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Preface

AIDS-TB: A Deadly Liaison

In ranking perfect storms, the intersection of the tuberculosis (TB) and acquired
immunodeficiency syndrome (AIDS) pandemics is high on the list, and is occurring
in places least equipped to deal with the broad health implications. Over the past two
decades, the AIDS pandemic has exploded in Africa, increasing in some places from
less than 1% of the population to well over 40% of certain age groups in certain
regions of Southern Africa. The global burden of human immunodeficiency virus
(HIV) infection is now over 33 million cases, most occurring in resource-scarce
settings, and 25 million people have already died.
At the same time, and by no coincidence, the TB pandemic has also flourished.

Currently, there are two billion people infected with the etiologic agent Mycobacter-
ium tuberculosis (Mtb), and sadly the burden of the TB pandemic lies squarely in the
same regions as the HIV pandemic. This is particularly obvious in Africa (Figure 1).
At the center of this storm is KwaZulu Natal in South Africa, where up to 70% of
persons with Mtb infection are dually infected with HIV, and 30% or more of
persons who are HIV-infected have active TB. But other areas in Africa are similarly
affected, and these two pandemics are finding each other on numerous other
continents.
The reason for this deadly liaison between HIV and Mtb is rooted in the patho-

genesis of these two infections. HIV infects cells of the immune system, gaining
access to CD4 T lymphocytes and monocytes via coreceptors that bind the HIV
envelope, namely the surface CD4 molecule and a chemokine coreceptor, usually
CCR5. From the earliest stages of infection, there is a dramatic loss of CD4 T cells,
particularly in the gut-associated lymphoid tissue, where the majority of these cells
reside. This loss of the central orchestrator of effective immune responses leaves the
body unable to successfully contain HIV, leading to persistent viremia and contin-
ued loss of CD4 Tcells, and resulting in profound immune suppression in untreated
persons.
This HIV-induced insult to the immune system could not be much worse for

controlling Mtb infection, which depends on T-cell responses. Mtb has chosen
macrophages as its preferred habitat. For many bacterial pathogens, macrophages

XIII



are a dead-end road and their engulfment results in bacterial death, at least after
macrophage activation by CD4 T cells. Yet, Mtb has devised strategies to survive in
these cells; this pathogen flourishes in resting macrophages and persists in fully
activated ones. As long as CD4 T cells can fully activate macrophages, then Mtb
persists, often without causing active disease. Once macrophage activation becomes
impaired, Mtb multiplies and disease breaks out. This is exactly what happens in
HIV–Mtb coinfection: impaired CD4 T cells fail to activate macrophages, which in
turn fail to controlMtb. Althoughmuch remains to be learned, there is an expanding
body of knowledge – much of it outlined in the following chapters – that indicate a
particular defect inMtb-specific immunity rendered by HIV, and similarly, immune
dysregulation of HIV related to the pathogenesis of TB.
With the rapid expansion of these two pandemics, there is a critical need to better

understand these interactions and to integrate research efforts, as the two pathogens
are clearly impacting one another in ways that are yet to be fully defined. The reality
is that the AIDS and TB research communities have been largely separate, similar to
the treatment programs which, in most regions of the world, have yet to be
effectively integrated despite overlapping infections and drug toxicities. The goal
of this book is to bring together the key issues in both of these fields, as well as the
key areas of overlap for which there are emerging data indicating how this deadly
liaison plays out.
This book is intended to provide an overview of the key issues confronting these

dual pandemics, bringing together state-of-the-art research in both fields in one
volume. The book begins with an overview by Julg and Walker of the challenges in

Figure 1 (left) Estimated HIV prevalence (as %) among new TB
cases in Africa, 2006. Source: WHO Global tuberculosis control:
surveillance, planning, financing (2008); (right) AIDS–TB pa-
tients in Uganda. Photograph courtesy of Keoki Flagg.
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developing an effective AIDS vaccine, together with a detailed assessment of the
factors that have led to a lack of viable clinical candidate vaccines more than two
decades after these efforts started.
Kaufman and Stenger then add to the initial immunologic theme, outlining the

key elements in the immune response to TB, and the strategies being employed to
develop an efficacious vaccination schedule. Their chapter also describes current
achievements in biomarker characterization which will be instrumental for accel-
erating clinical trials.
Next, we move on to review the status of the one vaccine that is currently in use

against TB, namely BCG, which has been administered to about four billion people
worldwide since it was first introduced nearly a century ago. Hanekom and Hussey
discuss the properties of this vaccine, which is poorly protective against the pul-
monary form of TB in adults that accounts for most global transmissions, as well as
the potential complications of this vaccine in HIV-infected infants and the need for
new approaches in this age group.
The most dramatic change in the HIV pandemic in terms of health care has been

