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Preface

This book, Analysis of Complex Networks: From Biology to Linguistics, presents
theoretical and practical results on graph-theoretic methods that are used for
modeling as well as structurally investigating complex networks. Instead of
focusing exclusively on classical graph-theoretic approaches, its major goal
is to demonstrate the importance and usefulness of network-based concepts
for scientists in various disciplines. Further, the book advocates the idea that
theoretical as well as applied results are needed to enhance our knowledge
and understanding of networks in general and as representations for various
problems. We emphasize methods for analyzing graphs structurally because
it has been shown that especially data-driven areas such as web mining, com-
putational and systems biology, chemical informatics, and cognitive sciences
profit tremendously from this field.

The main topics treated in this book can be summarized as follows:

• Information-theoretic methods for analyzing graphs
• Problems in quantitative graph theory
• Structural graph measures
• Investigating novel network classes
• Metrical properties of graphs
• Aspects in algorithmic graph theory
• Analytic methods in graph theory
• Network-based applications.

Analysis of Complex Networks: From Biology to Linguistics is intended for
an interdisciplinary audience ranging from applied discrete mathematics,
artificial intelligence, and applied statistics to computer science, compu-
tational and systems biology, cognitive science, computational linguistics,
machine learning, mathematical chemistry, and physics. Many colleagues,
whether consciously or unconsciously, provided us with input, help, and
support before and during the development of the present book. In par-
ticular we would like to thank Andreas Albrecht, Rute Andrade, Gökhan
Bakır, Alexandru T. Balaban, Subhash Basak, Igor Bass, Natália Bebiano,



XIV Preface

Danail Bonchev, Stefan Borgert, Mieczyslaw Borowiecki, Michael Drmota,
Abdol-Hossein Esfahanian, Bernhard Gittenberger, Earl Glinn, Elena Kon-
stantinova, Dmitrii Lozovanu, Alexander Mehler, Abbe Mowshowitz, Max
Mühlhäuser, Arcady Mushegian, Paolo Oliveira, João da Providência, Host
Sachs, Heinz Georg Schuster, Helmut Schwegler, Chris Seidel, Fred Sobik,
Doru Stefanescu, Thomas Stoll, John Storey, Kurt Varmuza, Bohdan Zelinka,
and all the coauthors of this book and apologize to all those whose names
have been mistakenly omitted. We would also like to thank our editors An-
dreas Sendtko and Gregor Cicchetti from Wiley-VCH; they were always avail-
able and extremely helpful. Last but not least, we would like to thank our
families for their support and encouragement throughout the writing of the
book.

Finally, we hope that this book helps the reader to understand that the
presented field is multifaceted in depth and breadth and as such is inherently
interdisciplinary. This is important to realize because it allows one to pursue
a problem-oriented rather than field-oriented approach to efficiently tackling
state-of-the-art problems in modern sciences.

Vienna and Belfast, Matthias Dehmer
March 2009 Frank Emmert-Streib



XV

List of Contributors

Michael J. Barber

Austrian Research Centers – ARC
Division Systems Research
Donau-City-Strasse 1
1220 Vienna
Austria

Danail Bonchev

Virginia Commonwealth University
Center for the Study of
Biological Complexity
P.O. Box 842030
Richmond, VA 23284-2030
USA

Horst Bunke

University of Bern
Institute of Computer Science
and Applied Mathematics
Neubrückstrasse 10
3012 Bern
Switzerland

Qiong Cheng

Georgia State University
Department of Computer Science
Atlanta, GA 30303
USA

Michel Deza

École Normale Supérieure
45 rue d’Ulm
75005 Paris
France
and
Japan Advanced Institute of
Science and Technology
1-1 Asahidai
Nomi
Ishikawa
Japan

Dimitris Dimitropoulos

European Bioinformatics Institute
Genome Campus, Hinxton
Cambridge CB10 1SD
UK

Michael Drmota

Vienna University of Technology
Institute of Discrete Mathematics
and Geometry
Wiedner Hauptstrasse 8/104
1040 Vienna
Austria



