Analysis of Complex Networks

From Biology to Linguistics

Edited by
Matthias Dehmer and Frank Emmert-Streib

WILEY-
VCH
WILEY-VCH Verlag GmbH \& Co. KGaA

Analysis of Complex Networks

From Biology to Linguistics

Edited by
Matthias Dehmer and
Frank Emmert-Streib

Related Titles

B.H. Junker, F. Schreiber
Analysis of Biological Networks
2008
ISBN 978-0-470-04144-4
F. Emmert-Streib, M. Dehmer (Eds.)
Analysis of Microarray Data
A Network-Based Approach
2008
ISBN 978-3-527-31822-3

E. Keedwell, A. Narayanan

Intelligent Bioinformatics
The Application of Artificial Intelligence
Techniques to Bioinformatics Problems
2005
ISBN 978-0-470-02175-0
F. Azuaje, J. Dopazo (Eds.)

Data Analysis and Visualization
in Genomics and Proteomics
2005
ISBN 978-0-470-09439-6

Analysis of Complex Networks

From Biology to Linguistics

Edited by
Matthias Dehmer and Frank Emmert-Streib

WILEY-
VCH
WILEY-VCH Verlag GmbH \& Co. KGaA

The Editors

PD Dr. habil. Matthias Dehmer

Vienna University of Technology
Discrete Mathematics and Geometry
Wiedner Hauptstraße 8-10
1040 Vienna
Austria
and
University of Coimbra
Center for Mathematics
Apartado 3008
3001-454 Coimbra
Portugal

Prof. Dr. Frank Emmert-Streib

Computational Biology and Machine Learning Center for Cancer Research and Cell Biology School of Medecine, Dentistry and Biomedical Sciences Queen's University Belfast 97 Lisburn Road
Belfast, BT9 7BL
UK

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication
Data: A catalogue record for this book is available from the British Library.

Bibliographic information published by the

 Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at
http://dnb.d-nb.de.
(C) 2009 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages).
No part of this book may be reproduced in any form by photoprinting, microfilm, or any other means nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany Printed on acid-free paper

Cover design Adam Design, Weinheim Typesetting le-tex publishing services oHG, Leipzig
Printing Strauss GmbH, Mörlenbach
Bookbinding Litges \& Dopf Buchbinderei
GmbH, Heppenheim

Contents

Preface XIII
List of Contributors $X V$
1 Entropy, Orbits, and Spectra of Graphs 1
Abbe Mowshowitz and Valia Mitsou
1.1 Introduction 1
1.2 Entropy or the Information Content of Graphs 2
1.3 Groups and Graph Spectra 4
1.4 Approximating Orbits 11
1.4.1 The Degree of the Vertices 13
1.4.2 The Point-Deleted Neighborhood Degree Vector 13
1.4.3 Betweenness Centrality 15
1.5 Alternative Bases for Structural Complexity 19
References 21
2 Statistical Mechanics of Complex Networks 23
Stefan Thurner
2.1 Introduction 23
2.1.1 Network Entropies 25
2.1.2 Network Hamiltonians 27
2.1.3 Network Ensembles 28
2.1.4 Some Definitions of Network Measures 30
2.2 Macroscopics: Entropies for Networks 31
2.2.1 A General Set of Network Models Maximizing Generalized Entropies 32
2.2.1.1 A Unified Network Model 32
2.2.1.2 Famous Limits of the Unified Model 35
2.2.1.3 Unified Model: Additional Features 35
2.3 Microscopics: Hamiltonians of Networks - Network Thermodynamics 35
2.3.1 Topological Phase Transitions 36
2.3.2 A Note on Entropy 37
2.4 Ensembles of Random Networks - Superstatistics 39
2.5 Conclusion 42

References 43
A Simple Integrated Approach to Network Complexity and
Node Centrality 47
Danail Bonchev
3.1 Introduction 47
3.2 The Small-World Connectivity Descriptors 49
3.3 The Integrated Centrality Measure 52

References 53
$\begin{array}{ll}4 & \text { Spectral Theory of Networks: } \\ & \text { From Biomolecular to Ecological Systems } 55\end{array}$
Ernesto Estrada
4.1 Introduction 55
4.2 Background on Graph Spectra 56
4.3 Spectral Measures of Node Centrality 58
4.3.1 Subgraph Centrality as a Partition Function 60
4.3.2 Application 61
4.4 Global Topological Organization of Complex Networks 62
4.4.1 Spectral Scaling Method 63
4.4.2 Universal Topological Classes of Networks 65
4.4.3 Applications 68
4.5 Communicability in Complex Networks 69
4.5.1 Communicability and Network Communities 71
4.5.2 Detection of Communities: The Communicability Graph 73
4.5.3 Application 74
4.6 Network Bipartivity 76
4.6.1 Detecting Bipartite Substructures in Complex Networks 77
4.6.2 Application 80
4.7 Conclusion 80

