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IX

Preface to the Second Edition

We began our preface to the first edition with the sentence, ‘‘This book has
had a long gestation period.’’ The gestation of our second edition has been
equally long.

In a sense, more has changed in the last twenty-two years in the theory and
practice of Monte Carlo methods than in the twenty-two years before that.
Tremendous strides have been made in the development of new techniques
and applications. This is of course primarily a testament to the power of the
methods and the breadth of their applicability, but it is also a testament to the
breathtaking evolution of computing power which has made possible much
wider and deeper experimentation and studies. More computing power enables
more challenging applications, which exposes the need for more effective
methods. In particular, the appearance of massively parallel computers – with
as many as 200 000 processors – and for which many Monte Carlo calculations
are well suited, has accelerated the evolution.

We have also seen new fields – such as financial computing – for which
Monte Carlo methods are an essential tool.

As with almost all intellectual efforts, the synergy between widespread
applicability and widespread interest has produced an exponential growth in
new ideas.

It seemed to us that the aims of our previous edition – to give a short
but unified approach to the field, limiting ourselves to applications in the
physical sciences – is needed now as much, or perhaps more than before.
We have corrected, revised, and extended the material in the first edition,
and we have added new material on various quantum MC techniques, on
Brownian motion, Poisson processes, simulated annealing, adaptive MC, and
on quasi-MC.

As always, we have benefited from the collaboration and advice of many
people. Our decades of friendship and research with Geoffrey Chester were
essential and inspirational. We have continued to learn much from David
Ceperley and Kevin Schmidt. In more recent times, MHK has had the
privilege of working with Vasily Bulatov, Jaime Marian and Enrique Martinez,
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X Preface to the Second Edition

and long term interactions with Francesco Pederiva and Randolph Hood.
PAW has enjoyed working with Marvin Bishop, Silvio Vitiello and Todor
Gurov.

New York, July 2008 Malvin H. Kalos
Paula A. Whitlock



XI

Preface to the First Edition

This book has had a long gestation period. While it simmered on the back
burner, we pursued research in various aspects of Monte Carlo methods and
their application to the simulation of physical systems. Out of this diversity
we believe we see a basic way of looking at the field. It is unfortunate that
some observers and even some specialists of Monte Carlo methods seem to
regard Monte Carlo as a bag of miscellaneous devices. Often it comes across
that way when applied. It is true that like many other technical endeavors,
especially those with as intensely practical an outlook as Monte Carlo methods,
a body of ingenious tricks has arisen, awaiting invocation as needed. But we
believe – and hope that our book is successful in conveying both in a general
and a practical sense – that there are a number of unifying ideas that underlie
the study and use of good Monte Carlo methods.

The first is the importance of random walks – on the one hand as they occur
in natural stochastic systems, and on the other, in their relation to integral and
differential equations.

The other basic theme is that of variance reduction and, above all, of
importance sampling as a technical means of achieving variance reduction.
Importance sampling is the transformation of a basically straight-forward
random sampling method by changing variables or, what amounts to the same
thing, by changing the underlying probability distribution while leaving a
required mean unchanged. It is by no means the only method, nor in particular
cases the best method, for variance reduction. But it offers a coherent point
of view about variance reduction. In important cases it offers the theoretical
possibility of zero variance. The use of approximations to variance minimizing
transformations is a powerful technique for the introduction of a priori
knowledge based on experience or approximate solution of the problem at
hand into a still exact numerical treatment based on Monte Carlo methods.

We believe that these ideas have stood us well in our research in radiation
transport, in statistical physics, and in quantum mechanics and have served
to unify them intellectually. We offer them to our readers in the hope that
our point of view will make the theory and practice of Monte Carlo more
interesting and more effective.
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XII Preface to the First Edition

This book is a distillation of some years of practice and thought about
Monte Carlo methods. As such it has benefited from the ideas and suggestions
of many friends and colleagues, too numerous to list in full. It would be
remiss not to mention some of them, however, starting with Gerald Goertzel,
who first introduced one of us (MHK) to the mixed joys of Monte Carlo
on primitive computers, and to many of the basic ideas expressed in our
book. Others from whom we have learned include particularly Harry Soodak,
Eugene Troubetzkoy, Herbert Steinberg, Loup Verlet, Robert Coveyou, Phillip
Mittleman, Herbert Goldstein, David Ceperley, Kevin Schmidt, and Geoffrey
Chester. Notes of early lectures taken by Jacob Celnik were very helpful.

