
from a few to a few thousand kilometers.

In order to understand human mobility on all spatial scales it is there-
fore essential to include all means of transportation indirectly involved in the
wheresgeorge money circulation network. The bill circulation network quan-
tified by the flux matrix can give important insight into the statistical features
of human mobility across the United States. In order to quantify the statistical
features of the network we will concentrate on the flux of bills in and out of
a node given by

Fin
n = ∑

m
Wnm Fout

n = ∑
m

Wmn (1.10)

respectively. These flux measures are a direct proxy for the overall traffic ca-
pacity of a node in the network. Furthermore, we will investigate the in- and
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Figure 1.3 (a) The flux of dollar bills in the
United States. Each line represents the flux
of bills between the counties it connects.
The color encodes the magnitude of the
flux, bright lines indicate heavy flux, dark
lines weak flux. The figure illustrates the
strong heterogeneity of money dispersal,
short distance connections typically exhibit
strong fluxes, long distance connections
are weaker but significant. (b) The popula-
tion density of the United States spatially
resolved and colored on a logscale. (c) The

US air transportation network. The lines in-
dicate connections between the 413 major
airports in the US. The color encodes the
magnitude of connections in passengers per
day. (d) Relative frequency of distances in
the multi-scale traffic network obtained from
the wheresgeorge dataset (red) compared
to the air-transportation network (blue). Air
transportation mainly serves long distance
whereas multi-scale traffic exhibits a broad
distribution ranging from a few to a few thou-
sand kilometers.

out-degree of a node defined according to

kin
n = ∑

m
Anm kout

n = ∑
m

Amn (1.11)

where the elements Anm are entries of the adjacency matrix A. These elements
are either one or zero depending on whether or not nodes are connected. The
degree of a node quantifies the connectivity of a node, that is to how many
other nodes a given node is connected. A first important but expected fea-
ture of the multi-scale mobility network is its degree of symmetry. Figure 1.4
depicts the correlation of the flux of bills in and out of each node and a correl-
ogram of the in- and out-degrees. These quantities exhibit a linear relationship
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Figure 1.4 Symmetry of the money circulation network. The figures
depict the correlation Fin

n and Fout
n of flux of bill in and out and the

in- and out-degree kin
n and kout

n of a node n for all 3109 nodes in the
network. The dashed lines represent the linear relationships.

subject to fluctuations,

Fin
n ≈ Fout

n kin
n ≈ kout

n (1.12)

indicated by the dashed lines in the figure. Note also that the magnitude of
the flux values ranges over nearly four orders of magnitude, a first indication
of the strong heterogeneity of the network.

This high degree of heterogeneity is further illustrated by the cumulative
distributions of the weights, the fluxes and the degrees of all the nodes in the
network as depicted in Figure 1.5. All quantities are broadly distributed across
a wide range of scales. Very similar broad distributions have been observed
in studies of the air transportion networks [4, 7, 12]. A very important issue
in transportation theory is the development of a plausible evolutionary mech-
anism that can account for the emergence of these distributions; a task that
has not been accomplished so far. There is no plausible “theory” for human
traffic networks, as of today, that predicts the precise functional form of the
distributions shown in Figure 1.5.

1.3.1
Scaling Laws in the Topological Features of Multi-Scale
Transportation Networks

In order to reveal additional structure in multi-scale human mobility networks
we investigated the functional relation of the quantities defined above; that is,
what is the functional relation of fluxes and degrees with respect to the popu-
lation size of a node? Figure 1.6 illustrates the statistical relationship between
the population size of a node and the flux of bills into a node. The dashed line
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Figure 1.5 Heterogeneity of multi-scale human mobility networks.
Cumulative probability distributions of the population size of the nodes
(a), the weight matrix elements Wnm (b), the flux of bills Fn in and out
of nodes, see (c) and the degree kn of the nodes (d). The broadness
of these distributions is a consequence of the strong heterogeneity
of the network.

Figure 1.6 The functional dependence of influx Fin (a) and in-degree
kin (b) on the population size P of a node. The flux of bill depends lin-
early on the population size (gray dashed line), whereas the degree
exhibits a sublinear dependence (pink dashed line).
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in the figure represents a linear relationship with slope one, indicating that
traffic through a node grows linearly with the population size.

F(P) ∼ P (1.13)

Intuitively, this is expected, as the larger the population of a node the more
traffic flows in and out of it. However, correlating the degree of a node against
the population size indicates a sublinear relationship:

k(P) ∼ Pξ (1.14)

with an exponent ξ ≈ 0.7, contrasting the intuitive notion that the connec-
tivity of a node also grows linearly with population size. From the scaling
relations (1.13) and (1.14) we can determine an important property of multi-
scale mobility networks. The typical strength of a connection is given by the
ratio of flux and degree and one obtains heuristically

W ∼ P1−ξ (1.15)

This implies that larger counties are not only connected to a larger number
of other counties but also that the typical strength of every connection is
stronger. Both relations are determined by the universal exponent ξ = 0.7 and
these relations hold over nearly four orders of magnitude, a surprising regu-
larity exhibited by the multi-scale mobility network. Again, no theory exists
that can account for these scaling relations and the value of the exponent.

1.4
Spatially Extended Epidemic Models

In summary, two prominent features of multi-scale human mobility networks
emerged in the analysis above. (1) Networks exhibit a strong heterogeneity,
the distribution of weights, traffic fluxes and populations sizes of community
range over many orders of magnitude. (2) Although the interaction magni-
tude in terms of traffic intensities decreases with distance, the observed power
laws indicate that long-range interactions play a significant role in spatial dis-
ease dynamics. In the models to be discussed below, we will introduce a class
of spatially extended models in which the impact and interplay of both spa-
tial heterogeneity and long-range spatial interactions can be investigated in
a systematic fashion. It will also become clear that another key issue in spatial
disease dynamics is the translation of topological features of transportation
networks, that is the flux matrix W into dynamical entities which generate the
dispersal in space. At first glance, this may seem a straightforward process.
However, as we will see, this is a nontrivial task, and the behavior of a spa-
tially extended epidemic model depends sensitively on the precise choice of