References 81
5 On the Structure of Neutral Networks of RNA Pseudoknot
Structures 85
Christian M. Reidys
5.1 Motivation and Background 85
5.1.1 Notation and Terminology 87
5.2 Preliminaries 88
5.3 Connectivity 90
5.4 The Largest Component 93
5.5 Distances in n-Cubes 105
5.6 Conclusion 110
References 111
$6 \quad$ Graph Edit Distance - Optimal and Suboptimal Algorithms with Applications 113
Horst Bunke and Kaspar Riesen
6.1 Introduction 113
6.2 Graph Edit Distance 115
6.3 Computation of GED 118
6.3.1 Optimal Algorithms 118
6.3.2 Suboptimal Algorithms 121
6.3.2.1 Bipartite Graph Matching 121
6.4 Applications 125
6.4.1 Graph Data Sets 125
6.4.2 GED-Based Nearest-Neighbor Classification 129
6.4.3 Dissimilarity-Based Embedding Graph Kernels 129
6.5 Experimental Evaluation 132
6.5.1 Optimal vs. Suboptimal Graph Edit Distance 133
6.5.2 Dissimilarity Embedding Graph Kernels
Based on Suboptimal Graph Edit Distance 136
6.6 Summary and Conclusions 139
References 140
7 Graph Energy 145
Ivan Gutman, Xueliang Li, and Jianbin Zhang
7.1 Introduction 145
7.2 Bounds for the Energy of Graphs 147
7.2.1 Some Upper Bounds 147
7.2.2 Some Lower Bounds 154
7.3 Hyperenergetic, Hypoenergetic, and Equienergetic Graphs 156
7.3.1 Hyperenergetic Graphs 156
7.3.2 Hypoenergetic Graphs 157
7.3.3 Equienergetic Graphs 157
7.4 Graphs Extremal with Regard to Energy 162
7.5 Miscellaneous 168
7.6 Concluding Remarks 169
References 170
8 Generalized Shortest Path Trees: A Novel Graph Class by Example of Semiotic Networks 175
Alexander Mehler
8.1 Introduction 175
8.2 A Class of Tree-Like Graphs and Some of Its Derivatives 178
8.2.1 Preliminary Notions 178
8.2.2 Generalized Trees 180
8.2.3 Minimum Spanning Generalized Trees 186
8.2.4 Generalized Shortest Path Trees 190
8.2.5 Shortest Paths Generalized Trees 193
8.2.6 Generalized Shortest Paths Trees 195
8.2.7 Accounting for Orientation: Directed Generalized Trees 198
8.2.8 Generalized Trees, Quality Dimensions, and Conceptual Domains 204
8.2.9 Generalized Forests as Multidomain Conceptual Spaces 208
8.3 Semiotic Systems as Conceptual Graphs 212
References 218
9 Applications of Graph Theory in Chemo- and Bioinformatics 221
Dimitris Dimitropoulos, Adel Golovin, M. John, and Eugene Krissinel
9.1 Introduction 221
9.2 Molecular Graphs 222
9.3 Common Problems with Molecular Graphs 223
9.4 Comparisons and 3D Alignment of Protein Structures 225
9.5 Identification of Macromolecular Assemblies in Crystal Packing 229
9.6 Chemical Graph Formats 231
9.7 Chemical Software Packages 232
9.8 Chemical Databases and Resources 232
9.9 Subgraph Isomorphism Solution in SQL 232
9.10 Cycles in Graphs 235
9.11 Aromatic Properties 236
9.12 Planar Subgraphs 237
9.13 Conclusion 238
References 239
10 Structural and Functional Dynamics in Cortical and Neuronal Networks 245
Marcus Kaiser and Jennifer Simonotto
10.1 Introduction 245
10.1.1 Properties of Cortical and Neuronal Networks 246
10.1.1.1 Modularity 247
10.1.1.2 Small-World Features 247
10.1.1.3 Scale-Free Features 248
10.1.1.4 Spatial Layout 250
10.1.2 Prediction of Neural Connectivity 252
10.1.3 Activity Spreading 254
10.2 Structural Dynamics 255
10.2.1 Robustness Toward Structural Damage 255
10.2.1.1 Removal of Edges 256
10.2.1.2 Removal of Nodes 257
10.2.2 Network Changes During Development 258
10.2.2.1 Spatial Growth Can Generate Small-World Networks 258
10.2.2.2 Time Windows Generate Multiple Clusters 259
10.3 Functional Dynamics 260
10.3.1 Spreading in Excitable Media 260
10.3.1.1 Cardiac Defibrillation as a Case Study 261
10.3.1.2 Critical Timing for Changing the State of the Cardiac System 261
10.3.2 Topological Inhibition Limits Spreading 262
10.4 Summary 264
References 266
11 Network Mapping of Metabolic Pathways 271
Qiong Cheng and Alexander Zelikovsky
11.1 Introduction 271
11.2 Brief Overview of Network Mapping Methods 273
11.3 Modeling Metabolic Pathway Mappings 275
11.3.1 Problem Formulation 277
11.4 Computing Minimum Cost Homomorphisms 277
11.4.1 The Dynamic Programming Algorithm for Multi-Source Tree Patterns 278
11.4.2 Handling Cycles in Patterns 280
11.4.3 Allowing Pattern Vertex Deletion 281
11.5 Mapping Metabolic Pathways 282
11.6 Implications of Pathway Mappings 285
11.7 Conclusion 291
References 291
12 Graph Structure Analysis and Computational Tractability of Scheduling Problems 295
Sergey Sevastyanov and Alexander Kononov
12.1 Introduction 295
12.2 The Connected List Coloring Problem 296
12.3 Some Practical Problems Reducible to the CLC Problem 298
12.3.1 The Problem of Connected Service Areas 298
12.3.2 No-Idle Scheduling on Parallel Machines 300
12.3.3 Scheduling of Unit Jobs on a p-Batch Machine 301
12.4 A Parameterized Class of Subproblems of the CLC Problem 302
12.5 Complexities of Eight Representatives of Class CLC($\mathcal{X})$ 304
12.5.1 Three NP-Complete Subproblems 304
12.5.2 Five Polynomial-Time Solvable Subproblems 305
12.6 A Basis System of Problems 317
12.7 Conclusion 320
References 322
13 Complexity of Phylogenetic Networks: Counting Cubes in Median Graphs and Related Problems 323
Matjaž Kovše
13.1 Introduction 323
13.2 Preliminaries 324
13.2.1 Median Graphs 325
13.2.1.1 Expansion Procedure 328
13.2.1.2 The Canonical Metric Representation and Isometric Dimension 328
13.3 Treelike Equalities and Euler-Type Inequalities 330
13.3.1 Treelike Eequalities and Euler-Type Inequalities for Median Graphs 330
13.3.1.1 Cube-Free Median Graphs 332
13.3.1.2 $\quad Q_{4}$-Free Median Graphs 333
13.3.1.3 Median Grid Graphs 333
13.3.2 Euler-Type Inequalities for Quasi-Median Graphs 334
13.3.3 Euler-Type Inequalities for Partial Cubes 335
13.3.4 Treelike Equality for Cage-Amalgamation Graphs 336
13.4 Cube Polynomials 337
13.4.1 Cube Polynomials of Cube-Free Median Graphs 339
13.4.2 Roots of Cube Polynomials 340
13.4.2.1 Rational Roots of Cube Polynomials 340
13.4.2.2 Real Roots of Cube Polynomials 341
13.4.2.3 Graphs of Acyclic Cubical Complexes 341
13.4.2.4 Product Median Graphs 342
13.4.3 Higher Derivatives of Cube Polynomials 342
13.5 Hamming Polynomials 343
13.5.1 A Different Type of Hamming Polynomial for Cage-Amalgamation Graphs 344
13.6 Maximal Cubes in Median Graphs of Circular Split Systems 345
13.7 Applications in Phylogenetics 346
13.8 Summary and Conclusion 347
References 348
14 Elementary Elliptic (R, q)-Polycycles 351
Michel Deza, Mathieu Dutour Sikirić, and Mikhail Shtogrin
14.1 Introduction 351
14.2 Kernel Elementary Polycycles 355
14.3 Classification of Elementary (\{2, 3, 4, 5\}, 3)-Polycycles 356
14.4 Classification of Elementary (\{2, 3\}, 4)-Polycycles 359
14.5 Classification of Elementary ($\{2,3\}, 5$)-Polycycles 359
14.6 Conclusion 361
Appendix 1: 204 Sporadic Elementary (\{2,3,4,5\},3)-Polycycles 364
Appendix 2: 57 Sporadic eLementary $(\{2,3\}, 5)$-polycycles 371
References 375
15 Optimal Dynamic Flows in Networks and Algorithms for Finding Them 377
Dmitrii Lozovanu and Maria Fonoberova
15.1 Introduction 377
15.2 Optimal Dynamic Single-Commodity Flow Problems and Algorithms for Solving Them 378
15.2.1 The Minimum Cost Dynamic Flow Problem 378
15.2.2 The Maximum Dynamic Flow Problem 380
15.2.3 Algorithms for Solving the Optimal Dynamic Flow Problems 380
15.2.4 The Dynamic Model with Flow Storage at Nodes 384
15.2.5 The Dynamic Model with Flow Storage at Nodes and Integral Constant Demand-Supply Functions 384
15.2.6 Approaches to Solving Dynamic Flow Problems with Different Types of Cost Functions 386
15.2.7 Determining the Optimal Dynamic Flows in Networks with Transit Functions That Depend on Flow and Time 390
15.3 Optimal Dynamic Multicommodity Flow Problems and Algorithms for Solving Them 392
15.3.1 The Minimum Cost Dynamic Multicommodity Flow Problem 392
15.3.2 Algorithm for Solving the Minimum Cost Dynamic Multicommodity Flow Problem 394
15.4 Conclusion 398
References 398
16 Analyzing and Modeling European R\&D Collaborations: Challenges and Opportunities from a Large Social Network 401
Michael J. Barber, Manfred Paier, and Thomas Scherngell
16.1 Introduction 401
16.2 Data Preparation 402
16.3 Network Definition 404
16.4 Network Structure 405
16.5 Community Structure 407
16.5.1 Modularity 408
16.5.2 Finding Communities in Bipartite Networks 409
16.6 Communities in the Framework Program Networks 409
16.6.1 Topical Profiles of Communities 411
16.7 Binary Choice Model 413
16.7.1 The Empirical Model 413
16.7.2 Variable Construction 415
16.7.2.1 The Dependent Variable 415
16.7.2.2 Variables Accounting for Geographical Effects 415
16.7.2.3 Variables Accounting for FP Experience of Organizations 415
16.7.2.4 Variables Accounting for Relational Effects 416
16.7.3 Estimation Results 417
16.8 Summary 420
References 421
17 Analytic Combinatorics on Random Graphs 425
Michael Drmota and Bernhard Gittenberger
17.1 Introduction 425
17.2 Trees 426
17.2.1 The Degree Distribution 429
17.2.2 The Height 430
17.2.3 The Profile 431
17.2.4 The Width 434
17.3 Random Mappings 436
17.4 The Random Graph Model of Erdős and Rényi 438
17.4.1 Counting Connected Graphs with Wright's Method 438
17.4.2 Emergence of the Giant Component 440
17.5 Planar Graphs 445
References 449
Index 451