XVI List of Contributors

Ernesto Estrada

University of Strathclyde
Institute of Complex Systems
at Strathclyde
Department of Physics and
Department of Mathematics
Glasgow G1 1XH
UK

Maria Fonoberova

AIMdyn, Inc.
Santa Barbara, CA 93101
USA

Bernhard Gittenberger

Vienna University of Technology
Institute of Discrete Mathematics
and Geometry
Wiedner Hauptstrasse 8/104
1040 Vienna
Austria

Adel Golovin

European Bioinformatics Institute
Genome Campus, Hinxton
Cambridge CB10 1SD
UK

Ivan Gutman

University of Kragujevac
Faculty of Science
P.O. Box 60
34000 Kragujevac
Serbia

M. John

European Bioinformatics Institute
Genome Campus, Hinxton
Cambridge CB10 1SD
UK

Marcus Kaiser

Newcastle University
School of Computing Science
Newcastle-upon-Tyne NE1 7RU
UK
and
Newcastle University
Institute of Neuroscience
Newcastle-upon-Tyne NE2 4HH
UK

Alexander Kononov

Russian Academy of Sciences
Sobolev Institute of Mathematics
Novosibirsk
Russia

Matjaž Kovše

University of Maribor
Faculty of Natural Sciences
and Mathematics
Koroška cesta 160
2000 Maribor
Slovenia
and
Institute of Mathematics,
Physics and Mechanics
Jadranska 19
1000 Ljubljana
Slovenia

Eugene Krissinel

European Bioinformatics Institute
Genome Campus, Hinxton
Cambridge CB10 1SD
UK

Xueliang Li

Nankai University
Center for Combinatorics
LPMC-TJKLC
Tianjin 300071
P.R. China



List of Contributors XVII

Dmitrii Lozovanu

Moldovan Academy of Sciences
Institute of Mathematics
and Computer Science
Academiei str., 5
Chisinau, MD-2005
Moldova

Alexander Mehler

Goethe-Universität
Frankfurt am Main
Abteilung für geisteswis-
senschaftliche Fachinformatik/
Department for Computing
in the Humanities
Georg-Voigt-Strasse 4
60325 Frankfurt am Main
Germany

Valia Mitsou

The City University of New York
Doctoral Program in Computer
Science
365 Fifth Avenue
New York, NY 10016
USA

Abbe Mowshowitz

The City College of New York
Department of Computer Science
Convent Avenue at 138th Street
New York, NY 10031
USA
and
The City University of New York
Doctoral Program in Computer
Science
365 Fifth Avenue
New York, NY 10016
USA

Manfred Paier

Austrian Research Centers – ARC
Division Systems Research
Donau-City-Strasse 1
1220 Vienna
Austria

Christian M. Reidys

Nankai University
Center for Combinatorics
LPMC-TJKLC
Tianjin 300071
P.R. China

Kaspar Riesen

Universtity of Bern
Institute of Computer Science and
Applied Mathematics
Neubrückstrasse 10
3012 Bern
Switzerland

Thomas Scherngell

Austrian Research Centers – ARC
Division Systems Research
Donau-City-Strasse 1
1220 Vienna
Austria

Sergey Sevastyanov

Russian Academy of Sciences
Sobolev Institute of Mathematics
Novosibirsk
Russia

Mikhail Shtogrin

Steklov Mathematical Institute
Gubkina str. 8
117966 Moscow
Russia



XVIII List of Contributors

Mathieu Dutour Sikirić
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1

1

Entropy, Orbits, and Spectra of Graphs
Abbe Mowshowitz and Valia Mitsou

1.1

Introduction

This chapter is concerned with the notion of entropy as applied to graphs for
the purpose of measuring complexity.

Most studies of complexity focus on the execution time or space utiliza-
tion of algorithms. The execution time of an algorithm is proportional to the
number of operations required to produce the output as a function of the in-
put size. Space utilization measures the amount of storage required for com-
putation. Both time and space complexity measure the resources required to
perform a computation for a specified input. Measuring the complexity of
a mathematical object such as a graph is an exercise in structural complexity.
This type of complexity does not deal directly with the costs of computa-
tion; rather, it offers insight into the internal organization of an object. The
structural complexity of a computer program, for example, may indicate the
difficulty of modifying or maintaining the program.

