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XIII

The purpose of computing is insight, not numbers.
R.W. Hamming [242]

Preface

‘‘Everyone is an artist’’ was a central message of the famous twentieth century artist
Joseph Beuys. ‘‘Everyone models and simulates’’ is a central message of this book.
Mathematical modeling and simulation is a fundamental method in engineering
and science, and it is absolutely valid to say that everybody uses it (even those of us
who are not aware of doing so). The question is not whether to use this method or
not, but rather how to use it effectively.

Today we are in a situation where powerful desktop PCs are readily available
to everyone. These computers can be used for any kind of professional data
analysis. Even complex structural mechanical or fluid dynamical simulations
which would have required supercomputers just a few years ago can be performed
on desktop PCs. Considering the huge potential of modeling and simulation to
solve complex problems and to save money, one should thus expect a widespread
and professional use of this method. Particularly in the field of engineering,
however, complex problems are often still treated largely based on experimental
data. The amount of money spent on experimental equipment sometimes seems
proportional to the complexity and urgency of the problems that are solved, and
simple spreadsheet calculations are used to explore the information content of
such expensive data. As this book will show, mathematical models and simulations
help to reduce experimental costs not only by a partial replacement of experiments
by computations, but also by a better exploration of the information content of
experimental data.

This book is based on the author’s modeling and simulation experience in the
fields of science and engineering and as a consultant. It is intended as a first
introduction to the subject, which may be easily read by scientists, engineers and
students at the undergraduate level. The only mathematical prerequisites are some
calculus and linear algebra – all other concepts and ideas will be developed in
the course of the book. The reader will find answers to basic questions such as:
What is a mathematical model? What types of models do exist? Which model
is appropriate for a particular problem? How does one set up a mathematical
model? What is simulation, parameter estimation, validation? The book aims to
be a practical guide, enabling the reader to setup simple mathematical models on
his own and to interpret his own and other people’s results critically. To achieve
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this, many examples from various fields such as biology, ecology, economics,
medicine, agricultural, chemical, electrical, mechanical and process engineering
are discussed in detail.

The book relies exclusively upon open-source software, which is available to ev-
erybody free of charge. The reader is introduced into CAELinux, Calc,Code-Saturne,
Maxima, R, and Salome-Meca, and the entire book software – including 3D CFD
and structural mechanics simulation software – can be used based on a (free)
CAELinux-Live-DVD that is available in the Internet (works on most machines and
operating systems, see Appendix A).

While software is used to solve most of the mathematical problems, it is
nevertheless attempted to put the reader mathematically on firm ground as much
as possible. Trap-doors and problems that may arise in the modeling process, in
the numerical treatment of the models or in their interpretation are indicated, and
the reader is referred to the literature whenever necessary.

The book is organized as follows. Chapter 1 explains the principles of mathemati-
cal modeling and simulation. It provides definitions and illustrative examples of the
important concepts as well as an overview of the main types of mathematical models.
After a treatment of phenomenological (data-based) models in Chapter 2, the rest of
the book introduces the most important classes of mechanistic (process-oriented)
models (ordinary and partial differential equation models in Chapters 3 and 4,
respectively).

Although it is possible to write a book like this on your own, it is also true that it is
impossible to write a book like this on your own . . . I am indebted to a great number
of people. I wish to thank Otto Richter (TU Braunschweig), my first teacher in
mathematical modeling; Peter Knabner (U Erlangen), for an instructive excursion
into the field of numerical analysis; Helmut Neunzert and Franz-Josef Pfreundt
(TU and Fraunhofer-ITWM Kaiserslautern), who taught me to apply mathematical
models in the industry; Helmut Kern (FH Wiesbaden), for blazing a trail to
Geisenheim; Joël Cugnoni (EPFL Lausanne), for our cooperation and an adapted
version of CAELinux (great idea, excellent software); Anja Tschörtner, Cornelia
Wanka, Alexander Grossmann, H.-J. Schmitt and Uwe Krieg from Wiley-VCH;
and my colleagues and friends Marco Günther, Stefan Rief, Karlheinz Spindler,
and Aivars Zemitis for proofreading.