Preface

This book, Analysis of Complex Networks: From Biology to Linguistics, presents theoretical and practical results on graph-theoretic methods that are used for modeling as well as structurally investigating complex networks. Instead of focusing exclusively on classical graph-theoretic approaches, its major goal is to demonstrate the importance and usefulness of network-based concepts for scientists in various disciplines. Further, the book advocates the idea that theoretical as well as applied results are needed to enhance our knowledge and understanding of networks in general and as representations for various problems. We emphasize methods for analyzing graphs structurally because it has been shown that especially data-driven areas such as web mining, computational and systems biology, chemical informatics, and cognitive sciences profit tremendously from this field.

The main topics treated in this book can be summarized as follows:

- Information-theoretic methods for analyzing graphs
- Problems in quantitative graph theory
- Structural graph measures
- Investigating novel network classes
- Metrical properties of graphs
- Aspects in algorithmic graph theory
- Analytic methods in graph theory
- Network-based applications.

Analysis of Complex Networks: From Biology to Linguistics is intended for an interdisciplinary audience ranging from applied discrete mathematics, artificial intelligence, and applied statistics to computer science, computational and systems biology, cognitive science, computational linguistics, machine learning, mathematical chemistry, and physics. Many colleagues, whether consciously or unconsciously, provided us with input, help, and support before and during the development of the present book. In particular we would like to thank Andreas Albrecht, Rute Andrade, Gökhan Bakır, Alexandru T. Balaban, Subhash Basak, Igor Bass, Natália Bebiano,

Danail Bonchev, Stefan Borgert, Mieczyslaw Borowiecki, Michael Drmota, Abdol-Hossein Esfahanian, Bernhard Gittenberger, Earl Glinn, Elena Konstantinova, Dmitrii Lozovanu, Alexander Mehler, Abbe Mowshowitz, Max Mühlhäuser, Arcady Mushegian, Paolo Oliveira, João da Providência, Host Sachs, Heinz Georg Schuster, Helmut Schwegler, Chris Seidel, Fred Sobik, Doru Stefanescu, Thomas Stoll, John Storey, Kurt Varmuza, Bohdan Zelinka, and all the coauthors of this book and apologize to all those whose names have been mistakenly omitted. We would also like to thank our editors Andreas Sendtko and Gregor Cicchetti from Wiley-VCH; they were always available and extremely helpful. Last but not least, we would like to thank our families for their support and encouragement throughout the writing of the book.

Finally, we hope that this book helps the reader to understand that the presented field is multifaceted in depth and breadth and as such is inherently interdisciplinary. This is important to realize because it allows one to pursue a problem-oriented rather than field-oriented approach to efficiently tackling state-of-the-art problems in modern sciences.

Vienna and Belfast,
Matthias Dehmer
March 2009
Frank Emmert-Streib

List of Contributors

Michael J. Barber

Austrian Research Centers - ARC
Division Systems Research
Donau-City-Strasse 1
1220 Vienna
Austria

Danail Bonchev

Virginia Commonwealth University
Center for the Study of
Biological Complexity
P.O. Box 842030

Richmond, VA 23284-2030
USA

Horst Bunke

University of Bern
Institute of Computer Science
and Applied Mathematics
Neubrückstrasse 10
3012 Bern
Switzerland
Qiong Cheng
Georgia State University
Department of Computer Science
Atlanta, GA 30303
USA

Michel Deza

École Normale Supérieure
45 rue d'Ulm
75005 Paris
France
and
Japan Advanced Institute of Science and Technology
1-1 Asahidai
Nomi
Ishikawa
Japan

Dimitris Dimitropoulos

European Bioinformatics Institute
Genome Campus, Hinxton
Cambridge CB10 1SD
UK

Michael Drmota

Vienna University of Technology
Institute of Discrete Mathematics
and Geometry
Wiedner Hauptstrasse 8/104
1040 Vienna
Austria

Ernesto Estrada

University of Strathclyde
Institute of Complex Systems at Strathclyde
Department of Physics and
Department of Mathematics
Glasgow G1 1XH
UK
Maria Fonoberova
AIMdyn, Inc.
Santa Barbara, CA 93101
USA
Bernhard Gittenberger
Vienna University of Technology
Institute of Discrete Mathematics and Geometry
Wiedner Hauptstrasse 8/104
1040 Vienna
Austria

Adel Golovin

European Bioinformatics Institute
Genome Campus, Hinxton
Cambridge CB10 1SD
UK

Ivan Gutman

University of Kragujevac
Faculty of Science
P.O. Box 60

34000 Kragujevac
Serbia

M. John

European Bioinformatics Institute
Genome Campus, Hinxton
Cambridge CB10 1SD
UK

Marcus Kaiser

Newcastle University
School of Computing Science
Newcastle-upon-Tyne NE1 7RU
UK
and
Newcastle University
Institute of Neuroscience
Newcastle-upon-Tyne NE2 4HH
UK