We gratefully acknowledge the help and encouragement of our many
colleagues and students during the time this book was being written. We
especially thank David Ceperley for giving the original lecture on which Chapter
5 was based. Youqin Zhong and John Halton gave numerous suggestions for
improving earlier versions of the manuscript. We thank them for their efforts
and hope the final book lives up to their expectations.

New York, August 1986 Malvin H. Kalos
Paula A. Whitlock
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1
What is Monte Carlo?

1.1
Introduction

The name Monte Carlo was applied to a class of mathematical methods first used
by scientists working on the development of nuclear weapons in Los Alamos in
the 1940s. The essence of the method is the invention of games of chance whose
behavior and outcome can be used to study some interesting phenomena. While
there is no essential link to computers, the effectiveness of numerical or simulated
gambling as a serious scientific pursuit is enormously enhanced by the availability
of modern digital computers.

It is interesting, and may strike some as remarkable, that carrying out games
of chance or random sampling will produce anything worthwhile. Indeed, some
authors have claimed that Monte Carlo will never be a method of choice for other
than rough estimates of numerical quantities.

Before asserting the contrary, we shall give a few examples of what we mean and
do not mean by Monte Carlo calculations. Consider a circle and its circumscribed
square. The ratio of the area of the circle to the area of the square is π/4. It is
plausible that if points were placed at random in the square, the fraction π/4
would also lie inside the circle. If that is true (and we shall prove later that in a
certain sense it is), then one could measure πl4 by putting a round cake pan with
diameter L inside a square cake pan with side L and collecting rain in both. It is also
possible to program a computer to generate random pairs of Cartesian coordinates
to represent random points in the square and count the fraction that lies in the
circle. This fraction as determined from many experiments should be close to π/4,
and the fraction would be called an estimate for π/4. In 1 000 000 experiments, it is
very likely (95% chance) that the number of points inside the circle would range
between 784 600 and 786 200, yielding estimates of π/4 that are between 0.7846
and 0.7862, compared with the true value of 0.785398.

The example illustrates that random sampling may be used to solve a mathemat-
ical problem, in this case, evaluation of a definite integral,

I =
∫ 1

0

∫ √
1−x2

0
dx dy. (1.1)

Monte Carlo Methods. Second Edition. M.H. Kalos and P.A. Whitlock
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40760-6



2 1 What is Monte Carlo?

The answers obtained by the above procedure are statistical in nature and subject
to the laws of chance. This aspect of Monte Carlo is a drawback, but not a fatal one,
since one can determine how accurate the answer is, and obtain a more accurate
answer, if needed, by conducting more experiments. Sometimes, in spite of the
random character of the answer, it is the most accurate answer that can be obtained
for a given investment of computer time. The determination of the value of π

can of course be done faster and more accurately by non–Monte Carlo methods.
In many dimensions, however, Monte Carlo methods are often the only effective
means of evaluating integrals.

A second and complementary example of a Monte Carlo calculation is one
that Ulam [1] cited in his autobiography. Suppose one wished to estimate the
chances of winning at solitaire, assuming the deck is perfectly shuffled before
laying out the cards. Once we have chosen a particular strategy for placing one
pile of cards on another, the problem is a straightforward one in elementary
probability theory, but is also a very tedious one. It would not be difficult to
program a computer to randomize lists representing the 52 cards of a deck,
prepare lists representing the different piles, and then simulate the playing of
the game to completion. Observation over many repetitions would lead to a
Monte Carlo estimate of the chance of success. This method would in fact be
the easiest way of making any such estimate. We can regard the computer
gambling as a faithful simulation of the real random process, namely, the card
shuffling.

Nowadays, random numbers are used in many ways associated with computers.
These include, for example, computer games and generation of synthetic data
for testing. These are of course interesting, but not what we consider Monte
Carlos, since they do not produce numerical results. A definition of a Monte
Carlo method would be one that involves deliberate use of random numbers in
a calculation that has the structure of a stochastic process. By stochastic process,
we mean a sequence of states whose evolution is determined by random events.
In a computer, these are generated by a deterministic algorithm that generates a
sequence of pseudorandom numbers, which mimics the properties of truly random
numbers.