I dedicate this book to Birgid, Benedikt, Julia, and Theresa for the many weekends
and evenings they patiently allowed me to work on this book, to the Sisters of the
Ursuline Order in Geisenheim and Straubing, and, last but not least, to my parents
and to my brothers Axel and Ulf, to Bettina and Brigi and, of course, to Felix, for
their support and encouragment through so many years.

Geisenheim, May 2008 Kai Velten
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1

Principles of Mathematical Modeling

We begin this introduction to mathematical modeling and simulation with an
explanation of basic concepts and ideas, which includes definitions of terms such
as system, model, simulation, mathematical model, reflections on the objectives of
mathematical modeling and simulation, on characteristics of ‘‘good’’ mathematical
models, and a classification of mathematical models. You may skip this chapter at
first reading if you are just interested in a hands-on application of specific methods
explained in the later chapters of the book, such as regression or neural network
methods (Chapter 2) or differential equations (DEs) (in Chapters 3 and 4). Any
professional in this field, however, should of course know about the principles
of mathematical modeling and simulation. It was emphasized in the preface that
everybody uses mathematical models – ‘‘even those of us who are not aware of
doing so’’. You will agree that it is a good idea to have an idea of what one is doing. . .

Our starting point is the complexity of the problems treated in science and
engineering. As will be explained in Section 1.1, the difficulty of problems treated
in science and engineering typically originates from the complexity of the systems
under consideration, and models provide an adequate tool to break up this
complexity and make a problem tractable. After giving general definitions of
the terms system, model, and simulation in Section 1.2, we move on toward
mathematical models in Section 1.3, where it is explained that mathematics is
the natural modeling language in science and engineering. Mathematical models
themselves are defined in Section 1.4, followed by a number of example applications
and definitions in Sections 1.5 and 1.6. This includes the important distinction
between phenomenological and mechanistic models,which has been used as the
main organization principle of this book (see Section 1.6.1 and Chapters 2–4). The
chapter ends with a classification of mathematical models and Golomb’s famous
‘‘Don’ts of mathematical modeling’’ in Sections 1.7 and 1.8.

1.1
A Complex World Needs Models

Generally speaking, engineers and scientists try to understand, develop, or optimize
‘‘systems’’. Here, ‘‘system’’ refers to the object of interest, which can be a part of
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nature (such as a plant cell, an atom, a galaxy etc.) or an artificial technological
system (see Definition 1.2.3 below). Principally, everybody deals with systems in
his or her everyday life in a way similar to the approach of engineers or scientists.
For example, consider the problem of a table which is unstable due to an uneven
floor. This is a technical system and everybody knows what must be done to
solve the problem: we just have to put suitable pieces of cardboard under the
table legs. Each of us solves an abundant number of problems relating to simple
technological systems of this kind during our lifetime. Beyond this, there is a great
number of really difficult technical problems that can only be solved by engineers.
Characteristic of these more demanding problems is a high complexity of the
technical system. We would simply need no engineers if we did not have to deal
with complex technical systems such as computer processors, engines, and so on.
Similarly, we would not need scientists if processes such as the photosynthesis of
plants could be understood as simply as an unstable table. The reason why we have
scientists and engineers, virtually their right to exist, is the complexity of nature
and the complexity of technological systems.

Note 1.1.1 (The complexity challenge) It is the genuine task of scientists and
engineers to deal with complex systems, and to be effective in their work, they
most notably need specific methods to deal with complexity.

The general strategy used by engineers or scientists to break up the complexity of
their systems is the same strategy that we all use in our everyday life when we are
dealing with complex systems: simplification. The idea is just this: if something is
complex, make it simpler. Consider an everyday life problem related to a complex
system: A car that refuses to start. In this situation, everyone knows that a look at
the battery and fuel levels will solve the problem in most cases. Everyone will do
this automatically, but to understand the problem solving strategy behind this, let
us think of an alternative scenario. Assume someone is in this situation for the
first time. Assume that ‘‘someone’’ was told how to drive a car, that he has used the
car for some time, and now he is for the first time in a situation in which the car
does not start. Of course, we also assume that there is no help for miles around!
Then, looking under the hood for the first time, our ‘‘someone’’ will realize that
the car, which seems simple as long as it works well, is quite a complex system.
He will spend a lot of time until he will eventually solve the problem, even if we
admit that our ‘‘someone’’ is an engineer. The reason why each of us will solve this
problem much faster than this ‘‘someone’’ is of course the simple fact that this
situation is not new to us. We have experienced this situation before, and from our
previous experience we know what is to be done. Conceptually, one can say that
we have a simplified picture of the car in our mind similar to Figure 1.1. In the
moment when we realize that our car does not start, we do not think of the car as
the complex system that it really is, that is, we do not think of this conglomerate of
valves, pistons, and all the kind of stuff that can be found under the hood; rather,
we have this simplified picture of the car in our mind. We know that this simplified
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Tank Battery