the introduction of highly active antiretroviral therapy, which has now been admi-
nistered to more than three million people worldwide. The huge arsenal of drugs
available, as well as new approaches to treatment currently being pursued, are
outlined in the next chapter by Gulick, who has been intimately involved in treating
HIV infection since the beginning of the treatment era in the United States. Despite
issues of access, cost, infrastructure and side effects, treatment has had a huge
individual benefit, although there is little evidence that it has led to changes in the
kinetics of the pandemic.
Böttger and Springer next discuss the treatment of TB, including themechanisms

of drug resistance and the genetics underlying this. This treatise takes a refreshingly
new view on TB drug treatment and the susceptibility testing ofMtb, with its direct
implications for appropriate therapy. Currently, TB is treated with three to four drugs
over six to nine months, and poor compliance frequently leads to drug resistance.
Because of lack of attention in the final quarter of the last century, new TB drugs have
not been developed. Although we now envisage the entry of a number of promising
drug candidates into the pipeline, it will still take several years before they become
available for broad use. New regimens based on combinations of available drugs
could bridge this gap.
One of the major global challenges related to the intersection of the AIDS and TB

pandemics is the need to simultaneously treat both infections, which brings forth
the major problem of HIV–Mtb drug interactions and overlapping toxicities. Oni,
Pepper, andWilkinson, who are leaders in the area of treatment of these two diseases
in one patient, provide a detailed account of the issues related to attempts to contain
both infections in the same individual.
As global treatment efforts related to HIV have expanded over the past few years,

so too has the experience with clinical diagnosis and management of HIV disease.
Dryden-Peterson, Sunpath and Gandhi, all of whom have experience in on-site
treatment in resource-scarce settings, cover the clinical issues related to diagnosis
and management of HIV. The issues around the diagnosis and treatment of HIV–
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Mtb coinfection are covered in chapters by Neil Schluger and by Goldfeld and
Corbett, who have considerable personal experience in these areas. Both chapters
focus on the challenges of diagnosis, treatment and clinical care of AIDS-associated
TB, and expand on effective ways of achieving early diagnosis at the community level
as an urgently required step for effective control in resource-poor settings. By using
appropriate therapy schemes that consider drug interactions, AIDS and TB in one
patient are treatable, and TB even curable.
Emerging as one of the most threatening consequences of the deadly liaison

between HIV and Mtb is the development of extensively drug-resistant (XDR) TB,
which is covered in the chapter by Murray and Cohen. The chapter discusses the
causal role of HIV in the development of multiresistant Mtb and the confounding
effects of HIV coinfection on diagnosis and treatment. This is followed by the final
chapter by Grobusch,Menezes and John, which deals with the effect of HIV-induced
treatment leading to a robust adaptive immune response to HIV that can be so
vigorous as to be lethal in some individuals, namely the immune reconstitution
inflammatory syndrome (IRIS). Since IRIS is an undesired consequence of AIDS
treatment in HIV–Mtb coinfected individuals with increasing occurrence, this
chapter gains enormous importance, for both scientific and for societal reasons.
Together, we hope that these chapters provide an overview of not just the

challenges being produced by the intersection of the TB and AIDS pandemics,
but also the opportunities available to address critical research issues. These efforts
will have a direct impact on future policies designed to contain these epidemics, and
hopefully ultimately to end both of them. We thank the talented authors who have
contributed to this volume, and hope that it serves to better integrate research in two
fields that, through the intersection of pandemics, has forced our attention on them.

Harvard and Berlin Bruce D. Walker and Stefan H.E. Kaufmann
October 2009
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HIV Immunology and Prospects for Vaccines
Boris Julg and Bruce D. Walker

1.1
Introduction

As the HIV epidemic approaches its fourth decade, the world remains without a
vaccine for a disease that has claimedmore than 25million lives, and currently infects
over 33 million persons. The vast majority of these infections are in resource-scarce
settings, and in most places the humanitarian crisis is enhanced because of overlap
with the expanding global tuberculosis (TB) epidemic. The introduction of highly
active antiretroviral therapy (HAART) in 1995–1996 resulted in a dramatic decrease
in the mortality and morbidity of HIV infection in developed countries fortunate
enough to have access to these life-extending medicines [1], and more recent
expanded global access has resulted in more than three million persons receiving
treatment in 2008. However, this still leaves an enormous gap in those who have
advanced disease and are in desperate need of therapy, and in addition there are likely
to be nearly 2.5 million new infections in 2009 (UNAIDS, http://www.unaids.org).
There is no doubt that the development of a safe and effective HIV-1 vaccine will be