One approach to structural complexity involves the length of a code needed
to specify an object uniquely (Kolmogorov complexity). The complexity of
a string, for example, is the length of the string’s shortest description in
a given description language [27]. The approach taken in this chapter cen-
ters on finding indices of structure, based on Shannon’s entropy measure.
Unlike Kolmogorov complexity, such an index captures a particular feature
of the structure of an object. The symmetry structure of a graph provides the
basis for the index explored here.

The choice of symmetry is dictated by its utility in many scientific disci-
plines. D’Arcy Thompson’s classic work [25] showed the relevance of sym-
metry in the natural world. Structure-preserving transformations based on
symmetry play a role in physics, chemistry, and sociology as well as in biol-
ogy. A symmetry transformation of a graph is typically an edge-preserving
bijection of the vertices, i.e., an isomorphism of the graph onto itself. Such
a transformation is called an automorphism. If the vertices of the graph are
labeled, an automorphism can be viewed as a permutation of the vertices
that preserves adjacencies. The set of all automorphisms forms a group
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whose orbits provide the foundation for applying Shannon’s entropy mea-
sure.

The collection of orbits of the automorphism group constitutes a parti-
tion and thus defines an equivalence relation on the vertices of a graph. Two
vertices in the same orbit are similar in some sense. In a social network, col-
lections of similar vertices can be used to define communities with shared
attributes. The identification of such communities is of interest in applica-
tions such as advertising, intelligence, and sensor networks.

Measures of structural complexity are useful for classifying graphs and
networks represented by graphs. One is led to conjecture, for example, that
the more symmetric a network is (or the lower its automorphism-based com-
plexity is), the more vulnerable to attack it will be. These related issues are ex-
plored in [19] in relation to sensor networks modeled as dynamic distributed
federated databases [2].

In what follows we define the measure of graph complexity, discuss al-
gorithms and heuristics for computing it, and examine its relationship to
another prominent entropy measure [11] defined on graphs.

1.2

Entropy or the Information Content of Graphs

Given a decomposition of the vertices or edges of a graph, one can construct
a finite probability scheme [10] and compute its entropy. A finite probability
scheme assigns a probability to each subset in the decomposition. Such a nu-
merical measure can be seen to capture the information contained in some
particular aspect of the graph structure.

The orbits of the automorphism group of a graph constitute a decomposi-
tion of the vertices of the graph. As noted above, this decomposition captures
the symmetry structure of the graph, and the entropy of the finite probabil-
ity scheme obtained from the automorphism group provides an index of the
complexity of the graph relative to the symmetry structure.

Let G = (V, E) be a graph with vertex set V (with |V| = n) and edge set E.
The automorphism group of G, denoted by Aut(G), is the set of all adjacency-
preserving bijections of V. Let {Vi|1 u i u k} be the collection of orbits of
Aut(G), and suppose |Vi| = ni for 1 u i u k. The entropy or information content
of G is given by the following formula ([13]):

Ia(G) = –
k∑

i = 1

ni

n
log

ni

n
.

For example, the orbits of the graph of Figure 1.1 are {1}, {2,5}, and {3,4},
so the information content of the graph is Ia(G) = – 1

5 log 1
5 – 2( 2

5 log 2
5 ) =

log 5 – 4
5 log 2.



1.2 Entropy or the Information Content of Graphs 3

1

52

3 4 Figure 1.1 Information content of a graph.

Clearly, Ia(G) satisfies 0 u Ia(G) u log n, where the minimum value occurs
for graphs with the transitive automorphism group, such as the cycle Cn and
the complete graph Kn on n vertices; the maximum is achieved for graphs
with the identity group. The smallest nontrivial, undirected graph with an
identity group is shown in Figure 1.2.