Fig. 1.1 Car as a real system and as a model.

picture is appropriate in this given situation, and it guides us to look at the battery
and fuel levels and then to solve the problem within a short time.

This is exactly the strategy used by engineers or scientists when they deal
with complex systems. When an engineer, for example, wants to reduce the fuel
consumption of an engine, then he will not consider that engine in its entire
complexity. Rather, he will use simplified descriptions of that engine, focusing on
the machine parts that affect fuel consumption. Similarly, a scientist who wants
to understand the process of photosynthesis will use simplified descriptions of
a plant focusing on very specific processes within a single plant cell. Anyone
who wants to understand complex systems or solve problems related to complex
systems needs to apply appropriate simplified descriptions of the system under
consideration. This means that anyone who is concerned with complex systems
needs models, since simplified descriptions of a system are models of that system
by definition.

Note 1.1.2 (Role of models) To break up the complexity of a system under
consideration, engineers and scientists use simplified descriptions of that system
(i.e. models).

1.2
Systems, Models, Simulations

In 1965, Minsky gave the following general definition of a model [1, 2]:

Definition 1.2.1 (Model) To an observer B, an object A∗ is a model of an object
A to the extent that B can use A∗ to answer questions that interest him about A.

Note 1.2.1 (Formal definitions) Note that Definition 1.2.1 is a formal definition
in the sense that it operates with terms such as object or observer that are not
defined in a strict axiomatic sense similar to the terms used in the definitions
of standard mathematical theory. The same remark applies to several other
definitions in this book, including the definition of the term mathematical model
in Section 1.4. Definitions of this kind are justified for practical reasons, since
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they allow us to talk about the formally defined terms in a concise way. An
example is Definition 2.5.2 in Section 2.5.5, a concise formal definition of the
term overfitting, which uses several of the previous formal definitions.

The application of Definition 1.2.1 to the car example is obvious – we just have
to identify B with the car driver, A with the car itself, and A* with the simplified
tank/battery description of the car in Figure 1.1.

1.2.1
Teleological Nature of Modeling and Simulation

An important aspect of the above definition is the fact that it includes the
purpose of a model, namely, that the model helps us to answer questions and
to solve problems. This is important because particularly beginners in the field
of modeling tend to believe that a good model is one that mimics the part of
reality that it pertains to as closely as possible. But as was explained in the
previous section, modeling and simulation aims at simplification, rather than at a
useless production of complex copies of a complex reality, and hence, the contrary
is true:

Note 1.2.2 (The best model) The best model is the simplest model that still
serves its purpose, that is, which is still complex enough to help us understand a
system and to solve problems. Seen in terms of a simple model, the complexity
of a complex system will no longer obstruct our view, and we will virtually be
able to look through the complexity of the system at the heart of things.

The entire procedure of modeling and simulation is governed by its purpose
of problem solving – otherwise it would be a mere l’art pour l’art. As [3] puts
it, ‘‘modeling and simulation is always goal-driven, that is, we should know the
purpose of our potential model before we sit down to create it’’. It is hence natural
to define fundamental concepts such as the term model with a special emphasis
on the purpose-oriented or teleological nature of modeling and simulation. (Note that
teleology is a philosophical discipline dealing with aims and purposes, and the
term teleology itself originates from the Greek word telos, which means end or
purpose [4].) Similar teleological definitions of other fundamental terms, such as
system, simulation, and mathematical model are given below.