A distinction is sometimes made between simulation and Monte Carlo. In
this view, simulation is a rather direct transcription into computing terms of
a natural stochastic process (as in the example of solitaire). Monte Carlo, by
contrast, is the solution by probabilistic methods of nonprobabilistic problems
(as in the example of π). The distinction is somewhat useful, but often im-
possible to maintain. The emission of radiation from atoms and its interaction
with matter is an example of a natural stochastic process, since each event is
to some degree unpredictable (Chapter 6). It lends itself very well to a rather
straightforward stochastic simulation, but the average behavior of such radia-
tions can also be described by mathematical equations whose numerical solution
can be obtained using Monte Carlo methods. Indeed, the same computer code
can be viewed simultaneously as a ‘‘natural simulation’’ or as a solution of the
equations by random sampling. As we shall also see, the latter point of view
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is essential in formulating efficient schemes. The main point we wish to stress
here is that the same techniques directly yield both powerful and expressive
simulation and powerful and efficient numerical methods for a wide class of
problems.

We would like to return to the issue of whether Monte Carlo calculations are
in fact worth carrying out. This can be answered in a very pragmatic way: many
people use them and they have become an accepted part of scientific practice in
many fields. The reasons do not always depend on pure computational economy.
As in our solitaire example, convenience, ease, directness, and expressiveness of
the method are important assets–increasingly so as pure computational power
becomes cheaper. In addition, as asserted in discussing π, Monte Carlo meth-
ods are in fact computationally effective, compared with deterministic methods
when treating many-dimensional problems. That is why partly their use is so
widespread in operations research, in radiation transport (where problems up to
seven dimensions must be dealt with), and especially in statistical physics and
chemistry (where systems of thousands of particles can now be treated quite rou-
tinely). An exciting development in the past few years is the use of Monte Carlo
methods to evaluate path integrals associated with field theories as in quantum
chromodynamics.

1.2
Topics to be Covered

This book focuses on several major areas. The first topic addressed is a review of
some simple probability ideas with emphasis on concepts central to Monte Carlo
theory. For more rigorous information on probability theory, references to standard
texts are given. Further chapters deal with the crucial question of how random
events (or reasonable facsimiles) are programmed on a computer. Techniques
for sampling complicated distributions are necessary for applications and, equally
important, serve as a basis for illustrating the concepts of probability theory that
are used throughout.

Then we consider quadratures in finite-dimensional spaces. Attention is paid
to the important and interesting case of singular integrands, especially those
for which the variance of a straightforward estimate does not exist so that the
usual central limit theorems do not apply. These are cases for which variance
reduction methods have an immediate and direct payoff. Also explored are quasi-
Monte Carlo methods, which use low-discrepancy sequences that uniformly fill the
multidimensional space.

Finally, applications of Monte Carlo methods are discussed. An introduction to
current uses in statistical physics is given. The simulation of a simple example of
radiation transport is developed, and this naturally leads to the solution of integral
equations by Monte Carlo. The ideas are then used as a framework upon which a
relationship between random walks and integral equations could be constructed
and also to introduce the fundamentals of variance reduction for the simulation of
random walks.
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1.3
A Short History of Monte Carlo

Perhaps the earliest documented use of random sampling to find the solution
to an integral is that of Comte de Buffon [2]. In 1777, he described the follow-
ing experiment. A needle of length L is thrown at random onto a horizontal
plane ruled with straight lines a distance d(d > L) apart. What is the proba-
bility, P, that the needle will intersect one of these lines? Comte de Buffon
performed the experiment of throwing the needle many times to determine
P. He also carried out the mathematical analysis of the problem and showed
that

P = 2L

πd
. (1.2)

Some years later, Laplace [3] suggested that this idea could be used to evaluate
π from throws of the needle. This is indeed a Monte Carlo determination of π;
however, as in the first example of this chapter, the rate of convergence is slow.
It is very much in the spirit of inverting a probabilistic result to get a stochastic
computation. We would call it an analog computation nowadays [4].