1

5

2 3

46 Figure 1.2 Smallest nontrivial graph with identity group.

The idea of measuring the information content of a graph was first pre-
sented in [21]; it was formalized in [26] and further developed in [13–16].
Ia(G) is a function of the partition of the vertices of G determined by the
orbits of Aut(G). As such the measure captures the structure of vertex sim-
ilarity. In the case of organic molecules, the lower the information content
(or the greater the symmetry), the fewer the possibilities for different inter-
actions with other molecules. If all the atoms are in the same equivalence
class, then it makes no difference which one interacts with an atom of an-
other molecule. The same can be said for social networks. Any member of
an equivalence class of similar individuals can serve as a representative of
the class.

The utility of the measure Ia(G) can be seen from the following special
case. The cartesian product G ~ H of graphs G and H is defined by V(G ~
H) = V(G) ~ V(H) and for (a, b), (c, d) ∈ V(G ~ H), [(a, b), (c, d)] ∈ E(G ~ H) if
a = c and [b, d] ∈ E(H) or if b = d and [a, c] ∈ E(G).

The hypercube Q n with 2n vertices is defined recursively by Q1 = K2 and
for n v 2, Q n = K2 ~ Qn–1. Since Q n has a transitive automorphism group,
I(Q n) = 0. The hypercube Q n offers a desirable configuration for parallel
computation because processors must exchange messages in executing an
algorithm, and the distance between any two vertices (representing proces-
sors) in the hypercube is at most n.
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By contrast, an m ~ m mesh configuration (formed by taking the cartesian
product of two isomorphic line graphs, each with m vertices) consists of m2

vertices and has a maximum distance of 2m. A 2
n
2 ~ 2

n
2 mesh for even n

having the same number of vertices as Q n has a maximum distance between
vertices of 2(2

n
2 –1). At the same time the information content of such a mesh

is n
2 – 1 [13].
This example suggests that good graph configurations for parallel compu-

tation score low on information complexity or, alternatively, are highly sym-
metric. Information complexity is a coarse filter, but it is useful nonetheless.

Computing the group-based entropy or information content of a graph
requires knowledge of the orbits of the automorphism group. An obvious
approach to computing the orbits is to determine the automorphism group
and then to observe the action of automorphisms on the vertices of the
graph. This is not an efficient method in general, but the algebraic structure
of a graph can be exploited to find the automorphism group efficiently in
some cases. The general question of determining the automorphism group
is taken up in Section 1.3; heuristics for finding the orbits of Aut(G) are sur-
veyed in Section 1.4.

1.3

Groups and Graph Spectra

Let G = (V, E) be a graph with vertex set V of size n, edge set E of size m,
and automorphism group Aut(G). (See [3] for general coverage of algebraic
aspects of graph theory and [12] for specific treatment of the automorphism
group of a graph.) Since automorphisms are in effect relabelings of the ver-
tices, they can be represented as permutation matrices. Let A = A(G) be the
adjacency matrix of G. Then a permutation matrix P is an automorphism
of G if and only if PTAP = A or PA = AP.

Thus, one way to construct the automorphism group of a graph G is to
solve the matrix equation AX = XA for permutation matrices X. The Jordan
canonical form of A as a matrix over the reals can be used to obtain the
general solution X. Taking G to be undirected and thus A symmetric and
letting Ã = UTAU be the Jordan form of A, we have (UÃUT)X = X(UÃUT) or
ÃX̃ = X̃Ã, where X̃ = UTXU.

Thus the construction of Aut(G) requires computing the orthogonal ma-
trix U and finding all X̃ that commute with Ã. The matrix X̃ depends on the
elementary divisors of A. With no additional information, this method of
constructing the group is not too promising since it is necessary to find all
those solutions that are permutation matrices.

In the special case where A has all distinct eigenvalues, X̃ has the form
of a diagonal matrix with arbitrary parameters on the main diagonal. In this
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case, X = UX̃UT. Clearly UX̃UT is symmetric, so if it is a permutation matrix,
it must correspond to a product of disjoint transpositions. This means that
every element of Aut(G) has order 2 and the group is therefore abelian [12,
17]. The converse is not true since, for example, the graph G of Figure 1.3
has the characteristic polynomial (x + 1)2(x3 – 2x2 – 5x + 2).

1

52

3 4
Figure 1.3 Aut(G) is abelian, every element is of order 2, but the
characteristic polynomial has repeated roots.