Alexander Kononov

Russian Academy of Sciences
Sobolev Institute of Mathematics
Novosibirsk
Russia

Matjaž Kovše

University of Maribor
Faculty of Natural Sciences
and Mathematics
Koroška cesta 160
2000 Maribor
Slovenia
and
Institute of Mathematics,
Physics and Mechanics
Jadranska 19
1000 Ljubljana
Slovenia

Eugene Krissinel

European Bioinformatics Institute
Genome Campus, Hinxton
Cambridge CB10 1SD
UK

Xueliang Li

Nankai University
Center for Combinatorics
LPMC-TJKLC
Tianjin 300071
P.R. China

Dmitrii Lozovanu
Moldovan Academy of Sciences
Institute of Mathematics
and Computer Science
Academiei str., 5
Chisinau, MD-2005
Moldova

Alexander Mehler

Goethe-Universität
Frankfurt am Main
Abteilung für geisteswis-
senschaftliche Fachinformatik/
Department for Computing in the Humanities
Georg-Voigt-Strasse 4
60325 Frankfurt am Main
Germany

Valia Mitsou

The City University of New York
Doctoral Program in Computer
Science
365 Fifth Avenue
New York, NY 10016
USA

Abbe Mowshowitz

The City College of New York
Department of Computer Science
Convent Avenue at 138th Street
New York, NY 10031
USA
and
The City University of New York
Doctoral Program in Computer
Science
365 Fifth Avenue
New York, NY 10016
USA

Manfred Paier

Austrian Research Centers - ARC
Division Systems Research
Donau-City-Strasse 1
1220 Vienna
Austria

Christian M. Reidys

Nankai University
Center for Combinatorics
LPMC-TJKLC
Tianjin 300071
P.R. China

Kaspar Riesen

Universtity of Bern
Institute of Computer Science and
Applied Mathematics
Neubrückstrasse 10
3012 Bern
Switzerland

Thomas Scherngell

Austrian Research Centers - ARC
Division Systems Research
Donau-City-Strasse 1
1220 Vienna
Austria

Sergey Sevastyanov

Russian Academy of Sciences
Sobolev Institute of Mathematics
Novosibirsk
Russia

Mikhail Shtogrin
Steklov Mathematical Institute
Gubkina str. 8
117966 Moscow
Russia

Mathieu Dutour Sikirić

Institute Rudjer Bošković
Group for Satellite Oceanography 10000 Zagreb
Croatia
Jennifer Simonotto
Newcastle University
School of Computing Science
Newcastle-upon-Tyne NE1 7RU
UK
and
Newcastle University
Institute of Neuroscience
Newcastle-upon-Tyne NE2 4HH
UK

Stefan Thurner
Medical University of Vienna
Complex Systems Research Group
Währinger Gürtel 18-20
1090 Vienna
Austria
and
Santa Fe Institute
1399 Hyde Park Road
Santa Fe, NM 87501
USA

Alexander Zelikovsky

Georgia State University
Department of Computer Science
Atlanta, GA 30303
USA
Jianbin Zhang
Nankai University
Center for Combinatorics
LPMC-TJKLC
Tianjin 300071
P.R. China

1
 Entropy, Orbits, and Spectra of Graphs

Abbe Mowshowitz and Valia Mitsou

1.1
 Introduction

This chapter is concerned with the notion of entropy as applied to graphs for the purpose of measuring complexity.

Most studies of complexity focus on the execution time or space utilization of algorithms. The execution time of an algorithm is proportional to the number of operations required to produce the output as a function of the input size. Space utilization measures the amount of storage required for computation. Both time and space complexity measure the resources required to perform a computation for a specified input. Measuring the complexity of a mathematical object such as a graph is an exercise in structural complexity. This type of complexity does not deal directly with the costs of computation; rather, it offers insight into the internal organization of an object. The structural complexity of a computer program, for example, may indicate the difficulty of modifying or maintaining the program.

One approach to structural complexity involves the length of a code needed to specify an object uniquely (Kolmogorov complexity). The complexity of a string, for example, is the length of the string's shortest description in a given description language [27]. The approach taken in this chapter centers on finding indices of structure, based on Shannon's entropy measure. Unlike Kolmogorov complexity, such an index captures a particular feature of the structure of an object. The symmetry structure of a graph provides the basis for the index explored here.

The choice of symmetry is dictated by its utility in many scientific disciplines. D'Arcy Thompson's classic work [25] showed the relevance of symmetry in the natural world. Structure-preserving transformations based on symmetry play a role in physics, chemistry, and sociology as well as in biology. A symmetry transformation of a graph is typically an edge-preserving bijection of the vertices, i.e., an isomorphism of the graph onto itself. Such a transformation is called an automorphism. If the vertices of the graph are labeled, an automorphism can be viewed as a permutation of the vertices that preserves adjacencies. The set of all automorphisms forms a group
whose orbits provide the foundation for applying Shannon's entropy measure.

The collection of orbits of the automorphism group constitutes a partition and thus defines an equivalence relation on the vertices of a graph. Two vertices in the same orbit are similar in some sense. In a social network, collections of similar vertices can be used to define communities with shared attributes. The identification of such communities is of interest in applications such as advertising, intelligence, and sensor networks.

Measures of structural complexity are useful for classifying graphs and networks represented by graphs. One is led to conjecture, for example, that the more symmetric a network is (or the lower its automorphism-based complexity is), the more vulnerable to attack it will be. These related issues are explored in [19] in relation to sensor networks modeled as dynamic distributed federated databases [2].

In what follows we define the measure of graph complexity, discuss algorithms and heuristics for computing it, and examine its relationship to another prominent entropy measure [11] defined on graphs.

1.2
 Entropy or the Information Content of Graphs

Given a decomposition of the vertices or edges of a graph, one can construct a finite probability scheme [10] and compute its entropy. A finite probability scheme assigns a probability to each subset in the decomposition. Such a numerical measure can be seen to capture the information contained in some particular aspect of the graph structure.

The orbits of the automorphism group of a graph constitute a decomposition of the vertices of the graph. As noted above, this decomposition captures the symmetry structure of the graph, and the entropy of the finite probability scheme obtained from the automorphism group provides an index of the complexity of the graph relative to the symmetry structure.

Let $G=(V, E)$ be a graph with vertex set $V($ with $|V|=n)$ and edge set E. The automorphism group of G, denoted by $\operatorname{Aut}(G)$, is the set of all adjacencypreserving bijections of V. Let $\left\{V_{i} \mid 1 \leq i \leq k\right\}$ be the collection of orbits of $\operatorname{Aut}(G)$, and suppose $\left|V_{i}\right|=n_{i}$ for $1 \leq i \leq k$. The entropy or information content of G is given by the following formula ([13]):

$$
I_{a}(G)=-\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n} .
$$

For example, the orbits of the graph of Figure 1.1 are $\{1\},\{2,5\}$, and $\{3,4\}$, so the information content of the graph is $I_{a}(G)=-\frac{1}{5} \log \frac{1}{5}-2\left(\frac{2}{5} \log \frac{2}{5}\right)=$ $\log 5-\frac{4}{5} \log 2$.

