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and Ihor Lubashevsky

Physics of Stochastic Processes

How Randomness Acts in Time





journals
9783527626106.jpg





Reinhard Mahnke, Jevgenijs Kaupužs,
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Preface

A wide variety of systems in nature can be regarded as many-particle ensembles
with extremely intricate dynamics of their elements. Numerous examples
are known in physics, e.g. gases, fluids, superfluids, electrons and ions in
conductors, semiconductors, plasma, nuclear matter in neutron stars, etc.
Such macroscopic systems are typically formed of 1023 –1028 particles, with
essentially erratic motion, so a description of the individual elements is really
hopeless. However, it is not actually necessary for practical tasks because on
the macroscopic level we are dealing only with cumulative effects expressed in
macroscopic variables. At this level, details of the individual particle motion
are averaged – only the mean characteristics are essential for a description of
the system dynamics. The deviation of an individual particle from the mean
behavior can then be taken into account, if necessary, in terms of random
fluctuations characterized again by some mean parameters. It should be noted
that many systems of a nonphysical nature, e.g. fish swarms and bird flocks,
vehicle ensembles, pedestrians or stock markets can be regarded (leaving aside
social aspects of their behavior) as ensembles of interacting particles.

There are several approaches to tackling many-particle systems. Dealing with
a physical object whose dynamics is based on the Newtonian or Schrödinger
equation, it is possible to start from the microscopic description and directly
write down the corresponding governing equations. Then a rather small part
of the system comprising, e.g. one, two, or three particles should be singled
out and considered individually. The effect of the other elements on this
selected part is taken into account on the average. Roughly speaking, it is in
just this way that the notion of a thermal heat bath is introduced – a small
part of the system under consideration is singled out and its interaction with
the neighboring particles is simulated in terms of stochastic energy exchange
with a certain reservoir characterized by some temperature. This approach is
the most rigorous and, as a result, the most difficult way of constructing a
bridge between the microscopic description dealing with individual particles
(atoms, molecules, etc.) and the mesoscopic continuum fields, e.g. density,
temperature, and pressure. Typically this bridge is implemented in the form
of a partial differential equation or a system of such equations governing
the distribution function of the particle or the collection of particles. We
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XII Preface

should point out that the many-particle ensembles governed by the laws of
classical Newtonian mechanics exhibit chaotic dynamics rather than stochastic
dynamics. The term chaotic refers to systems whose evolution from the initial
conditions is rigorously determined by nonrandom dynamics. Given the initial
conditions, the dynamics of such a deterministic system is formally predictable,
so it is not stochastic in a rigorous sense. However, if the system trajectories are
located inside a given bounded region and are nonperiodic, then their temporal
and spatial structure is highly intricate and in fact looks like that of stochastic
random paths. Moreover, these trajectories pass all the standard tests for
randomness so, for practical purposes, they can be regarded as stochastic. This
observation is actually one of the ways to justify introducing a thermal heat
bath characterized by stochastic energy exchange (between the small part of the
system under consideration and the surrounding particles treated as a random
reservoir at a particular temperature). The same comments concerning the
relationship between chaos and stochasticity should be addressed in time
series analysis. Without knowledge of the origin it is practically impossible to
distinguish between chaotic and stochastic behavior.

Another way to treat many-particle systems is to construct a collection of
microscopic equations governing, e.g. the dynamics of individual particles
where, for a given particle, the influence of the other particles is described
in terms of both systematic and random forces. The notion of random
forces again enables one to derive the corresponding partial differential
equations for the distribution function of particles. Indeed the random forces
should be introduced in such a way that these governing equations for the
distribution function coincide with those obtained via the approach of the
previous paragraph. As far as social, ecological, and economic systems are
concerned, postulating the appropriate form of the random forces seems to
be the only way to construct a mathematical description. This is due to such
systems being open. Moreover the behavior of their elements is so intricate and
multifactorial that a closed mathematical description is likely to be impossible.