An analogous result holds for digraphs. Using the same analysis, Chao [5]
showed that if the adjacency matrix of a digraph has all distinct eigenvalues,
then its automorphism group is abelian. However, the automorphisms need
not be of order 2. For example, the adjacency matrix of digraph D in Fig-
ure 1.4 has the characteristic polynomial (x3 – 1) = (x – 1)(x2 + x + 1) but the
permutation (123) is an automorphism of D.

1

2

3

Figure 1.4 Aut(D) = 〈(123)〉, abelian but not every element has
order 2.

Both of these results are special cases of the following:

Theorem 1.1 Suppose the adjacency matrix A = A(D) of a digraph D is non-
derogatory with respect to a field F, i.e., its characteristic polynomial coincides
with its minimal polynomial over F. Then Aut(D) is abelian.

Proof. The result is an immediate consequence of the fact that under the
hypothesis of the theorem, every matrix over F commuting with A can be
expressed as a polynomial in A.

In particular, if A has all distinct eigenvalues, it is non-derogatory over the
complex number field. To see that every automorphism of an (undirected)
graph has order 2 under this condition, it suffices to observe that any poly-
nomial in a symmetric matrix is again symmetric.

If the adjacency matrix fails to be nonderogatory, then some leverage in
constructing the automorphism group can be obtained by taking advantage
of the fact that the matrix consists of zeroes and ones. In particular, the ad-
jacency matrix can be interpreted as a matrix over GF(2), thus reducing the
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solution space of the matrix equation AX = XA to zero-one matrices at the
outset.

Thus suppose A = A(G) (for a graph G) is a matrix over GF(2). To demon-
strate a method for constructing automorphisms, we revisit the special case
of A being nonderogatory over GF(2).

In this case we know that:

1. M ∈ Aut(G) implies M2 = I (the identity matrix) and

2. M ∈ Aut(G) implies M =
n – 1∑
i = 0

aiAi.

So if M ∈ Aut(G), then we can write

M =
n – 1∑
i = 0

aiAi

and

I = M2 =

(
n – 1∑
i = 0

aiAi

)2

=
n – 1∑
i = 0

ai(Ai)2.

Thus {M|M =
n – 1∑
i = 0

aiAi and M2 = I} ⊇ Aut(G).

Constructing the group in this case reduces to finding all polynomials in
A2 that are equal to the identity matrix. These have the form

p(A)μA2 (A2) + I,

where μA2 (x) is the minimal polynomial of A2.
Thus, if M2 = I, then M = p(A)μA2 (A) + I for some polynomial p(x), since

(p(A)μA2 (A) + I)2 = (p(A2)μA2 (A2) + I) = 0 + I = I.
The characteristic and minimal polynomials of graph G in Figure 1.5 co-

incide over the real numbers, i.e., φ(x) = μ(x) = (x3 – x2 – 6x + 2)x(x + 1)
and over GF(2) with φ(x) = μ(x) = x3(x + 1)2. Hence, the adjacency matrix
of G is nonderogatory over both fields. The minimal polynomial of A2 is
μA2 (x) = x2(x + 1), which is of degree 3.

Therefore, M ∈ Aut(G) implies M = μA2 (A)(b0I + b1A) + I. There are four
possible solutions for M corresponding to the four possible values for b0

and b1. All of these solutions, namely,

I, A3 + A2 + I, A4 + A3 + I, A4 + A2 + I,

turn out to be permutation matrices so that the automorphism group of G
contains precisely these four elements.
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1

5

2

4

3

Figure 1.5 Computation of automorphisms
over GF(2).

Note that μ2
A2 (x) = xφA(x) if n is odd, or μ2

A2 (x) = φA(x) if n is even.
Hence, if m = deg μA2 (x) and M satisfies AM = MA and M2 = I, then

M = μA2 (x)
n – m – 1∑

i = 0
biAi + I, where bi ∈ GF(2).

To determine Aut(G), it suffices to examine 2n – m – 1 W 2n/2 values of the
parameters bi, to pick out the permutation matrices (i.e., elements of Aut(G)).