1.2.2
Modeling and Simulation Scheme

Conceptually, the investigation of complex systems using models can be divided
into the following steps:
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Note 1.2.3 (Modeling and simulation scheme)

Definitions
• Definition of a problem that is to be solved or of a question that

is to be answered
• Definition of a system, that is, a part of reality that pertains to

this problem or question

Systems Analysis
• Identification of parts of the system that are relevant for the

problem or question

Modeling
• Development of a model of the system based on the results of the

systems analysis step

Simulation
• Application of the model to the problem or question
• Derivation of a strategy to solve the problem or answer the

question

Validation
• Does the strategy derived in the simulation step solve the

problem or answer the question for the real system?

The application of this scheme to the examples discussed above is obvious: in
the car example, the problem is that the car does not start and the car itself is the
system. This is the ‘‘definitions’’ step of the above scheme. The ‘‘systems analysis’’
step identifies the battery and fuels levels as the relevant parts of the system as
explained above. Then, in the ‘‘modeling’’ step of the scheme, a model consisting
of a battery and a tank such as in Figure 1.1 is developed. The application of this
model to the given problem in the ‘‘simulation’’ step of the scheme then leads
to the strategy ‘‘check battery and fuel level’’. This strategy can then be applied
to the real car in the ‘‘validation’’ step. If it works, that is, if the car really starts
after refilling its battery or tank, we say that the model is valid or validated. If
not, we probably need a mechanic who will then look at other parts of the car,
that is, who will apply more complex models of the car until the problem is
solved.

In a real modeling and simulation project, the systems analysis step of the above
scheme can be a very time-consuming step. It will usually involve a thorough
evaluation of the literature. In many cases, the literature evaluation will show
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that similar investigations have been performed in the past, and one should
of course try to profit from the experiences made by others that are described
in the literature. Beyond this, the system analysis step usually involves a lot of
discussions and meetings that bring together people from different disciplines who
can answer your questions regarding the system. These discussion will usually
show that new data are needed for a better understanding of the system and for
the validation of the models in the validation step of the above scheme. Hence, the
definition of an experimental program is also another typical part of the systems
analysis step.

The modeling step will also involve the identification of appropriate software
that can solve the equations of the mathematical model. In many cases, it will
be possible to use standard software such as the software tools discussed in the
next chapters. Beyond this, it may be necessary to write your own software in
cases where the mathematical model involves nonstandard equations. An example
of this case is the modeling of the press section of paper machines, which
involves highly convection-dominated diffusion equations that cannot be treated
by standard software with sufficient precision, and which hence need specifically
tailored numerical software [5].

In the validation step, the model results will be compared with experimental data.
These data may come from the literature, or from experiments that have been
specifically designed to validate the model. Usually, a model is required to fit the
data not only quantitatively, but also qualitatively in the sense that it reproduces the
general shape of the data as closely as possible. See Section 3.2.3.4 for an example
of a qualitative misfit between a model and data. But, of course, even a model that
perfectly fits the data quantitatively and qualitatively may fail the validation step of
the above scheme if it cannot be used to solve the problem that is to be solved,
which is the most important criterion for a successful validation.

The modeling and simulation scheme (Note 1.2.3) focuses on the essential
steps of modeling and simulation, giving a rather simplified picture of what really
happens in a concrete modeling and simulation project. For different fields of
application, you may find a number of more sophisticated descriptions of the
modeling and simulation process in books such as [6–9]. An important thing that
you should note is that a real modeling and simulation project will very rarely
go straight through the steps of the above scheme; rather, there will be a lot
of interaction between the individual steps of the scheme. For example, if the
validation step fails, this will bring you back to one of the earlier steps in a loop-like
structure: you may then improve your model formulation, reanalyze the system,
or even redefine your problem formulation (if your original problem formulation
turns out to be unrealistic).

Note 1.2.4 (Start with simple models!) To find the best model in the sense of
Note 1.2.2, start with the simplest possible model and then generate a sequence
of increasingly complex model formulations until the last model in the sequence
passes the validation step.
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1.2.3
Simulation

So far we have given a definition of the term model only. The above modeling
and simulation schemes involve other terms, such as system and simulation, which
we may view as being implicitly defined by their role in the above scheme. Can
this be made more precise? In the literature, you will find a number of different
definitions, for example of the term simulation. These differences can be explained
by different interests of the authors. For example, in a book with a focus on the
so-called discrete event simulation which emphasizes the development of a system
over time, simulation is defined as ‘‘the imitation of the operation of a real-world
process or system over time’’ [6]. In general terms, simulation can be defined as
follows:

Definition 1.2.2 (Simulation) Simulation is the application of a model with
the objective to derive strategies that help solve a problem or answer a question
pertaining to a system.