The latter approach is precisely the main topic of this book. It is based on
probability theory or, more specifically, on the notion of stochastic processes
and the relevant mathematical constructions, which are the subject matter of
Chapters 1 and 2 (see the layout of the book shown at the end of this preface,
page XVII). On the microscopic level stochastic trajectories of the system
motion are the basic elements of the probabilistic description. It is assumed
that different stochastic realizations of the random force are independent
and also that the motion of particles does not have long-time memory. The
notion of stochastic trajectories has a long history, possibly going back to the
scientific poem De Rerum Nature (On the Nature of Things, circa 60 BC)
by Titus Lucretius Carus. Although very little is known about the Roman
philosopher, it seems he described the random motion of dust particles in air.
In 1785 Jan Ingenhousz observed the irregular motion of coal dust particles
on the surface of alcohol. Then, in 1827, the British botanist Robert Brown
also discovered random highly erratic motion of pollen particles floating in
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water under the microscope. Since that time this phenomenon has been called
Brownian motion. The generalization of the observed phenomena gave rise to
the notion of random walks where the walker dynamics is governed by both
regular and stochastic forces.

The first person who proposed a mathematical model for Brownian motion
appears to be Thorvald N. Thiele in 1880. This was followed independently by
Louis Bachelier in 1900 in his PhD thesis Théorie de la Spéculation devoted to a
stochastic analysis of the stock and option markets. He worked out mathemati-
cally the idea that the stock market prices are essentially sums of independent,
bounded random changes. The results put forward by Bechelier led to a flash
of interest in stochastic processes and corresponding probabilistic approaches.
However, it was Albert Einstein’s independent research into the problem in
his 1905 paper that brought the solution to the attention of physicists (see, e.g.
Brownian motion – Wikipedia, The Free Encyclopedia, 23 October 2007).

The qualitative explanation of Brownian motion as a kinetic phenomenon
was put forward by several authors. As mentioned above, it is possible to add
random forces to the dynamical laws which were proposed for the first time
by the French physicist Paul Langevin. (This resulted in a new mathematical
field now known as stochastic differential equations.) The appropriate partial
differential equations for the distribution function could then be derived based
on the Langevin equation.

It is possible to develop the probabilistic description of a stochastic process
in the opposite way – the equations governing the distribution function are
postulated and the appropriate Langevin equation is constructed in order to
give these equations. This idea was implemented for the first time by Albert
Einstein deriving the diffusion equation for Brownian particles in his famous
paper Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen published
in Annalen der Physik (1905). The equation for diffusive motion was then
developed by Adriaan Fokker (1914) and later more completely and generally
by Max Planck (1918), leading to the transport equation now known as the
Fokker–Planck equation. There are also approaches to describing random
processes in discrete phase spaces based on ordinary differential equations
(e.g. the probability balance law known as the master equation). If a stochastic
process develops in discrete space and time the cellular automata models can be
used, which form a distinct branch of the theory of stochastic processes. These
problems and their mutual interrelationship are considered in Chapters 3–5
which adopt one of the main assumptions in the theory of stochastic
processes, the Markovian approximation. According to this approximation, the
displacement of a wandering particle on mesoscopic scales can be considered
as the result of many small independent identically distributed steps. This
reasoning is very close to what is now called a Kramers–Moyal expansion and
has been used to derive the Fokker–Planck equation.

To elucidate the main notions of stochastic processes, Chapters 6 to 8
consider in detail some rather simple examples of discrete random walks and
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continuous Brownian motion. In particular, they touch on the problem of
reaching a boundary for the first time. This problem plays an essential role in
many physical phenomena such as escaping from a potential well, anomalous
diffusion in fractal media, heat diffusion in living tissue, etc.