Figure 1.1 Information content of a graph.
Clearly, $I_{a}(G)$ satisfies $0 \leq I_{a}(G) \leq \log n$, where the minimum value occurs for graphs with the transitive automorphism group, such as the cycle C_{n} and the complete graph K_{n} on n vertices; the maximum is achieved for graphs with the identity group. The smallest nontrivial, undirected graph with an identity group is shown in Figure 1.2.

Figure 1.2 Smallest nontrivial graph with identity group.

The idea of measuring the information content of a graph was first presented in [21]; it was formalized in [26] and further developed in [13-16]. $I_{a}(G)$ is a function of the partition of the vertices of G determined by the orbits of $\operatorname{Aut}(G)$. As such the measure captures the structure of vertex similarity. In the case of organic molecules, the lower the information content (or the greater the symmetry), the fewer the possibilities for different interactions with other molecules. If all the atoms are in the same equivalence class, then it makes no difference which one interacts with an atom of another molecule. The same can be said for social networks. Any member of an equivalence class of similar individuals can serve as a representative of the class.

The utility of the measure $I_{a}(G)$ can be seen from the following special case. The cartesian product $G \times H$ of graphs G and H is defined by $V(G \times$ $H)=V(G) \times V(H)$ and for $(a, b),(c, d) \in V(G \times H),[(a, b),(c, d)] \in E(G \times H)$ if $a=c$ and $[b, d] \in E(H)$ or if $b=d$ and $[a, c] \in E(G)$.

The hypercube Q_{n} with 2^{n} vertices is defined recursively by $Q_{1}=K_{2}$ and for $n \geq 2, Q_{n}=K_{2} \times Q_{n-1}$. Since Q_{n} has a transitive automorphism group, $I\left(Q_{n}\right)=0$. The hypercube Q_{n} offers a desirable configuration for parallel computation because processors must exchange messages in executing an algorithm, and the distance between any two vertices (representing processors) in the hypercube is at most n.

By contrast, an $m \times m$ mesh configuration (formed by taking the cartesian product of two isomorphic line graphs, each with m vertices) consists of m^{2} vertices and has a maximum distance of 2 m . A $2^{\frac{n}{2}} \times 2^{\frac{n}{2}}$ mesh for even n having the same number of vertices as Q_{n} has a maximum distance between vertices of $2\left(2^{\frac{n}{2}}-1\right)$. At the same time the information content of such a mesh is $\frac{n}{2}-1$ [13].

This example suggests that good graph configurations for parallel computation score low on information complexity or, alternatively, are highly symmetric. Information complexity is a coarse filter, but it is useful nonetheless.

Computing the group-based entropy or information content of a graph requires knowledge of the orbits of the automorphism group. An obvious approach to computing the orbits is to determine the automorphism group and then to observe the action of automorphisms on the vertices of the graph. This is not an efficient method in general, but the algebraic structure of a graph can be exploited to find the automorphism group efficiently in some cases. The general question of determining the automorphism group is taken up in Section 1.3; heuristics for finding the orbits of $\operatorname{Aut}(G)$ are surveyed in Section 1.4.

1.3
 Groups and Graph Spectra

Let $G=(V, E)$ be a graph with vertex set V of size n, edge set E of size m, and automorphism group $\operatorname{Aut}(G)$. (See [3] for general coverage of algebraic aspects of graph theory and [12] for specific treatment of the automorphism group of a graph.) Since automorphisms are in effect relabelings of the vertices, they can be represented as permutation matrices. Let $A=A(G)$ be the adjacency matrix of G. Then a permutation matrix P is an automorphism of G if and only if $P^{T} A P=A$ or $P A=A P$.

Thus, one way to construct the automorphism group of a graph G is to solve the matrix equation $A X=X A$ for permutation matrices X. The Jordan canonical form of A as a matrix over the reals can be used to obtain the general solution X. Taking G to be undirected and thus A symmetric and letting $\tilde{A}=U^{T} A U$ be the Jordan form of A, we have $\left(U \tilde{A} U^{T}\right) X=X\left(U \tilde{A} U^{T}\right)$ or $\tilde{A} \tilde{X}=\tilde{X} \tilde{A}$, where $\tilde{X}=U^{T} X U$.

Thus the construction of $\operatorname{Aut}(G)$ requires computing the orthogonal matrix U and finding all \tilde{X} that commute with \tilde{A}. The matrix \tilde{X} depends on the elementary divisors of A. With no additional information, this method of constructing the group is not too promising since it is necessary to find all those solutions that are permutation matrices.

In the special case where A has all distinct eigenvalues, \tilde{X} has the form of a diagonal matrix with arbitrary parameters on the main diagonal. In this
case, $X=U \tilde{X} U^{T}$. Clearly $U \tilde{X} U^{T}$ is symmetric, so if it is a permutation matrix, it must correspond to a product of disjoint transpositions. This means that every element of $\operatorname{Aut}(G)$ has order 2 and the group is therefore abelian [12, 17]. The converse is not true since, for example, the graph G of Figure 1.3 has the characteristic polynomial $(x+1)^{2}\left(x^{3}-2 x^{2}-5 x+2\right)$.

Figure 1.3 $\operatorname{Aut}(G)$ is abelian, every element is of order 2, but the characteristic polynomial has repeated roots.

An analogous result holds for digraphs. Using the same analysis, Chao [5] showed that if the adjacency matrix of a digraph has all distinct eigenvalues, then its automorphism group is abelian. However, the automorphisms need not be of order 2. For example, the adjacency matrix of digraph D in Figure 1.4 has the characteristic polynomial $\left(x^{3}-1\right)=(x-1)\left(x^{2}+x+1\right)$ but the permutation (123) is an automorphism of D.

Figure 1.4 $\operatorname{Aut}(D)=\langle(123)\rangle$, abelian but not every element has order 2.

Both of these results are special cases of the following:
Theorem 1.1 Suppose the adjacency matrix $A=A(D)$ of a digraph D is nonderogatory with respect to a field F, i.e., its characteristic polynomial coincides with its minimal polynomial over F. Then $\operatorname{Aut}(D)$ is abelian.

Proof. The result is an immediate consequence of the fact that under the hypothesis of the theorem, every matrix over F commuting with A can be expressed as a polynomial in A.

In particular, if A has all distinct eigenvalues, it is non-derogatory over the complex number field. To see that every automorphism of an (undirected) graph has order 2 under this condition, it suffices to observe that any polynomial in a symmetric matrix is again symmetric.

If the adjacency matrix fails to be nonderogatory, then some leverage in constructing the automorphism group can be obtained by taking advantage of the fact that the matrix consists of zeroes and ones. In particular, the adjacency matrix can be interpreted as a matrix over $G F(2)$, thus reducing the
solution space of the matrix equation $A X=X A$ to zero-one matrices at the outset.

Thus suppose $A=A(G)$ (for a graph G) is a matrix over $G F(2)$. To demonstrate a method for constructing automorphisms, we revisit the special case of A being nonderogatory over $G F(2)$.