However, some further simplification is possible. Let Q = μA2 (A) and

Z(b) =
n – m – 1∑

i = 0
biAi. Then M = QZ(b) + I. Multiplying by M on the right gives

MQ = Q2Z(b) + Q = Q. Thus, if M is an automorphism of G, then MQ = Q ,
which means that similar vertices of G correspond to identical rows of Q. In
addition, the identical rows must occur in minimal pairs, which gives a suffi-
cient condition for Aut(G) to be trivial.

If μA2 (A) has all distinct rows or no minimal pairs of identical rows, then
Aut(G) is trivial. The converse is not true. Both graphs in Figure 1.6 have
trivial groups, but μA2 (A(G1)) has all distinct rows while μA2 (A(G2)) has three
pairs of identical rows.

Theorem 1.2 [18]; see also [6]. Let D be a digraph and A = A(D) be its adjacency
matrix. If φA(x) is irreducible over the integers, then Aut(D) is trivial.

Figure 1.6 Identity graphs.
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Proof. Suppose there is an M(=/ I) ∈ Aut(D), and that the permutation cor-
responding to M consists of r disjoint cycles of lengths k1, . . . , kr. Let z be
a nonzero vector consisting of k1 components equal to c1, followed by k2

components equal to c2, followed by . . . kr components equal to cr. Consider
Az = xz. This gives a system of r equations in the r unknowns c1, c2, . . . , cr.
Thus Az = xz reduces to Bc = xc, where c = (c1, c2, . . . , cr)T. Now z and c
are eigenvectors of A and B, respectively, and det(B – xc)| det(A – xz), where
deg(det(B – xc)) < deg(det(A – xz)). Hence, φA(x) has a nontrivial factoriza-
tion, which completes the proof.

Figure 1.7 shows a digraph (D) and graph (G) (with the smallest number
of vertices) satisfying the condition of the theorem. φA(D)(x) = x3 – x – 1 and
φA(G)(x) = x6 – 6x4 – 2x3 + 7x2 + 2x – 1.

Figure 1.7 Smallest graph and digraph whose characteristic
polynomials are irreducible over the integers.

Note that the theorem also holds if φA(x) is taken as a polynomial over
a finite field. For example, over GF(2), x3 – x – 1 is irreducible, but x6 – 6x4 –
2x3 + 7x2 + 2x – 1 = x6 + x2 + 1 = (x3 + x + 1)2.

For graphs this criterion is not very useful since the characteristic polyno-
mial of any graph is reducible over GF(2). There are regular graphs and trees
that have the trivial group, but the characteristic polynomial of any regular
graph has a linear factor, as does the characteristic polynomial of a tree with
an odd number of vertices.

The foregoing discussion suggests the utility of trying to relate the factor-
ization of the characteristic polynomial to the structure of the automorphism
group. For example, if G is a graph with an even number n of vertices and
adjacency matrix A = A(G), and if φA(x) = α(x)�(x) with deg α = deg � and
both α and � are irreducible, then either Aut(G) is trivial or it is of order 2
and consists of the identity and (with a suitable labeling) the permutation
(1, 2)(3, 4) · · · (n/2, n/2).
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Table 1.1 contains a list of all 156 graphs on six vertices, showing factored
characteristic polynomials and the sizes of their respective automorphism
group orbits. Each graph is defined by its list of edges, shown as a sequence
of pairs of numbers referring to a standard template with the vertices num-
bered from 1 to 6 in clockwise order. The last column shows the sizes of the
orbits. Complements are not given explicitly, but their polynomials are listed.
The orbits of G and Ḡ are the same.

Table 1.1 Characteristic polynomials and orbit sizes of all graphs on six vertices.