As mentioned above, the notion of stochastic processes can form the initial
mathematical description for objects of a nonphysical nature, e.g. social,
ecological, and economic systems. This is a novel branch of science where
only the first steps have been taken. It turns out that, in spite of their
nonphysical nature, the cooperative phenomena in such systems (for example,
self-organization processes in congested traffic or motion of pedestrians and
social animals) exhibit a wide variety of properties commonly met in physical
systems (for example in gas–liquid phase transitions, spinodal decomposition
in solid solutions, ferromagnetic transitions, etc.). So, in some sense, the
stochastic description of many-particle ensembles with strong interaction
between their elements is of a more general nature than the basic laws of the
corresponding mechanical systems.

These questions are considered in Chapters 9 and 10 dealing with the
aggregation of particles out of an initially homogeneous situation. This
phenomenon is well known in physics, as well as in other branches of
the natural sciences and engineering. The formation of bound states as an
aggregation process is due to self-organization. The formation of car clusters
(jams) at overcritical densities in traffic flow is an analogous phenomenon in
the sense that cars can be considered as (strong asymmetrically) interacting
particles. The development of traffic jams in vehicular flow is an everyday
example of the occurrence of nucleation and aggregation in a system of many
point-like cars. Traffic jams are a typical signature of the complex behavior of
the many-car system. The master equation approach to stochastic processes
can be applied to describe the car-cluster formation on a road in partial analogy
to droplet formation in a supersaturated vapor.

This jamming transition is very similar to conventional phase transitions
appearing in the study of critical phenomena. Traffic-like collective movements
are observed at almost all levels of biological systems. We study the energy
balance of motorized particles in a many-car system. New dynamical features,
such as steady state motion with energy flux, also appear. This phenomenon
is also observed in a system of active Brownian particles with energy take-up
and energy dissipation.

The last two Chapters 11 and 12 are devoted to some modern applications in
the physics of stochastic processes. First, we consider nonequilibrium phase
transition induced by noise or caused by dynamical traps. Probably, the former
type of transition can only be described using the Langevin equation with
multiplicative noise, that is, stochastic equations for which the intensity of the
random forces depends on the system state. During the last few decades it has
been demonstrated that the behavior of such systems can be rather complex;
in particular, the appearance of new states can be induced by noise as its
intensity increases and attains certain critical values. The second type of phase
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transition seems to be a commonly encountered phenomenon in systems, for
example, congested traffic flow, where the human factor is essential. Such
transitions are due to the existence of some regions in the corresponding
phase space where the system dynamics is stagnated. Following the notions
introduced in the theory of Hamiltonian dynamics with complex behavior,
these regions are called dynamical traps.

Finally, we turn to the kinetics of many-particle systems. The zero-range
process, introduced in 1970 by Frank Spitzer as a system of interacting
random walks, serves as a generic model in which rigorous large-scale
description of the dynamics for arbitrary initial densities is possible in terms of
a hydrodynamic equation for the coarse-grained particle density. It allows one
to derive a criterion for phase separation in one-dimensional driven systems
of interacting particles, e.g. in traffic flow, as well as to describe nontrivial
features of stochastic dynamics like metastability.

Nowadays another aspect which should be taken into account is non-
Gaussian behavior; that is, long-tail distributions which are observed in stock
market data as well as in transportation theory. In this sense, applied sciences
such as sociology and econophysics, biophysics and engineering, consider
extreme events in nature and society and deal with effects (like material
rupture) which can be investigated only by the probabilistic approach.

In concluding this preface, we would like to underline the spirit in which
this book is intended. Here we are in agreement with other authors of books on
random processes; in particular, A. J. Chorin and O. H. Hald in Stochastic Tools
in Mathematics and Science state: ‘When you asked alumni graduates from
universities in Europe and US moving into nonacademic jobs in society and
industry what they actually need in their business, you found that most of them
did stochastic things like time series analysis, data processing etc., but that had
never appeared in detail in university courses’. So the general aim of the present
book is to provide stochastic tools for the multidisciplinary understanding of
random events and to illustrate them with many beautiful applications in
different disciplines ranging from econophysics to sociology. The central
problem under consideration in this book is thus the theoretical modeling
of complex systems, that is, many-particle systems with nondeterministic
behavior. In contrast to the established classical deterministic approach
based on trajectories, we develop and investigate probabilistic dynamics using
stochastic tools, such as stochastic differential equations, Fokker–Planck and
master equations, to obtain the probability density distribution. The stochastic
technique provides an exact and more understandable background to describe
complex systems.