Note that the term simulation originates from the Latin word ‘‘simulare’’, which
means ‘‘to pretend’’: in a simulation, the model pretends to be the real system.
A similar definition has been given by Fritzson [7] who defined simulation as
‘‘an experiment performed on a model’’. Beyond this, the above definition is a
teleological (purpose-oriented) definition similar to Definition 1.2.1 above, that is,
this definition again emphasizes the fact that simulation is always used to achieve
some goal. Although Fritzson’s definition is more general, the above definition
reflects the real use of simulation in science and engineering more closely.

1.2.4
System

Regarding the term system, you will again find a number of different definitions
in the literature, and again some of the differences between these definitions can
be explained by the different interests of their authors. For example, [10] defines
a system to be ‘‘a collection of entities, for example, people or machines, that act
and interact together toward the accomplishment of some logical end’’. According
to [11], a system is ‘‘a collection of objects and relations between objects’’. In the
context of mathematical models, we believe it makes sense to think of a ‘‘system’’
in very general terms. Any kind of object can serve as a system here if we have
a question relating to that object and if this question can be answered using
mathematics. Our view of systems is similar to a definition that has been given
by [12] (see also the discussion of this definition in [3]): ‘‘ A system is whatever is
distinguished as a system.’’ [3] gave another definition of a ‘‘system’’ very close to
our view of systems here: ‘‘A system is a potential source of data’’. This definition
emphasizes the fact that a system can be of scientific interest only if there is some
communication between the system and the outside world, as it will be discussed
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below in Section 1.3.1. A definition that includes the teleological principle discussed
above has been given by Fritzson [7] as follows:

Definition 1.2.3 (System) A system is an object or a collection of objects whose
properties we want to study.

1.2.5
Conceptual and Physical Models

The model used in the car example is something that exists in our minds only.
We can write it down on a paper in a few sentences and/or sketches, but it does
not have any physical reality. Models of this kind are called conceptual models [11].
Conceptual models are used by each of us to solve everyday problems such as
the car that refuses to start. As K.R. Popper puts it, ‘‘all life is problem solving’’,
and conceptual models provide us with an important tool to solve our everyday
problems [13]. They are also applied by engineers or scientists to simple problems
or questions similar to the car example. If their problem or question is complex
enough, however, they rely on experiments, and this leads us to other types of
models. To see this, let us use the modeling and simulation scheme (Note 1.2.3)
to describe a possible procedure followed by an engineer who wants to reduce the
fuel consumption of an engine: In this case, the problem is the reduction of fuel
consumption and the system is the engine. Assume that the systems analysis leads
the engineer to the conclusion that the fuel injection pump needs to be optimized.
Typically, the engineer will then create some experimental setting where he can
study the details of the fuel injection process.

Such an experimental setting is then a model in the sense that it will typically be
a very simplified version of that engine, that is, it will typically involve only a few
parts of the engine that are closely connected with the fuel injection process. In
contrast to a conceptual model, however, it is not only an idea in our mind but also a
real part of the physical world, and this is why models of this kind are called physical
models [11]. The engineer will then use the physical model of the fuel injection
process to derive strategies – for example, a new construction of the fuel injection
pump – to reduce the engine’s fuel consumption, which is the simulation step of
the above modeling and simulation scheme. Afterwards, in the validation step of
the scheme, the potential of these new constructions to reduce fuel consumption
will be tested in the engine itself, that is, in the real system. Physical models are
applied by scientists in a similar way. For example, let us think of a scientist who
wants to understand the photosynthesis process in plants. Similar to an engineer,
the scientist will set up a simplified experimental setting – which might be some
container with a plant cell culture – in which he can easily observe and measure the
important variables, such as CO2, water, light, and so on. For the same reasons as
above, anything like this is a physical model. As before, any conclusion drawn from
such a physical model corresponds to the simulation step of the above scheme, and
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the conclusions need to be validated by data obtained from the real system, that is,
data obtained from real plants in this case.