G: Polynomial Polynomial Orbit
# edges: list of G of Ḡ sizes

0: x6 (x + 1)5(x – 5) 6

3: 16 23 45 (x + 1)3(x – 1)3 x3(x + 2)2(x – 4) 6

6: 12 16 23 34
45 56

(x – 1)2(x + 1)2(x + 2)(x – 2) x2(x – 1)(x + 2)2(x – 3) 6

6: 15 16 23 24
34 56

(x – 2)2(x + 1)4 x4(x – 3)(x + 3) 6

3: 15 16 56 x3(x + 1)2(x – 2) x2(x + 1)2(x2 – 2x – 9) 33

1: 12 x4(x – 1)(x + 1) x(x + 1)3(x2 – 3x – 8) 24

4: 12 15 24 45 x4(x – 2)(x + 2) (x – 1)(x + 1)3(x2 – 2x – 7) 24

4: 12 16 34 45 x2(x2 – 2)2 (x + 1)2(x4 – 2x3 – 8x2 + 6x – 1) 24

5: 12 15 16 23
24

x2(x – 1)(x + 1)(x – 2)(x + 2) (x – 1)(x + 2)(x + 1)2(x2 – 3x – 2) 24

5: 14 16 23 45
56

x2(x – 1)(x + 1)(x – 2)(x + 2) x(x – 1)(x + 1)2(x2 – x – 8) 24

6: 12 14 15 24
25 45

x2(x – 3)(x + 1)3 x3(x + 1)(x2 – x – 8) 24

7: 12 16 23 25
34 45 56

(x + 1)(x – 1)(x2 – 2x – 1)(x2 + 2x – 1) x(x + 2)(x2 – 2)(x2 – 2x – 2) 24

7: 14 15 16 23
45 46 56

(x + 1)4(x – 3)(x – 1) x4(x2 – 8) 24

7: 15 16 23 24
34 45 56

(x + 1)2(x2 – 3)(x2 – 2x – 1) x2(x2 – 2x – 2)(x2 + 2x – 2) 24

2: 12 56 x2(x – 1)2(x + 1)2 x2(x + 1)(x + 2)(x2 – 3x – 6) 222

3: 12 16 23 x2(x2 – x – 1)(x2 + x – 1) (x + 1)(x2 + x – 1)(x3 – 2x2 – 8x – 3) 222

6: 14 15 16 23
45 56

x(x – 1)(x + 1)2(x2 – x – 4) x2(x + 1)(x3 – x2 – 8x + 4) 222

7: 13 16 23 26
34 45 56

x(x2 + x – 1)(x3 – x2 – 5x + 4) (x – 1)(x + 1)(x2 + x – 1)(x2 – x – 5) 222

7: 12 15 23 24
25 45 56

x2(x2 + x – 1)(x2 – x – 5) (x + 1)(x2 + x – 1)(x3 – 2x2 – 4x + 1) 222

5: 12 16 24 45
56

x(x – 2)(x2 + x – 1)2 (x2 + x – 1)2(x2 – 2x – 5) 15

5: 12 23 24 25
26

x4(x2 – 5) x(x – 4)(x + 1)4 15

2: 12 16 x4(x2 – 1) (x + 1)3(x3 – 3x2 – 7x + 3) 123

3: 12 15 16 x4(x2 – 3) (x + 1)3(x3 – 3x2 – 6x + 4) 123

4: 15 16 23 56 x(x + 1)(x – 2)(x + 1)3 x3(x3 – 11x – 12) 123

4: 12 15 16 34 x2(x + 1)(x – 1)(x2 – 3) x(x + 1)2(x3 – 2x2 – 8x + 4) 123
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Table 1.1 (continued).

G: Polynomial Polynomial Orbit
# edges: list of G of Ḡ sizes

5: 15 16 23 34
56

x(x – 2)(x + 1)2(x2 – 2) x2(x + 1)(x3 – x2 – 9x + 3) 123

6: 12 15 23 24
35 45

x4(x2 – 6) (x + 1)3(x3 – 3x2 – 3x + 7) 123

6: 12 13 14 15
16 56

x2(x + 1)(x3 – x2 – 5x + 3) x2(x + 1)2(x2 – 2x – 6) 123

7: 12 14 15 16
25 45 56

x3(x – 3)(x + 1)(x + 2) x(x – 1)2(x3 – 2x2 – 5x + 4) 123

4: 12 14 15 16 x4(x – 2)(x + 2) (x + 1)3(x3 – 3x2 – 5x + 3) 114

7: 15 16 26 34
35 45 56

(x – 1)(x + 1)2(x3 – x2 – 5x + 1) x3(x + 2)(x2 – 2x – 4) 114

3: 16 23 56 x2(x + 1)(x – 1)(x2 – 2) x(x + 1)(x4 – x3 – 11x2 – 7x + 4) 1122

4: 12 15 16 56 x2(x + 1)(x3 – x2 – 3x + 1) x(x + 1)(x + 2)(x3 – 3x2 – 4x + 2) 1122