Lord Kelvin [5] appears to have used random sampling to aid in evaluating
some time integrals of the kinetic energy that appear in the kinetic theory of
gases. His random sampling consisted of drawing numbered pieces of paper
from a bowl. He worried about the bias introduced by insufficient mixing of
the papers and by static electricity. Gossett (as ‘‘Student’’ [6]) used similar ran-
dom sampling to assist in his discovery of the distribution of the correlation
coefficient.

Many advances were being made in probability theory and the theory of random
walks that would be used in the foundations of Monte Carlo theory. For example,
Courant et al. [7] showed the equivalence of the behavior of certain random walks to
solutions of certain partial differential equations. In the 1930s, Enrico Fermi made
some numerical experiments that would now be called Monte Carlo calculations.1)

In studying the behavior of the newly discovered neutron, he carried out sampling
experiments about how a neutral particle might be expected to interact with
condensed matter. These led to substantial physical insight and to the analytical
theory of neutron diffusion and transport.

During the Second World War, the bringing together of such people as von
Neumann, Fermi, Ulam, and Metropolis and the beginnings of modern digital
computers gave a strong impetus to the advancement of Monte Carlo. In the
late 1940s and early 1950s, there was a surge of interest. Papers appeared that
described the new method and how it could be used to solve problems in statistical
mechanics, radiation transport, economic modeling, and other fields [8–10].
Unfortunately, the computers of that time were not really adequate to carry out
more than pilot studies in many areas. The later growth of computer power made

1) This information was communicated privately to MHK by Segre and Anderson.
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it possible to carry through more and more ambitious calculations and to learn
from failures.

At the same time, theoretical advances and putting into practice powerful error-
reduction methods meant that applications advanced far faster than implied by
sheer computing speed and memory size. The two most influential developments of
that kind were the improvements in methods for the transport equation, especially
reliable methods of ‘‘importance sampling’’ [11] and the invention of the algorithm
of Metropolis et al. [12]. The resulting successes have borne out the optimistic
expectations of the pioneers of the 1940s.

References

1 Ulam, S. (1976) Adventures of a
Mathematician, Charles Scribner’s
& Sons, New York, pp. 196–97.

2 Comte de Buffon, G. (1777)
Essai d’arithmétique morale.
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2
A Bit of Probability

2.1
Random Events

As explained in Chapter 1, a Monte Carlo calculation is a numerical stochastic
process, that is, a sequence of random events. While we shall not discuss the
philosophical question of what random events are [1, 2], we shall assume that they
do exist and that it is possible and useful to develop a computer program to produce
effective equivalents of natural random events.

We must distinguish between elementary and composite events. Elementary
events are those that we cannot (or do not choose to) analyze into still simpler
events. Normally the result (head or tail) of flipping a coin or the result (1–6) of
rolling a die are thought of as elementary events. In the case of a die, however, we
might interest ourselves only in whether the number was even or odd, in which
case there are two outcomes. Composite events are those defined from a number
of elementary events. Examples include flipping a coin twice (with four outcomes,
head–head, head–tail, tail–head, tail–tail). It is sometimes useful to talk of this
pair as a single ‘‘event’’.

As far as one knows, random events occur in nature [3]; for example, the physical
outcome of the scattering of an electron by an atom cannot be predicted with
certainty. It is difficult to be sure which natural random events are ‘‘elementary,’’
although we will simplify models of physical processes by treating some events as
elementary, and on that basis build up composite events. The distinction between
an elementary random event and others depends on one’s state of knowledge
and the depth of the analysis given to the problem. Thus, one important kind of
event, ‘‘compound elastic scattering’’ of neutrons by nuclei, is usefully analyzed for
theoretical purposes into a sequence of three elementary random events. A Monte
Carlo calculation might or might not make that distinction, depending on its intent.
On the other hand, ‘‘simple elastic scattering’’ is most likely an elementary event;
that is, it is not possible to distinguish more basic stages.

Given an elementary event with a countable set of discrete random outcomes,
E1, E2, . . . , En, . . . , there is associated with each possible outcome Ek a number
called a probability, pk, which can lie between 0 and 1,

0 ≤ pk ≤ 1.
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