1.3
Mathematics as a Natural Modeling Language

1.3.1
Input–Output Systems

Any system that is investigated in science or engineering must be observable in
the sense that it produces some kind of output that can be measured (a system that
would not satisfy this minimum requirement would have to be treated by theolo-
gians rather than by scientists or engineers). Note that this observability condition
can also be satisfied by systems where nothing can be measured directly, such as
black holes, which produce measurable gravitational effects in their surroundings.
Most systems investigated in engineering or science do also accept some kind
of input data, which can then be studied in relation to the output of the system
(Figure 1.2a). For example, a scientist who wants to understand photosynthesis will
probably construct experiments where the carbohydrate production of a plant is
measured at various levels of light, CO2, water supply, and so on. In this case, the
plant cell is the system; the light, CO2, and water levels are the input quantities; and
the measured carbohydrate production is the output quantity. Or, an engineer who
wants to optimize a fuel injection pump will probably change the construction of
that pump in various ways and then measure the fuel consumption resulting from
these modified constructions. In this case, the fuel injection pump is the system,
the construction parameters changed by the engineer are the input parameters and
the resulting fuel consumption is the output quantity.

Note 1.3.1 (Input–output systems) Scientists or engineers investigate ‘‘input–
output systems’’, which transform given input parameters into output
parameters.

Note that there are of course situations where scientists are looking at the system
itself and not at its input–output relations, for example when a botanist just wants

OutputSystemInput

Input 1 Output 1
Input 2 Output 2
Input 3 Output 3

Input n Output n
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Fig. 1.2 (a) Communication of a system with the outside
world. (b) General form of an experimental data set.
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to describe and classify the anatomy of a newly discovered plant. Typically, however,
such purely descriptive studies raise questions about the way in which the system
works, and this is when input–output relations come into play. Engineers, on
the other hand, are always concerned with input–output relations since they are
concerned with technology. The Encyclopedia Britannica defines technology as
‘‘the application of scientific knowledge to the practical aims of human life’’. These
‘‘practical aims’’ will usually be expressible in terms of a system output, and the
tuning of system input toward optimized system output is precisely what engineers
typically do, and what is in fact the genuine task of engineering.

1.3.2
General Form of Experimental Data

The experimental procedure described above is used very generally in engineering
and in the (empirical) sciences to understand, develop, or optimize systems. It is
useful to think of it as a means to explore black boxes. At the beginning of an
experimental study, the system under investigation is similar to such a ‘‘black box’’
in the sense that there is some uncertainty about the processes that happen inside
the system when the input is transformed into the output. In an extreme case,
the experimenter may know only that ‘‘something’’ happens inside the system
which transforms input into output, that is, the system may be really a black
box. Typically, however, the experimenter will have some hypotheses about the
internal processes, which he wants to prove or disprove in the course of his
study. That is, experimenters typically are concerned with systems as gray boxes
which are located somewhere between black and white boxes (more details in
Section 1.5).

Depending on the hypothesis that the experimenter wants to investigate, he
confronts the system with appropriate input quantities, hoping that the outputs
produced by the system will help prove or disprove his hypothesis. This is similar
to a question-and-answer game: the experimenter poses questions to the system,
which is the input, and the system answers to these questions in terms of mea-
surable output quantities. The result is a data set of the general form shown in
Figure 1.2b. In rare cases, particularly if one is concerned with very simple systems,
the internal processes of the system may already be evident from the data set itself.
Typically, however, this experimental question-and-answer game is similar to the
questioning of an oracle: we know there is some information about the system in
the data set, but it depends on the application of appropriate ideas and methods
if one wants to uncover the information content of the data and, so to speak, shed
some light into the black box.

1.3.3
Distinguished Role of Numerical Data

Now what is an appropriate method for the analysis of experimental datasets? To
answer this question, it is important to note that in most cases experimental data
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are numbers and can be quantified. The input and output data of Figure 1.2b will
typically consist of columns of numbers. Hence, it is natural to think of a system
in mathematical terms. In fact, a system can be naturally seen as a mathematical
function, which maps given input quantities x into output quantities y = f (x)
(Figure 1.2a). This means that if one wants to understand the internal mechanics
of a system ‘‘black box’’, that is, if one wants to understand the processes inside
the real system that transform input into output, a natural thing to do is to
translate all these processes into mathematical operations. If this is done, one
arrives at a simplified representation of the real system in mathematical terms.
Now remember that a simplified description of a real system (along with a problem
we want to solve) is a model by definition (Definition 1.2.1). The representation
of a real system in mathematical terms is thus a mathematical model of that
system.