The authors have been working for years on the problems to which this
monograph is devoted. Nevertheless, the book is also the result of long-
standing scientific cooperation with a number of colleagues from all over
the world. The authors thank Werner Ebeling, Rudolf Friedrich, Vilnis
Frishfelds, Namik Gusein-Zade, Peter Hänggi, Rosemary Harris, Andreas
Heuer, Dirk Helbing, Alexander Ignatov, Andris Jakovičs, Holger Kantz,
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Boris Kerner, Reinhart Kühne, Kai Nagel, Holger Nobach, Gerd Röpke, Yuri
and Michael Romanovsky, Anri Rukhadze, Andreas Schadschneider, Michael
Schreckenberg, Gunter M. Schütz, Lutz Schimansky-Geier, Yuki Sugiyama,
Steffen Trimper, Peter Wagner and Hans Weber, for fruitful discussions.

Special thanks are due to Friedrich Liese from the Institute of Mathematics
at Rostock University for delivering a joint lecture series on Stochastic Processes
from the mathematical (F. Liese) as well as physical (R. Mahnke) points of
view and for preparing Chapter 1 of this book – Fundamental Concepts.

The contents of this book took shape over several years, based on research
and lectures performed at different locations. One of the recent lecture
presentations took place in the summer term of 2007 at Rostock University.
The authors have benefited from the contributions of a number of students. We
would like to express our gratitude to the active participants, Michael Brüdgam,
Matthias Florian, Peter Grünwald, Hannes Hartmann, Julia Hinkel, Bastian
Holst, Thomas Kiesel, Susanne Killiches, Knut Klingbeil, Christof Liebe,
Daniel Münzner, Ralf Remer, Elisabeth Schöne, Philipp Sperling, Marten
Tolk, Andris Voitkans, Norman Wilken, and Mathias Winkel, together with
many other students, PhD students and co-workers.

Finally, we would like to acknowledge Andrey Ushakov, a student from
Moscow Technical University of Radiophysics, Engineering and Automation,
who has contributed to Section 3.7 – Three-Level System.

The authors acknowledge support from the Deutsche Forschungsgemein-
schaft via grant MA 1508/8.

Rostock, Riga, Moscow Reinhard Mahnke
October 2008 Jevgenijs Kaupužs

Ihor Lubashevsky
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3

1
Fundamental Concepts

1.1
Wiener Process, Adapted Processes and Quadratic Variation

Stochastic processes represent a fundamental concept used to model the de-
velopment of a physical or nonphysical system in time. It has turned out that
the apparatus of stochastic processes is powerful enough to be applied to many
other fields, such as economy, finance, engineering, transportation, biology and
medicine.

To start with, we recall that a random variable X is a mapping X : � → R that
assigns a real value to each elementary event ω ∈ �. The concrete value X (ω) is
called a realization. It is the value we observe after the experiment has been done.
To create a mathematical machine we suppose that a probability space (�, F,P) is
given. � is the set of all elementary events and F is the family of events we are
interested in. It contains the set of all elementary events � and is assumed to be
closed with respect to forming the complement and countable intersections and
unions of events from this collection of events. Such families of sets or events
are called σ-algebras. The character σ indicates that even the union or intersection
of countably many sets belongs to F as well. For mathematical reasons we have
to assume that ‘events generated by X ’, i.e. sets of the type {ω : X (ω) ∈ I}, where
I is an open or closed or semi-open interval, are really events; i.e. such sets are
assumed also to belong to F. Unfortunately the collection of all intervals of the real
line is not closed with respect to the operation of union. The smallest collection
of subsets of the real line that is a σ-algebra and contains all intervals is called the
σ-algebra of Borel sets and will be denoted by B. It turns out that we have not only
{ω : X (ω) ∈ I} ∈ F for any interval but even {ω : X (ω) ∈ B} ∈ F for every Borel set
B. This fact is referred to as the F-measurability of X .