In this case we know that:

1. $M \in \operatorname{Aut}(G)$ implies $M^{2}=I$ (the identity matrix) and
2. $M \in \operatorname{Aut}(G)$ implies $M=\sum_{i=0}^{n-1} a_{i} A^{i}$.

So if $M \in \operatorname{Aut}(G)$, then we can write

$$
M=\sum_{i=0}^{n-1} a_{i} A^{i}
$$

and

$$
I=M^{2}=\left(\sum_{i=0}^{n-1} a_{i} A^{i}\right)^{2}=\sum_{i=0}^{n-1} a_{i}\left(A^{i}\right)^{2} .
$$

Thus $\left\{M \mid M=\sum_{i=0}^{n-1} a_{i} A^{i}\right.$ and $\left.M^{2}=I\right\} \supseteq \operatorname{Aut}(G)$.
Constructing the group in this case reduces to finding all polynomials in A^{2} that are equal to the identity matrix. These have the form

$$
p(A) \mu_{A^{2}}\left(A^{2}\right)+I
$$

where $\mu_{A^{2}}(x)$ is the minimal polynomial of A^{2}.
Thus, if $M^{2}=I$, then $M=p(A) \mu_{A^{2}}(A)+I$ for some polynomial $p(x)$, since $\left(p(A) \mu_{A^{2}}(A)+I\right)^{2}=\left(p\left(A^{2}\right) \mu_{A^{2}}\left(A^{2}\right)+I\right)=0+I=I$.

The characteristic and minimal polynomials of graph G in Figure 1.5 coincide over the real numbers, i.e., $\phi(x)=\mu(x)=\left(x^{3}-x^{2}-6 x+2\right) x(x+1)$ and over $G F(2)$ with $\phi(x)=\mu(x)=x^{3}(x+1)^{2}$. Hence, the adjacency matrix of G is nonderogatory over both fields. The minimal polynomial of A^{2} is $\mu_{A^{2}}(x)=x^{2}(x+1)$, which is of degree 3 .

Therefore, $M \in \operatorname{Aut}(G)$ implies $M=\mu_{A^{2}}(A)\left(b_{0} I+b_{1} A\right)+I$. There are four possible solutions for M corresponding to the four possible values for b_{0} and b_{1}. All of these solutions, namely,

$$
I, A^{3}+A^{2}+I, A^{4}+A^{3}+I, A^{4}+A^{2}+I,
$$

turn out to be permutation matrices so that the automorphism group of G contains precisely these four elements.

Figure 1.5 Computation of automorphisms over GF(2).

Note that $\mu_{A^{2}}^{2}(x)=x \phi_{A}(x)$ if n is odd, or $\mu_{A^{2}}^{2}(x)=\phi_{A}(x)$ if n is even. Hence, if $m=\operatorname{deg} \mu_{A^{2}}(x)$ and M satisfies $A M=M A$ and $M^{2}=I$, then $M=\mu_{A^{2}}(x) \sum_{i=0}^{n-m-1} b_{i} A^{i}+I$, where $b_{i} \in G F(2)$.

To determine $\operatorname{Aut}(G)$, it suffices to examine $2^{n-m-1} \approx 2^{n / 2}$ values of the parameters b_{i}, to pick out the permutation matrices (i.e., elements of $\left.\operatorname{Aut}(G)\right)$.

However, some further simplification is possible. Let $Q=\mu_{A^{2}}(A)$ and $Z(b)=\sum_{i=0}^{n-m-1} b_{i} A^{i}$. Then $M=Q Z(b)+I$. Multiplying by M on the right gives $M Q=Q^{2} Z(b)+Q=Q$. Thus, if M is an automorphism of G, then $M Q=Q$, which means that similar vertices of G correspond to identical rows of Q. In addition, the identical rows must occur in minimal pairs, which gives a sufficient condition for $\operatorname{Aut}(G)$ to be trivial.

If $\mu_{A^{2}}(A)$ has all distinct rows or no minimal pairs of identical rows, then $\operatorname{Aut}(G)$ is trivial. The converse is not true. Both graphs in Figure 1.6 have trivial groups, but $\mu_{A^{2}}\left(A\left(G_{1}\right)\right)$ has all distinct rows while $\mu_{A^{2}}\left(A\left(G_{2}\right)\right)$ has three pairs of identical rows.

Theorem 1.2 [18]; see also [6]. Let D be a digraph and $A=A(D)$ be its adjacency matrix. If $\phi_{A}(x)$ is irreducible over the integers, then $\operatorname{Aut}(D)$ is trivial.

$$
\mu_{A^{2}}(A) \text { has } 3 \text { pairs }
$$

of identical rows

$$
\mu_{A^{2}}(A) \text { has all }
$$ distinct rows

Figure 1.6 Identity graphs.

Proof. Suppose there is an $M(\neq I) \in \operatorname{Aut}(D)$, and that the permutation corresponding to M consists of r disjoint cycles of lengths k_{1}, \ldots, k_{r}. Let z be a nonzero vector consisting of k_{1} components equal to c_{1}, followed by k_{2} components equal to c_{2}, followed by $\ldots k_{r}$ components equal to c_{r}. Consider $A z=x z$. This gives a system of r equations in the r unknowns $c_{1}, c_{2}, \ldots, c_{r}$. Thus $A z=x z$ reduces to $B c=x c$, where $c=\left(c_{1}, c_{2}, \ldots, c_{r}\right)^{T}$. Now z and c are eigenvectors of A and B, respectively, and $\operatorname{det}(B-x c) \mid \operatorname{det}(A-x z)$, where $\operatorname{deg}(\operatorname{det}(B-x c))<\operatorname{deg}(\operatorname{det}(A-x z))$. Hence, $\phi_{A}(x)$ has a nontrivial factorization, which completes the proof.

Figure 1.7 shows a digraph (D) and graph (G) (with the smallest number of vertices) satisfying the condition of the theorem. $\phi_{A(D)}(x)=x^{3}-x-1$ and $\phi_{A(G)}(x)=x^{6}-6 x^{4}-2 x^{3}+7 x^{2}+2 x-1$.

$$
\varphi_{A}(x)=x^{3}-x-1
$$

Figure 1.7 Smallest graph and digraph whose characteristic polynomials are irreducible over the integers.

Note that the theorem also holds if $\phi_{A}(x)$ is taken as a polynomial over a finite field. For example, over $G F(2), x^{3}-x-1$ is irreducible, but $x^{6}-6 x^{4}-$ $2 x^{3}+7 x^{2}+2 x-1=x^{6}+x^{2}+1=\left(x^{3}+x+1\right)^{2}$.

For graphs this criterion is not very useful since the characteristic polynomial of any graph is reducible over $G F(2)$. There are regular graphs and trees that have the trivial group, but the characteristic polynomial of any regular graph has a linear factor, as does the characteristic polynomial of a tree with an odd number of vertices.