4: 12 16 23 56 x2(x – 1)(x + 1)(x2 – 3) x(x + 1)(x + 2)(x3 – 3x2 – 4x + 4) 1122

5: 12 15 16 45
56

x2(x2 – x – 3)(x2 + x – 1) (x + 1)(x2 + x – 1)(x3 – 2x2 – 6x + 1) 1122

5: 12 14 15 16
56

x2(x + 1)(x3 – x2 – 4x + 2) x(x + 1)(x4 – x3 – 9x2 – 5x + 4) 1122

5: 12 15 16 23
45

(x – 1)(x + 1)(x4 – 4x2 + 1) x(x + 2)(x4 – 2x3 – 6x2 + 2x + 4) 1122

5: 15 16 23 45
56

(x – 1)(x + 1)2(x3 – x2 – 3x + 1) x2(x4 – 1x2 – 8x + 4) 1122

6: 12 15 16 24
45 56

x2(x + 2)(x3 – 2x2 – 2x + 2) (x – 1)(x + 1)(x4 – 8x2 – 8x + 1) 1122

6: 13 16 23 34
45 56

(x – 1)(x2 + x – 1)(x3 – 4x – 1) (x + 2)(x2 + x – 1)(x3 – 3x2 – x + 2) 1122

6: 12 13 14 16
45 56

x2(x4 – 6x2 + 4) (x – 1)(x + 1)2(x3 – x2 – 7x – 3) 1122

4: 12 16 23 45 (x – 1)(x + 1)(x2 – x – 1)(x2 + x – 1) x(x2 + x – 1)(x3 – x2 – 9x – 4) 222

5: 12 14 15 24
45

x3(x + 1)(x2 – x – 4) x(x + 1)2(x3 – 2x2 – 7x + 4) 222

5: 12 16 34 45
56

(x3 – x2 – 2x + 1)(x3 + x2 – 2x – 1) (x3 – 2x2 – 5x + 1)(x3 + 2x2 – x – 1) 222

6: 12 14 16 34
45 56

(x3 – 2x2 – x + 1)(x3 + 2x2 – x – 1) (x3 – x2 – 6x – 3)(x3 + x2 – 2x – 1) 222

6: 12 15 16 23
25 45

(x2 – 2x – 1)(x2 + x – 1)2 (x2 – 2x – 4)(x2 + x – 1)2 1122

6: 12 15 16 23
24 56

x(x + 1)(x4 – x3 – 5x2 + 3x + 4) x(x + 1)(x4 – x3 – 8x2 – 2x + 6) 1122

7: 12 15 16 24
26 45 56

x2(x + 1)(x3 – x2 – 6x + 2) x(x + 1)(x4 – x3 – 7x2 + x + 8) 1122

7: 12 14 15 16
24 45 56

x(x2 + x – 1)(x3 – x2 – 5x – 2) (x2 + x – 1)(x4 – x3 – 6x2 – x + 1) 1122

7: 12 16 23 24
34 45 56

(x2 + x – 1)(x4 – x3 – 5x2 + 2x + 4) (x2 + x – 1)(x4 – x3 – 6x2 + 3x + 1) 1122

7: 14 16 23 24
34 45 56

x(x + 1)(x4 – x3 – 6x2 + 4x + 4) x(x – 1)(x + 1)(x3 – 7x – 4) 1122

7: 12 13 15 24
34 45 56

x2(x4 – 7x2 + 4) (x + 1)2(x4 – 2x3 – 5x2 + 6x + 4) 1122

7: 12 14 16 23
24 45 56

x2(x – 1)(x + 2)(x2 – x – 4) (x + 1)(x – 1)(x + 2)(x3 – 2x2 – 3x + 2) 1122