It turns out that for any random variable X and any continuous or monotone
function g the function Y(ω) = g(X (ω)) is again a random variable. This statement
remains true even if we replace g by a function from a larger class of functions,
called the family of all measurable functions, to which not only the continuous
functions but also the pointwise limit of continuous functions belong. This class
of functions is closed with respect to ‘almost all’ standard manipulations with
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4 1 Fundamental Concepts

functions, such as linear combinations and products and finally forming new
functions by plugging one function into another function.

The probability measure P is defined on F and it assigns to each event A ∈ F

a number P(A) called the probability of A. The mappings A �→ P(A) satisfy the
axioms of probability theory, i.e. P is a non-negative σ-additive set function on F

with P(�) = 1.
We assume that the reader is familiar with probability theory at an introductory

course level and in the following we use basic concepts and results without giving
additional motivation or explanation.

Random variables or random vectors are useful concepts to model the random
outcome of an experiment. But we have to include the additional variable ‘time’
when we are going to study random effects which change over time.

Definition 1.1 By stochastic process we mean a family of random variables (Xt)t≥0

which are defined on the probability space (�, F,P).

By definition Xt is in fact a function of two variables Xt(ω). For fixed t this
function of ω is a random variable. Otherwise, if we fix ω then we call the function
of t defined by t �→ Xt(ω) a realization or a path. This means that the realization
of a stochastic process is a function. Therefore stochastic processes are sometimes
referred to as random functions. We call a stochastic process continuous if all
realizations are continuous functions.

For the construction of a stochastic process, that is, of a suitable probability space,
one needs the so-called finite dimensional distributions which are the distributions
of random vectors (Xt1 , . . . , Xtn ), where t1 < t2 < · · · < tn is any fixed selection. For
details of the construction we refer to Øksendal [175].

A fundamental idea of modeling experiments with several random outcomes
in both probability theory and mathematical statistics is to start with independent
random variables and to create a model by choosing suitable functions of these
independent random variables. This fact explains why, in the area of stochastic
processes, the particular processes with independent increments play an excep-
tional role. This, in combination with the fundamental meaning of the normal
distribution in probability theory, makes clear the importance of the so-called
Wiener process, which will now be defined.

Definition 1.2 A stochastic process (Wt)t≥0 is called a standard Wiener process or
(briefly) Wiener process if:

1) W0 = 0,
2) (Wt)t≥0 has independent increments, i.e. Wtn −Wtn−1 , . . . , Wt2 −Wt1 , Wt1 are in-

dependent for t1 < t2 < · · · < tn,
3) For all 0 ≤ s < t, Wt −Ws has a normal distribution with expectation E(Wt −

Ws) = 0 and variance V(Wt −Ws) = t− s,
4) All paths of (Wt)t≥0 are continuous.

The Wiener process is also called Brownian motion. This process is named
after the biologist Robert Brown whose research dates back to the 1820s. The



1.1 Wiener Process, Adapted Processes and Quadratic Variation 5

mathematical theory began with Louis Bachelier (Théorie de la Spéculation, 1900)
and later by Albert Einstein (Eine neue Bestimmung der Moleküldimensionen,
1905). Norbert Wiener (1923) was the first to create a firm mathematical basis for
Brownian motion.

To study properties of the paths of the Wiener process we use the quadratic
variation as a measure of the smoothness of a function.

Definition 1.3 Let f : [0, T ] → R be a real function and zn : a = t0,n < t1,n < · · · <
tn,n = b, a sequence of partitions with

δ(zn) := max
0≤i≤n−1

(ti+1,n − ti,n) → 0, as n →∞.

If limn→∞
∑n−1

i=0 (f (ti+1,n)− f (ti,n))2 exists and is independent of the concrete sequence
of partitions then this limit is called the quadratic variation of f and will be denoted
by [f ]T .