the best solution for the ultimate control of the worldwide AIDS pandemic [2], and this
will likely also impact the TBepidemic.However, all attempts to achieve this have failed
so far, reinforcing the fact that an AIDS vaccine is unlikely to be available in the near
future [3].As theTBandHIVepidemics intersect across theglobe, theneed fora vaccine
to prevent the immunodeficiency induced by HIV that is accelerating expansion of
the TB epidemic is even more acute [4]. In this chapter we will discuss the current
challenges to the development of an effective AIDS vaccine, and address the progress
madeandpersistinggaps inourquest foraneffectivemethod topreventnewinfections.

1.2
Challenges for HIV Vaccine Design

The history of successful immunization dates back to the time of Jenner, whose
success with a smallpox vaccine in 1796was achieved with little understanding of the
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actual mechanisms of protection that were being induced. By mimicking infection
with smallpox by inducing a benign cowpox infection, Jenner laid the foundation for
modern vaccinology.Most vaccines currently in use, if not all, do not actually prevent
infection, but rather attenuate disease caused by the pathogen. In fact, most mimic
something that happens naturally –namely that some fraction of people who become
infected clear their infections [5].
The situation with HIV is quite different as HIV is an infection in which, to our

knowledge, spontaneous clearancenever occurs. Thenatural history ofHIV infection
is one of progressive viremia, inwhich the targets of the virus are cells of the immune
system itself, particularly CD4þ T-lymphocytes. Following infection, there is a
gradual decline inCD4þ cell number and an increase in viral load, typically resulting
in AIDSwithin 8–10 years, which is defined by a CD4þ cell count of less than 200 or
specific AIDS-defining illnesses. HIV is actually an infection of the immune system,
with CD4þ T-lymphocytes being a key target of the virus, which enters these cells
through its coreceptors CCR5 (or occasionally other chemokine coreceptors such as
CXCR4) and CD4.
There are five main properties of HIV that render the development of an HIV

vaccine an unprecedented challenge.

1. Massive infection of immune cells:HIVuses its envelope protein to gain access to
cells bearing its coreceptors, CD4 and the chemokine receptor CCR5 or CXCR4.
The major target of the infection are CD4þ T-cells, and because activated cells
are preferentially infected by HIV, the infection preferentially appears to deplete
HIV-specific CD4þ cells. The infection of CD4þ cells is massive at the acute
stage of infection, when up to 60% of CD4þ T-cells in the gut-associated
lymphoid tissue (GALT) are depleted [6].

2. Integration into the host chromosome: HIV is a retrovirus, and following viral
entry the viral reverse transcriptase initiates the production of a double-stranded
proviral DNA that can remain as free circular DNA and undergo processes of
transcription and translation tomake new virion particles. Alternatively, it can use
the viral integrase protein to create a nick in the host chromosome, and integrate.
Once integration occurs – which all indications suggest happens very early after
acute infection [7] – the virus can remain in an immunologically latent state. This
is possible because the lack of transcription and translation of viral proteinsmeans
that the normal immunemechanisms, which rely on the detection of foreign viral
protein within cells to induce immune attack, do not occur.

3. Viral diversity:HIV is a retrovirus, and viral replication is dependent on an error-
prone viral reverse transcriptase that has a poor proofreading function. As a result,
with each replication cycle there is likely to be at least one nucleotide mis-
incorporation. At least some of this diversity is driven by immune selection
pressure, which has been shown to be progressively deleting some key epitopes of
the virus at a population level [8]. Globally there are threemain groups ofHIV–M,
N, and O – with group M (the largest) being further divided into nine distinct
clades and additional circulating recombinant forms. Viruses within a clade may
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differ by up to 20% in the highly variable Env protein, which is the target for
neutralizing antibodies, and by up to 38% between clades. Even within a single
individual HIV mutates such that individuals carry unique strains. Developing a
vaccine to target all of these viruses simultaneously is an enormous task.

4. Envelope glycosylation: The HIV envelope is heavily glycosylated, and also very
flexible, in that it allows for a high degree of random mutations to be stably
incorporated. This combination of Env variability, together with heavy glycosyl-
ation that renders key epitopes poorly exposed to antibody-mediated immune
attack, has been a major challenge for any vaccine to provide broad cross-
neutralizing protective antibody responses (for a review, see Ref. [5]). Indeed, at
the current time this is such a challenge thatmany in the field have focused not on
a preventive HIV vaccine – which would require the induction of broadly cross-
reactive neutralizing antibodies – but rather on a T-cell-based vaccinewhichwould
be intended to provide a durable reduction in viral load, and thereby retard disease
progression and reduce the likelihood of transmission to others [9].