The foregoing discussion suggests the utility of trying to relate the factorization of the characteristic polynomial to the structure of the automorphism group. For example, if G is a graph with an even number n of vertices and adjacency matrix $A=A(G)$, and if $\phi_{A}(x)=\alpha(x) \beta(x)$ with $\operatorname{deg} \alpha=\operatorname{deg} \beta$ and both α and β are irreducible, then either $\operatorname{Aut}(G)$ is trivial or it is of order 2 and consists of the identity and (with a suitable labeling) the permutation $(1,2)(3,4) \cdots(n / 2, n / 2)$.

Table 1.1 contains a list of all 156 graphs on six vertices, showing factored characteristic polynomials and the sizes of their respective automorphism group orbits. Each graph is defined by its list of edges, shown as a sequence of pairs of numbers referring to a standard template with the vertices numbered from 1 to 6 in clockwise order. The last column shows the sizes of the orbits. Complements are not given explicitly, but their polynomials are listed. The orbits of G and \bar{G} are the same.

Table 1.1 Characteristic polynomials and orbit sizes of all graphs on six vertices.

G: \# edges: list	Polynomial of G	Polynomial of \bar{G}	Orbit sizes
0 :	x^{6}	$(x+1)^{5}(x-5)$	6
3: 162345	$(x+1)^{3}(x-1)^{3}$	$x^{3}(x+2)^{2}(x-4)$	6
$\begin{aligned} & \text { 6: } 12162334 \\ & 4556 \end{aligned}$	$(x-1)^{2}(x+1)^{2}(x+2)(x-2)$	$x^{2}(x-1)(x+2)^{2}(x-3)$	6
$\begin{aligned} & \text { 6: } 15162324 \\ & 3456 \end{aligned}$	$(x-2)^{2}(x+1)^{4}$	$x^{4}(x-3)(x+3)$	6
3:151656	$x^{3}(x+1)^{2}(x-2)$	$x^{2}(x+1)^{2}\left(x^{2}-2 x-9\right)$	33
1:12	$x^{4}(x-1)(x+1)$	$x(x+1)^{3}\left(x^{2}-3 x-8\right)$	24
4: 12152445	$x^{4}(x-2)(x+2)$	$(x-1)(x+1)^{3}\left(x^{2}-2 x-7\right)$	24
4:12163445	$x^{2}\left(x^{2}-2\right)^{2}$	$(x+1)^{2}\left(x^{4}-2 x^{3}-8 x^{2}+6 x-1\right)$	24
$\begin{aligned} & \text { 5: } 12151623 \\ & 24 \end{aligned}$	$x^{2}(x-1)(x+1)(x-2)(x+2)$	$(x-1)(x+2)(x+1)^{2}\left(x^{2}-3 x-2\right)$	24
$\begin{aligned} & \text { 5: } 14162345 \\ & 56 \end{aligned}$	$x^{2}(x-1)(x+1)(x-2)(x+2)$	$x(x-1)(x+1)^{2}\left(x^{2}-x-8\right)$	24
$\begin{aligned} & \text { 6: } 12141524 \\ & 2545 \end{aligned}$	$x^{2}(x-3)(x+1)^{3}$	$x^{3}(x+1)\left(x^{2}-x-8\right)$	24
$\begin{aligned} & \text { 7: } 12162325 \\ & 344556 \end{aligned}$	$(x+1)(x-1)\left(x^{2}-2 x-1\right)\left(x^{2}+2 x-1\right)$	$x(x+2)\left(x^{2}-2\right)\left(x^{2}-2 x-2\right)$	24
$\begin{aligned} & \text { 7: } 14151623 \\ & 454656 \end{aligned}$	$(x+1)^{4}(x-3)(x-1)$	$x^{4}\left(x^{2}-8\right)$	24
$\begin{aligned} & \text { 7: } 15162324 \\ & 344556 \end{aligned}$	$(x+1)^{2}\left(x^{2}-3\right)\left(x^{2}-2 x-1\right)$	$x^{2}\left(x^{2}-2 x-2\right)\left(x^{2}+2 x-2\right)$	24
2: 1256	$x^{2}(x-1)^{2}(x+1)^{2}$	$x^{2}(x+1)(x+2)\left(x^{2}-3 x-6\right)$	222
3: 121623	$x^{2}\left(x^{2}-x-1\right)\left(x^{2}+x-1\right)$	$(x+1)\left(x^{2}+x-1\right)\left(x^{3}-2 x^{2}-8 x-3\right)$	222
$\begin{aligned} & \text { 6: } 14151623 \\ & 4556 \end{aligned}$	$x(x-1)(x+1)^{2}\left(x^{2}-x-4\right)$	$x^{2}(x+1)\left(x^{3}-x^{2}-8 x+4\right)$	222
$\begin{aligned} & \text { 7: } 13162326 \\ & 344556 \end{aligned}$	$x\left(x^{2}+x-1\right)\left(x^{3}-x^{2}-5 x+4\right)$	$(x-1)(x+1)\left(x^{2}+x-1\right)\left(x^{2}-x-5\right)$	222
$\begin{aligned} & \text { 7: } 12152324 \\ & 254556 \end{aligned}$	$x^{2}\left(x^{2}+x-1\right)\left(x^{2}-x-5\right)$	$(x+1)\left(x^{2}+x-1\right)\left(x^{3}-2 x^{2}-4 x+1\right)$	222
$\begin{aligned} & \text { 5: } 12162445 \\ & 56 \end{aligned}$	$x(x-2)\left(x^{2}+x-1\right)^{2}$	$\left(x^{2}+x-1\right)^{2}\left(x^{2}-2 x-5\right)$	15
$\begin{aligned} & 5: 12232425 \\ & 26 \end{aligned}$	$x^{4}\left(x^{2}-5\right)$	$x(x-4)(x+1)^{4}$	15
2: 1216	$x^{4}\left(x^{2}-1\right)$	$(x+1)^{3}\left(x^{3}-3 x^{2}-7 x+3\right)$	123
3: 121516	$x^{4}\left(x^{2}-3\right)$	$(x+1)^{3}\left(x^{3}-3 x^{2}-6 x+4\right)$	123
4: 15162356	$x(x+1)(x-2)(x+1)^{3}$	$x^{3}\left(x^{3}-11 x-12\right)$	123
4: 12151634	$x^{2}(x+1)(x-1)\left(x^{2}-3\right)$	$x(x+1)^{2}\left(x^{3}-2 x^{2}-8 x+4\right)$	123

Table 1.1 (continued).