We show that the quadratic variation of a continuously differentiable function
is zero.

Lemma 1.1 If f is differentiable in [0, T ] and the derivative f ′(t) is continuous then
[f ]T = 0.

Proof . Put C = sup0≤t≤T |f ′(t)|. Then |f (t)− f (s)| ≤ C|t − s| and

n−1∑
i=0

(f (ti+1,n)− f (ti,n))2 ≤ C2
n−1∑
i=0

(ti+1,n − ti,n)2

≤ C2δ(zn)T →n→∞ 0.

If (Xt)0≤t≤T is a stochastic process then the quadratic variation [X ]T is a random
variable such that for any sequence of partitions zn with δ(zn) → 0 it holds for
n →∞

n−1∑
i=0

(Xti+1,n − Xti,n )2 →P [X ]T ,

where→P is the symbol for stochastic convergence. Whether the quadratic variation
of a stochastic process does or does not exist depends on the concrete structure
of this process and has to be checked in a concrete situation and it is often more
useful to deal with the convergence in mean square instead of the stochastic
convergence. The relation between the two concepts provides the well known
Chebyshev inequality which states that, for any random variables Zn, Z

P(|Zn − Z| > ε) ≤ 1

ε2
E(Zn − Z)2.
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Hence the mean square convergence E(Zn − Z)2 → 0 of Zn to Z implies the
stochastic convergence P(|Zn − Z| > ε) → 0 of Zn to Z.

Now we are going to calculate the quadratic variation of a Wiener process. To
this end we need a well known fact. If V has a normal distribution with expectation
µ and variance σ2 then

EV = µ, V(V) = E(V − µ)2 = σ2

E(V − µ)3 = 0, E(V − µ)4 = 3σ4.

If µ = 0 then

E(V2 − σ2)2 = E(V4 − 2σ2V2 + σ4)

= 3σ4 − σ4 = 2σ4. (1.1)

Theorem 1.1 If (Wt)0≤t≤T is a Wiener process then the quadratic variation

[W]T = T.

Proof . Let zn be a sequence of partitions of [0, T ] with δ(zn) → 0 and put

Zn =
n−1∑
i=0

(Wti+1,n −Wti,n )2.

From the definition of the Wiener process we get that E(Wti+1,n −Wti,n )2 = ti+1,n −
ti,n. As the variance of a sum of independent random variables is just the sum of
the variances we get from the independent increments

E(Zn − t)2 = E
(

n−1∑
i=0

(Wti+1,n −Wti,n )2 − (ti+1,n − ti,n)

)2

= V(Zn) =
n−1∑
i=0

V((Wti+1,n −Wti,n )2)

=
n−1∑
i=0

E((Wti+1,n −Wti,n )2 − (ti+1,n − ti,n))2

= 2
n−1∑
i=0

(ti+1,n − ti,n)2 ≤ 2δ(zn)T → 0,

where for the last equality we have used (1.1).

The statement [W]T = T is remarkable from different points of view. The
exceptional fact is that the quadratic variation of this special stochastic process
(Wt)0≤t≤T is a degenerate random variable, it is the deterministic value T . This
value is non-zero. Therefore we may conclude from Lemma 1.1 that the paths of
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Figure 1.1 Collection of realizations Xt of the special
stochastic process (Wt)0≤t≤T named after Norbert Wiener.

a Wiener process cannot be continuously differentiable as otherwise the quadratic
variation must be zero. The fact that the quadratic variation is non-zero implies
that the absolute value of an increment Wt −Ws cannot be proportional to t− s.
From here we may conclude that the paths of a Wiener process are continuous but
not differentiable and therefore strongly fluctuating. The illustrative picture (see
Figure 1.1) of simulated realizations of a Wiener process underlines this statement.