5. Immune evasion: The HIV accessory protein Nef interacts indirectly with the
cytoplasmic tail of HLA A and B alleles, leading to endocytosis and a down-
regulation of class I expression on infected cells [10]. This impairs the ability of
cytotoxic T lymphocytes to recognize infected cells, and has been shown to have
functional significance on the ability to contain HIV replication [11]. Neutralizing
antibodies are unable to recognize the variants that arise in vivo [7, 12, 13], so that
the humoral immune response is always playing �catch-up.� In addition, muta-
tions arising within targeted CD8þ T-cell epitopes also lead to either a loss of
recognition by the T-cell receptor (TCR) of established responses, or to a loss of
binding of the epitope to HLA class I, allowing immune escape.

1.3
What Immune Responses will be Required for an Effective AIDS Vaccine?

A fully preventive HIV vaccine would almost certainly require the induction of
broadly cross-reactive andhighly potent neutralizing antibodies, whichwould have to
prevent the infection of cells and the establishment of latent infection. There is
widespread agreement that this is not likely to occur, for the reasons outlined below.
Indeed, most – if not all – vaccines currently in use do not achieve this level of
protection. This reality has directed the field toward vaccine strategies that would
prevent disease progression rather than prevent infection – which, at least in theory,
would cause the epidemic to contract – if the viral load could be kept low enough to
limit both disease progression and transmission.
The challenges to this direction for vaccine development are compounded by the

fact that we still lack an understanding of the correlates of immune protection,
despite an intricate understanding of the molecular biology of the virus (Figure 1.1).
Despite marked differences in disease outcome following infection, we lack a
fundamental understanding of the mechanisms that account for these differences.

1.3 What Immune Responses will be Required for an Effective AIDS Vaccine? j5



There is a growing body of data indicating that adaptive host immune responses play a
role, but the key elements of protective immunity that would have to be induced by a
vaccine are not known. What is known is that some persons are able to maintain
successful control of HIV viremia for 30 years or more without therapy. This, in turn,
provides some level of optimism that a vaccine might be able to result in a similar
equilibrium with durable control of HIV, even if a totally preventive vaccine is not
possible [14]. In contrast, others progress from acute infection to AIDS within six
months [15].Whilst the factors that account for these dramatic differences in outcome
remain elusive, a growing body of data is beginning to shed light on the rational
inductionof specificarmsof the immuneresponse forHIVvaccinedesign (Figure1.2).

1.3.1
Cytotoxic T Lymphocytes

Following acute HIV-1 infection, the resolution of acute-phase plasma viremia to a
semi steady-state level, or set-point, coincides with the activation and expansion of
HIV-1- specific cytotoxic T lymphocytes (CTL), suggesting that virus-specific CD8þ
T-cells may be responsible for reducing the levels of virus at this stage of infection
[16–18]. Direct evidence for the role of CD8þ T-cells in mediating the decline in
viremia during acute HIV infection has come from studies of the simian immuno-
deficiency virus (SIV)-macaque model. Here, the administration of CD8-specific
monoclonal antibodies s(MAbs) resulted in a transient depletion of CD8þ cells in
both the peripheral blood and lymphoid tissues. When administered during primary
chimeric simian/HIV infections, the CD8 MAb caused marked elevations of plasma
and cell-associated virus levels in both the peripheral blood and lymphoid tissues, and
led to a prolonged depletion of CD4þ cells. Eliminating CD8þ lymphocytes from
monkeys during chronic SIV infection resulted in a rapid and marked increase in
viremia that was again suppressed coincident with the reappearance of SIV-specific