Note 1.3.2 (Naturalness of mathematical models) Input–output systems usu-
ally generate numerical (or quantifiable) data that can be described naturally in
mathematical terms.

This simple idea, that is, the mapping of the internal mechanics of real systems
into mathematical operations, has proved to be extremely fruitful to the under-
standing, optimization, or development of systems in science and engineering.
The tremendous success of this idea can only be explained by the naturalness of
this approach – mathematical modeling is simply the best and most natural thing
one can do if one is concerned with scientific or engineering problems. Looking
back at Figure 1.2a, it is evident that mathematical structures emanate from the
very heart of science and engineering. Anyone concerned with systems and their
input–output relations is also concerned with mathematical problems – regardless
of whether he likes it or not and regardless of whether he treats the system ap-
propriately using mathematical models or not. The success of his work, however,
depends very much on the appropriate use of mathematical models.

1.4
Definition of Mathematical Models

To understand mathematical models, let us start with a general definition. Many
different definitions of mathematical models can be found in the literature. The
differences between these definitions can usually be explained by the different
scientific interests of their authors. For example, Bellomo and Preziosi [14] define
a mathematical model to be a set of equations which can be used to compute the
time-space evolution of a physical system. Although this definition suffices for the
problems treated by Bellomo and Preziosi, it is obvious that it excludes a great
number of mathematical models. For example, many economical or sociological
problems cannot be treated in a time-space framework or based on equations only.
Thus, a more general definition of mathematical models is needed if one wants
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to cover all kinds of mathematical models used in science and engineering. Let us
start with the following attempt of a definition:

A mathematical model is a set of mathematical statements
M = {�1, �2, . . . , �n}.

Certainly, this definition covers all kinds of mathematical models used in science
and engineering as required. But there is a problem with this definition. For
example, a simple mathematical statement such as f (x) = ex would be a mathe-
matical model in the sense of this definition. In the sense of Minsky’s definition
of a model (Definition 1.2.1), however, such a statement is not a model as long
as it lacks any connection with some system and with a question we have relating
to that system. The above attempt of a definition is incomplete since it pertains to
the word ‘‘mathematical’’ of ‘‘mathematical model’’ only, without any reference to
purposes or goals. Following the philosophy of the teleological definitions of the
terms model, simulation, and system in Section 1.2, let us define instead:

Definition 1.4.1 (Mathematical Model) A mathematical model is a triplet
(S, Q , M) where S is a system, Q is a question relating to S, and M is a set of
mathematical statements M = {�1, �2, . . . , �n} which can be used to answer Q .

Note that this is again a formal definition in the sense of Note 1.2.1 in Section 1.2.
Again, it is justified by the mere fact that it helps us to understand the nature
of mathematical models, and that it allows us to talk about mathematical models
in a concise way. A similar definition was given by Bender [15]: ‘‘A mathematical
model is an abstract, simplified, mathematical construct related to a part of reality
and created for a particular purpose.’’ Note that Definition 1.4.1 is not restricted
to physical systems. It covers psychological models as well that may deal with
essentially metaphysical quantities, such as thoughts, intentions, feelings, and
so on. Even mathematics itself is covered by the above definition. Suppose, for
example, that S is the set of natural numbers and our question Q relating to S is
whether there are infinitely many prime numbers or not. Then, a set (S, Q , M) is
a mathematical model in the sense of Definition 1.4.1 if M contains the statement
‘‘There are infinitely many prime numbers’’ along with other statements which
prove this statement. In this sense, the entire mathematical theory can be viewed
as a collection of mathematical models.