One of the main problems in the theory of stochastic processes is to find
mathematical models that describe the evolution of a system in time and can
especially be used to predict, of course not without error, the values in the future
with the help of information about the process collected from the past. Here and in
the sequel by ‘the collected information’ we mean the family of all events observable
up to time t. This collection of events will be denoted by Ft, where we suppose
that Ft is a σ-algebra. It is clear that Fs ⊆ Ft ⊆ F. Such families of σ-algebras are
referred to as a filtration and will be denoted by (Ft)≥0. Each stochastic process
(Xt)t≥0 generates a filtration by the requirement that Ft is the smallest σ-algebra
that contains all events {Xs ∈ I} where I is any interval and 0 ≤ s ≤ t. This filtration
will be denoted σ((Xs)0≤s≤t). We call any stochastic process (Yt)t≥0 adapted to the
filtration (Ft)≥0 (short Ft-adapted) if all events that may be constructed by the
process up to time t belong to the class of observable events, i.e. already belong
to Ft. The formal mathematical condition is σ((Ys)0≤s≤t) ⊆ Ft for every t ≥ 0. If
for any fixed t and any random variable Z all events {Z ∈ I}, I ⊆ R, belong to Ft

and it holds that EZ2 < ∞ then there are Xt1,n, . . . , Xtmn ,n, ti,j ≤ t and (measurable)
functions fn(Xt1,n, . . . , Xtmn ,n) such that

E(Z − fn(Xt1,n, . . . , Xtmn ,n))2 → 0.

We omit the proof which would require additional results from measure theory. We
denote by Pt(X ) the class of all such random variables. Pt(X ) may be considered
as the past of the process (Xt)t≥0.
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Example 1.1 Let (Wt)t≥0 be a Wiener process and Ft = σ((Ys)0≤s≤t).
The following processes are Ft-adapted Xt = W2

t , Xt = W2
0,5·t +W4

t , Xt = (W4
t /

1+W2
0,1·t). The process Wt+1 is not Ft-adapted.

We fix the interval [0, T ], set Ft = σ((Ws)0≤s≤t) and denote by Et(W) ⊆ Pt(W) the
collection of all elementary Ft-adapted processes, that is of all processes that may
be written as

Yt =
n−1∑
i=0

Xti I[ti,ti+1)(t), Xti ∈ Pti (W), (1.2)

where 0 = t0 < t1 < · · · < tn and

I[a,b)(t) =
{

1 if a ≤ t < b,
0 if else.

The Ft-adeptness of the process Yt follows from the fact that exclusively random
variables Xti with ti ≤ t appear in the sum. The process Yt is piecewise constant, it
has the value Xti in [ti, ti+1) and jumps at ti with a height

∆Yti = Xti − Xti−1 .

1.2
The Space of Square Integrable Random Variables

By H2 we denote the space of all random variables X with EX2 < ∞. Here and in
the sequel we identify random variables X and Y that take on different values only
with probability zero, i.e. P(X 	= Y) = 0. Set

〈X , Y〉 := E(XY).

It is not hard to see that 〈X , Y〉 satisfies all conditions that are imposed on a scalar
product, i.e. 〈X , Y〉 is symmetric in X and Y , it is linear in both X and Y , and it
holds that

〈X , X〉 ≥ 0,

where the equality is satisfied if and only if X = 0.

The norm of a random variable X is given by

‖X‖ =
√
EX2,

and the distance of X and Y is the norm of X − Y . Recall that a sequence of random
variables Xn is said to be convergent in mean square to X if E(Xn − X )2 = 0.
Hence this type of convergence is nothing other than the norm convergence
limn→∞ ‖Xn − X‖ = 0. A sequence of random variables {Xn} is said to be a Cauchy
sequence if
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lim
n,m→∞‖Xn − Xm‖ = 0.

For a proof of the following theorem we refer to Øksendal [175].

Theorem 1.2 To each Cauchy sequence Xn ∈ H2 there is some X ∈ Z2 with

lim
n→∞‖Xn − X‖ = 0,

i.e. the space is complete.

It is clear that H2 is a linear space. As we have already equipped H2 with a
scalar product we get, together with the completeness, that H2 is a Hilbert space.
This fact allows us to apply methods from the Hilbert space theory to problems of
probability theory.