Figure 1.1 The HIV-1 genome. There are nine coding regions, in
three different reading frames. gag is the main structural protein,
pol encodes the replicative functions, and env encodes the heavily
glycosylated outer envelope. The regulatory proteins include vif,
vpr, vpr, rev, tat, and nef. LTR, long terminal repeat.
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CD8þ T-cells [19–21]. These results confirm the importance of cell-mediated immu-
nity in controlling AIDS virus infection, and support the exploration of vaccination
approaches for preventing infection that will elicit these immune responses.
An emerging body of data suggests that it is not just the magnitude but rather the

specificity of the CTL response that may be critical for immune containment.
Numerous population studies have determined that neither the total breadth nor
the total magnitude of HIV-specific CD8þ T-cell responses correlate with the ability
of an individual to control HIV-1 [22–24], which suggests that selected epitope-
specific CD8þ T-cell responses play a relevant role. Large population studies
conducted in South Africa have defined that a preferential targeting of Gag is
associated with a lower viral load [25], while more recent data have indicated
that the breath of the Gag-specific response is negatively correlated with the
viral load in persons with chronic infection [26]. In contrast, broad Env-specific
CD8þ T-cell responses are associated with a high viral load [26]. To some extent this
may reflect differences in the quality of these responses, or in the relative efficacy of
different responses to recognize and kill infected cells before progeny viruses are

Figure 1.2 Immune responses to HIV. The B
cells produce neutralizing antibodies, which are
highly type-specific and poorly recognize diverse
isolates, even those that arise within a single
person due to reverse-transcriptase-induced
errors in replication. The cytotoxic T cells (CTL)
target virus-infected cells through recognition of
viral proteins presented at the cell surface
associated with HLA class I molecules, and
deliver a lethal hit to the infected cell, ideally
before progeny viruses are produced. Despite

these responses, progression ensues in most
persons. T helper (Th) cells, which express CD4
and CCR5, are the central orchestrator of
effective cellular immunity, but are infected in
large numbers in acute infection and never fully
recover; they progressively decline over timeuntil
a CD4 count of 200 is reached, which defines
AIDS. Natural killer (NK) cells target virus
infected cells without requiring prior exposure;
emerging data suggest that these may be
important in HIV control.
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produced [27]. The limited ability of these responses to provide durable containment
may also be due to escape mutations emerging within targeted CD8þ T-cell
epitopes, which arise during primary [28–31] and chronic [32, 33] HIV-1 and SIV
infection, anddemonstrates significantCD8þ T-cell pressure on these regions of the
virus and impacts temporally on disease progression [33, 34]. In addition, functional
impairment or exhaustion of these responses over time in the setting of chronic viral
stimulationmay play a role. The inhibitory receptor programmed death 1 (PD-1; also
known as PDCD1), a negative regulator of activated Tcells, is markedly upregulated
on the surface of HIV-specific CD8þ T-cells, the expression correlating with
impaired HIV-specific CD8þ T-cell function as well as with predictors of disease
progression – positively with plasma viral load, and inversely with the CD4þ
T-cell count [35]. In contrast, the inhibitory immunoregulatory receptor CTLA-4 is
selectively upregulated in HIV-specific CD4þ T-cells, but not CD8þ T-cells, in
all categories of HIV-infected subjects, except for a rare subset of individuals who
are able to control viremia in the absence of antiretroviral therapy [36].
One of the strongest arguments in favor of a role for CTLs in the outcome of HIV

infection is the association between certain HLA class I alleles and improved
outcome [37]. Among these are the so-called protective alleles, the strongest of
which include B�5701, B�5801, B51, and B�2705. These B alleles have in common
that they are associated with strong immune responses to the Gag protein, and in
some cases are associated with mutations that impair viral fitness [38]. Other HLA
alleles, such as HLA B35, are associated with a worse outcome [39], although an
understanding of the mechanism of this association remains obscure. One concern
raised by these observations is that theremay be genetic limitations to the efficacy of a
particular vaccine candidate, in that it may be more immunogenic in certain HLA
backgrounds, and may have limited immunogenicity in others. However, this
concern remains unsubstantiated.

1.3.2
Neutralizing Antibodies

Following the identification of HIV as the causative agent of AIDS, it was predicted
that a vaccine inducing neutralizing antibodies and thereby preventing infection
would rapidly be available. Yet, a quarter of a century later an effective preventiveHIV
vaccine still eludes us. Neutralizing antibodies are induced byHIV, but fail to control
viremia. Despite a pronounced antibody response to the viral envelope proteins, only
a small fraction of these antibodies have neutralizing activity. This is partly due to the
fact that theHIV-1 Env glycoprotein is a trimer on the virion surfacewith extensive N-
linked glycosylation that effectively shields many conserved epitopes from antibody
recognition [40]. Key conserved regions, such as the binding site of the chemokine
coreceptor, are only formed after Env binds its cellular receptor CD4 and undergoes
an extensive conformational change. The broadly reactiveMAbb12 binds to theCD4-
binding site, suggesting that this region of Env may represent a critical point of
vulnerability that is potentially amenable to neutralization, although the CD4-bind-
ing site is recessed and only partially accessible to antibody binding. Themembrane-
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