G: \# edges: list	Polynomial of G	Polynomial of \bar{G}	Orbit sizes
$\begin{aligned} & 5: 15162334 \\ & 56 \end{aligned}$	$x(x-2)(x+1)^{2}\left(x^{2}-2\right)$	$x^{2}(x+1)\left(x^{3}-x^{2}-9 x+3\right)$	123
$\begin{aligned} & 6: 12152324 \\ & 3545 \end{aligned}$	$x^{4}\left(x^{2}-6\right)$	$(x+1)^{3}\left(x^{3}-3 x^{2}-3 x+7\right)$	123
$\begin{aligned} & \text { 6: } 12131415 \\ & 1656 \end{aligned}$	$x^{2}(x+1)\left(x^{3}-x^{2}-5 x+3\right)$	$x^{2}(x+1)^{2}\left(x^{2}-2 x-6\right)$	123
$\begin{aligned} & \text { 7: } 12141516 \\ & 254556 \end{aligned}$	$x^{3}(x-3)(x+1)(x+2)$	$x(x-1)^{2}\left(x^{3}-2 x^{2}-5 x+4\right)$	123
4: 12141516	$x^{4}(x-2)(x+2)$	$(x+1)^{3}\left(x^{3}-3 x^{2}-5 x+3\right)$	114
$\begin{aligned} & 7: 15162634 \\ & 354556 \end{aligned}$	$(x-1)(x+1)^{2}\left(x^{3}-x^{2}-5 x+1\right)$	$x^{3}(x+2)\left(x^{2}-2 x-4\right)$	114
3: 162356	$x^{2}(x+1)(x-1)\left(x^{2}-2\right)$	$x(x+1)\left(x^{4}-x^{3}-11 x^{2}-7 x+4\right)$	1122
4: 12151656	$x^{2}(x+1)\left(x^{3}-x^{2}-3 x+1\right)$	$x(x+1)(x+2)\left(x^{3}-3 x^{2}-4 x+2\right)$	1122
4: 12162356	$x^{2}(x-1)(x+1)\left(x^{2}-3\right)$	$x(x+1)(x+2)\left(x^{3}-3 x^{2}-4 x+4\right)$	1122
$\begin{aligned} & \text { 5: } 12151645 \\ & 56 \end{aligned}$	$x^{2}\left(x^{2}-x-3\right)\left(x^{2}+x-1\right)$	$(x+1)\left(x^{2}+x-1\right)\left(x^{3}-2 x^{2}-6 x+1\right)$	1122
$\begin{aligned} & 5: 12141516 \\ & 56 \end{aligned}$	$x^{2}(x+1)\left(x^{3}-x^{2}-4 x+2\right)$	$x(x+1)\left(x^{4}-x^{3}-9 x^{2}-5 x+4\right)$	1122
$\begin{aligned} & 5: 12151623 \\ & 45 \end{aligned}$	$(x-1)(x+1)\left(x^{4}-4 x^{2}+1\right)$	$x(x+2)\left(x^{4}-2 x^{3}-6 x^{2}+2 x+4\right)$	1122
$\begin{aligned} & \text { 5: } 15162345 \\ & 56 \end{aligned}$	$(x-1)(x+1)^{2}\left(x^{3}-x^{2}-3 x+1\right)$	$x^{2}\left(x^{4}-1 x^{2}-8 x+4\right)$	1122
$\begin{aligned} & \text { 6: } 12151624 \\ & 4556 \end{aligned}$	$x^{2}(x+2)\left(x^{3}-2 x^{2}-2 x+2\right)$	$(x-1)(x+1)\left(x^{4}-8 x^{2}-8 x+1\right)$	1122
$\begin{aligned} & 6: 13162334 \\ & 4556 \end{aligned}$	$(x-1)\left(x^{2}+x-1\right)\left(x^{3}-4 x-1\right)$	$(x+2)\left(x^{2}+x-1\right)\left(x^{3}-3 x^{2}-x+2\right)$	1122
$\begin{aligned} & 6: 12131416 \\ & 4556 \end{aligned}$	$x^{2}\left(x^{4}-6 x^{2}+4\right)$	$(x-1)(x+1)^{2}\left(x^{3}-x^{2}-7 x-3\right)$	1122
4: 12162345	$(x-1)(x+1)\left(x^{2}-x-1\right)\left(x^{2}+x-1\right)$	$x\left(x^{2}+x-1\right)\left(x^{3}-x^{2}-9 x-4\right)$	222
$\begin{aligned} & 5: 12141524 \\ & 45 \end{aligned}$	$x^{3}(x+1)\left(x^{2}-x-4\right)$	$x(x+1)^{2}\left(x^{3}-2 x^{2}-7 x+4\right)$	222
$\begin{aligned} & \text { 5: } 12163445 \\ & 56 \end{aligned}$	$\left(x^{3}-x^{2}-2 x+1\right)\left(x^{3}+x^{2}-2 x-1\right)$	$\left(x^{3}-2 x^{2}-5 x+1\right)\left(x^{3}+2 x^{2}-x-1\right)$	222
$\begin{aligned} & \text { 6: } 12141634 \\ & 4556 \end{aligned}$	$\left(x^{3}-2 x^{2}-x+1\right)\left(x^{3}+2 x^{2}-x-1\right)$	$\left(x^{3}-x^{2}-6 x-3\right)\left(x^{3}+x^{2}-2 x-1\right)$	222
$\begin{aligned} & \text { 6: } 12151623 \\ & 2545 \end{aligned}$	$\left(x^{2}-2 x-1\right)\left(x^{2}+x-1\right)^{2}$	$\left(x^{2}-2 x-4\right)\left(x^{2}+x-1\right)^{2}$	1122
$\begin{aligned} & \text { 6: } 12151623 \\ & 2456 \end{aligned}$	$x(x+1)\left(x^{4}-x^{3}-5 x^{2}+3 x+4\right)$	$x(x+1)\left(x^{4}-x^{3}-8 x^{2}-2 x+6\right)$	1122
$\begin{aligned} & \text { 7: } 12151624 \\ & 264556 \end{aligned}$	$x^{2}(x+1)\left(x^{3}-x^{2}-6 x+2\right)$	$x(x+1)\left(x^{4}-x^{3}-7 x^{2}+x+8\right)$	1122
$\begin{aligned} & 7: 12141516 \\ & 244556 \end{aligned}$	$x\left(x^{2}+x-1\right)\left(x^{3}-x^{2}-5 x-2\right)$	$\left(x^{2}+x-1\right)\left(x^{4}-x^{3}-6 x^{2}-x+1\right)$	1122
$\begin{aligned} & 7: 12162324 \\ & 344556 \end{aligned}$	$\left(x^{2}+x-1\right)\left(x^{4}-x^{3}-5 x^{2}+2 x+4\right)$	$\left(x^{2}+x-1\right)\left(x^{4}-x^{3}-6 x^{2}+3 x+1\right)$	1122
$\begin{aligned} & 7: 14162324 \\ & 344556 \end{aligned}$	$x(x+1)\left(x^{4}-x^{3}-6 x^{2}+4 x+4\right)$	$x(x-1)(x+1)\left(x^{3}-7 x-4\right)$	1122
$\begin{aligned} & 7: 12131524 \\ & 344556 \end{aligned}$	$x^{2}\left(x^{4}-7 x^{2}+4\right)$	$(x+1)^{2}\left(x^{4}-2 x^{3}-5 x^{2}+6 x+4\right)$	1122
$\begin{aligned} & \text { 7: } 12141623 \\ & 244556 \end{aligned}$	$x^{2}(x-1)(x+2)\left(x^{2}-x-4\right)$	$(x+1)(x-1)(x+2)\left(x^{3}-2 x^{2}-3 x+2\right)$	1122