A subset T ⊆ H2 is called closed, if every limit X of a sequence Xn ∈ T belongs
to T again. If L ⊆ H2 is a closed linear subspace of H2 then there is some element
in L that best approximates X .

Theorem 1.3 If L ⊆ H2 is a closed linear subspace of H2, then to each X ∈ H2 there is
a random variable in L, denoted by �LX ∈ L and called the projection of X on L, such
that

inf
Y∈L

‖X − Y‖ = ‖X −�LX‖ .

Proof . Let Yn ∈ L be a minimum sequence, i.e.

lim
n→∞‖X − Yn‖ = inf

Y∈L
‖X − Y‖ .

Then Ymn is a minimum sequence again. Because∥∥∥∥X − 1

2
(Yn + Ymn )

∥∥∥∥ ≤ 1

2
‖X − Yn‖ + 1

2

∥∥X − Ymn

∥∥
1
2 (Yn + Ymn ) is also a minimum sequence. Then

lim
n→∞

[
1

2
‖X − Yn‖2 + 1

2

∥∥X − Ymn

∥∥2 −
∥∥∥∥X − 1

2
(Yn + Ymn )

∥∥∥∥2
]
= 0.

For any random variables U, V it holds that

1
2
‖U‖2 + 1

2
‖V‖2 −

∥∥∥∥1
2

(U + V)

∥∥∥∥2

= E
(

1
2

U2 + 1
2

V2 −
(

1
2

(U + V)
)2

)

= 1

4
E (U − V)2 = 1

4
‖U − V‖2 .

Putting U = X − Yn, V = X − Ymn we arrive at

1
2
‖X − Yn‖2 + 1

2

∥∥X − Ymn

∥∥2 −
∥∥∥∥X − 1

2
(Yn + Ymn )

∥∥∥∥2

= 1

4

∥∥Yn − Ymn

∥∥2 → 0.
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As mn was an arbitrary sequence we see that Yn is a Cauchy sequence and converges,
by the completeness of H2, to some random variable �LX that belongs to L since
L is closed by assumption.

Without going into detail we note that the projection �LX is uniquely determined
in the sense that, for every Z ∈ L which also provides a best approximation, it holds
that

P(�LX 	= Z) = 0. (1.3)

The projection �LX can be also characterized with the help of conditions imposed
on the error X −�LX .

Corollary 1.1 It holds that Y = �LX if and only if Y ∈ L and Y − X ⊥ L, i.e.

〈Y − X , Z〉 = 0 for every Z ∈ L. (1.4)

Proof . 1. Assume Y = �LX . Then Y ∈ L by the definition of the projection.

We consider

g(t) = ∥∥(X − Y)− tZ
∥∥2 = ‖X − Y‖2 + t2 ‖Z‖2 − 2t 〈Y − X , Z〉 .

By the definition of �LX the function g(t) attains its minimum at t = 0. Hence

g′(0) = −2 〈Y − X , Z〉 = 0

which implies 〈Y − X , Z〉 = 0.
2. If Y ∈ L satisfies (1.4) then for every U ∈ L

‖X −U‖2 = ‖X − Y‖2 + 2 〈X − Y , Y −U〉 + ‖Y −U‖2 .

As Z = Y −U ∈ L we see that the middle term vanishes. Hence the right-hand
term is minimal if and only if U = Y .

The simplest prediction of a random variable X is a constant value. Which value
a is the best one ? It is easy to see that the function

ϕ(a) = E(X − a)2

attains the minimum at a0 = EX . Consequently, if L consists of constant random
variables only, then �LX = EX . This is the reason why, for any closed linear
subspace, we call the projection �LX the conditional expectation given L. In this
case we tacitly assume that all constant random variables are contained in L. As L
is a linear space this is equivalent to the fact that Z0 ≡ 1 ∈ L. If this condition is
satisfied then we write

E(X |L) := �LX .

Choosing Z = 1 in (1.4) we get the following.