The notation (S, Q , M) in Definition 1.4.1 emphasizes the chronological order
in which the constituents of a mathematical model usually appear. Typically, a
system is given first, then there is a question regarding that system, and only then
a mathematical model is developed. Each of the constituents of the triplet (S, Q ,
M) is an indispensable part of the whole. Regarding M, this is obvious, but S and Q
are important as well. Without S, we would not be able to formulate a question Q ;
without a question Q , there would be virtually ‘‘nothing to do’’ for the mathematical
model; and without S and Q , the remaining M would be no more than ‘‘l’art pour
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l’art’’. The formula f (x) = ex, for example, is such a purely mathematical ‘‘l’art
pour l’art’’ statement as long as we do not connect it with a system and a question.
It becomes a mathematical model only when we define a system S and a question
Q relating to it. For example, viewed as an expression of the exponential growth
period of plants (Section 3.10.4), f (x) = ex is a mathematical model which can
be used to answer questions regarding plant growth. One can say it is a genuine
property of mathematical models to be more than ‘‘l’art pour l’art’’, and this is
exactly the intention behind the notation (S, Q , M) in Definition 2.3.1. Note that the
definition of mathematical models by Bellomo and Preziosi [14] discussed above
appears as a special case of Definition 1.4.1 if we restrict S to physical systems, M to
equations, and only allow questions Q which refer to the space-time evolution of S.

Note 1.4.1 (More than ‘‘l’art pour l’art’’) The system and the question relating
to the system are indispensable parts of a mathematical model. It is a genuine
property of mathematical models to be more than mathematical ‘‘l’art pour l’art’’.

Let us look at another famous example that shows the importance of Q . Suppose
we want to predict the behavior of some mechanical system S. Then the appropri-
ate mathematical model depends on the problem we want to solve, that is, on the
question Q . If Q is asking for the behavior of S at moderate velocities, classical
(Newtonian) mechanics can be used, that is, M = {equations of Newtonian mechan-
ics}. If, on the other hand, Q is asking for the behavior of S at velocities close to the
speed of light, then we have to set M = {equations of relativistic mechanics} instead.

1.5
Examples and Some More Definitions

Generally speaking, one can say we are concerned with mathematical models in the
sense of Definition 1.4.1 whenever we perform computations in our everyday life,
or whenever we apply the mathematics we have learned in schools and universities.
Since everybody computes in his everyday life, everybody uses mathematical
models, and this is why it was valid to say that ‘‘everyone models and simulates’’
in the preface of this book. Let us look at a few examples of mathematical models
now, which will lead us to the definitions of some further important concepts.

Note 1.5.1 (Everyone models and simulates) Mathematical models in the
sense of Definition 1.4.1 appear whenever we perform computations in our
everyday life.

Suppose we want to know the mean age of some group of people. Then, we apply
a mathematical model (S, Q , M) where S is that group of people, Q asks for their
mean age, and M is the mean value formula x = (∑n

i=1 xi
)
/n. Or, suppose we want

to know the mass X of some substance in the cylindrical tank of Figure 1.3, given
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Fig. 1.3 Tank problem.

a constant concentration c of the substance in that tank. Then, a multiplication of
the tank volume with c gives the mass X of the substance, that is,

X = 5πc (1.1)

This means we apply a model (S, Q , M) where S is the tank, Q asks for the mass
of the substance, and M is Equation 1.1. An example involving more than simple
algebraic operations is obtained if we assume that the concentration c in the tank of
Figure 1.3 depends on the height coordinate, x. In that case, Equation 1.1 turns into

X = π ·
∫ 5

0
c(x) dx (1.2)

This involves an integral, that is, we have entered the realms of calculus now.

Note 1.5.2 (Notational convention) Variables such as X and c in Equation 1.1,
which are used without further specification are always assumed to be real
numbers, and functions such as c(x) in Equation 1.2 are always assumed to be
real functions with suitable ranges and domains of definition (such as c : [0, 5]
→ R+ in the above example) unless otherwise stated.

In many mathematical models (S, Q , M) involving calculus, the question Q asks
for the optimization of some quantity. Suppose for example we want to minimize
the material consumption of a cylindrical tin having a volume of 1 l. In this case,

M = {πr2h = 1, A = 2πr2 + 2πrh → min} (1.3)

can be used to solve the problem. Denoting by r and h the radius and height of the
tin, the first statement in Equation 1.3 expresses the fact that the tin volume is 1 l.
The second statement requires the surface area of the tin to be minimal, which is
equivalent to a minimization of the metal used to build the tin. The mathematical


