
Photosynthetic Protein Complexes

A Structural Approach

Edited by
Petra Fromme





Innodata
File Attachment
9783527623471.jpg





Photosynthetic 
Protein Complexes

Edited by

Petra Fromme



Related Titles

Collings, A. F., Critchley, C. (eds.)

Artifi cial Photosynthesis
From Basic Biology to Industrial Application

2005

ISBN: 978-3-527-31090-6

Kahl, G., Meksem, K. (eds.)

The Handbook of Plant Functional Genomics
Concepts and Protocols

2008

ISBN: 978-3-527-31885-8

Meksem, K., Kahl, G. (eds.)

The Handbook of Plant Genome Mapping
Genetic and Physical Mapping

2005

ISBN: 978-3-527-31116-3

Roberts, K. (ed.)

Handbook of Plant Science
2 Volume Set

2007

ISBN: 978-0-470-05723-0

Buchner, J., Kiefhaber, T. (eds.)

Protein Folding Handbook

2005

ISBN: 978-3-527-30784-5

Tamm, L. K. (ed.)

Protein-Lipid Interactions
From Membrane Domains to Cellular Networks

2005

ISBN: 978-3-527-31151-4



Photosynthetic Protein Complexes

A Structural Approach

Edited by
Petra Fromme



The Editor

Prof. Dr. Petra Fromme

Department of Chemistry and Biochemistry
Arizona State University
PO Box 871604
Tempe, Arizona 85287-1604
USA

All books published by Wiley-VCH are carefully 
produced. Nevertheless, authors, editors, and 
publisher do not warrant the information 
contained in these books, including this book, 
to be free of errors. Readers are advised to keep 
in mind that statements, data, illustrations, 
procedural details or other items may 
inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from 
the British Library.

Bibliographic information published by the 
Deutsche Nationalbibliothek
Die Deutsche Nationalbibliothek lists this 
publication in the Deutsche Nationalbibliografi e; 
detailed bibliographic data are available on the 
Internet at <http://dnb.d-nb.de>.

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim

All rights reserved (including those of translation 
into other languages). No part of this book may 
be reproduced in any form – by photoprinting, 
microfi lm, or any other means – nor transmitted 
or translated into a machine language without 
written permission from the publishers. 
Registered names, trademarks, etc. used in this 
book, even when not specifi cally marked as such, 
are not to be considered unprotected by law.

Composition SNP Best-set Typesetter Ltd., 
Hong Kong
Printing betz-druck GmbH, Darmstadt
Bookbinding Litges & Dopf GmbH, 
Heppenheim

Printed in the Federal Republic of Germany
Printed on acid-free paper

ISBN: 978-3-527-31730-1



 Dedication             

 Horst Tobias Witt
1922 – 2007 

 This book is dedicated to Horst Tobias Witt, whose heart beat for Photosynthesis, 
until his last breath. He was one of the leading fi gures of Photosynthesis and he 
is greatly missed by all of us. 

 Horst Tobias Witt devoted his entire scientifi c career to unraveling the secrets 
of Photosynthesis. Early on in his scientifi c career, he was fascinated by energy 
conversion, and by the ability of plants to split water. He once even told me the 
story of how it had very nearly barred him from getting his Ph.D.! While he was 
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 VI  Dedication

working in the physics department at the Georg - August - University of G ö ttingen, 
he secretly grew algae in his drawer to study the process of photosynthesis and 
water splitting. One weekend, there was a leak in the system    –    which led to a spill 
of green algae solution fl owing out under the doorway of the lab. This was discov-
ered by his Ph.D. advisor Professor Dr. Robert Pohl. He confronted Horst with 
two options: either concentrate his efforts on his assigned Ph.D. topic, in solid 
state physics or change his focus to Photosynthesis    –    but with the requirement of 
solving the mechanism of water splitting in his Ph.D. thesis. Witt, however, was 
very smart    –    and, knowing that the latter would be a lifetime project, decided to 
graduate as soon as possible by placing his effort on the given topic. He would 
then focus the rest of his life on the goal of unraveling the secrets of 
photosynthesis. 

 After fi nishing his Dissertation in the fi eld of solid state physics, he joined the 
Max Planck Institute of Physical Chemistry in G ö ttingen, Germany, in 1950. 
There, he worked with Manfred Eigen and Theodor F ö rster and started to study 
the kinetics of the photoreactions in Photosynthesis using fl ash photometry to 
identify the major redox cofactors of the electron transport chain by their spectral 
properties. He moved to the University of Marburg in 1955, where he and his 
coworkers were key players in the discovery of two separate light reactions    –    a 
major breakthrough in the understanding of Photosynthesis    –    which were discov-
ered at the same time and independently by three groups: Witt ’ s group, the group 
of Bessel Kok and the group of Lou Dysens. 

 In 1962, he accepted the position of Director at the Max Volmer Institute, at the 
Technical University Berlin, where he changed its image and research focus from 
a physical - chemical one to one centered on the fi eld of Biophysical Chemistry. 
This research institute subsequently became one of the major research institutions 
in the fi eld of photosynthesis. 

 He accepted the position in Berlin one year after the wall was built and the 
transition from Marburg to Berlin was diffi cult for his wife Dr. Ingrid Witt and 
their three children, Roland, Carola and Ingrid. His family had to make many 
sacrifi ces over the years to his devotion to Photosynthesis, but this did not hinder 
Dr. Ingrid Witt in making the major discovery, along - side her husband, of the fi rst 
crystals of Photosystem I in the late 1980s. Over the years, Witt had many offers 
to join other universities in Germany and around the globe, including offers to 
become Director of the Max Planck Institute, but he turned them all down. He 
did not wanted to leave the very productive research environment in Berlin, where 
he stayed and was active in research until his heart stopped beating on the 14th 
of May 2007. 

 The discoveries of Horst Tobias Witt and his coworkers are too numerous to 
list them all in this short dedication, but I want to highlight at least a few examples. 
It is to Witt and his coworkers that we can attribute identifi cation of the reaction 
center pigment in Photosystem II as a chlorophyll a, with an absorption maximum 
of 680nm (P680). It was also they who identifi ed a phylloquinone (Q A ) as the stable 
electron acceptor in Photosystem II    –    and discovered the role of the plastoquinone 
pool and the electrochromic effect as a consequence of the electrochromic poten-
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tial    –    thereby providing strong experimental evidence for the chemiosmotic hypo-
thesis of ATP synthesis by Mitchell. 

 HT Witt was a strong personality, and always worked with young, enthusiastic 
and creative people. Many of them became major key players in the fi eld of Pho-
tosynthesis in their own right. Gernot Renger, Ulrich Siggel, Wolfgang Junge, 
Berd Rumberg, Wolfgang Haehnel, Peter Gr ä ber, Eberhard Schlodder, Klaus 
Brettel, Matthias R ö gner and Jan Dekker, just to name a few, have worked at the 
Max Volmer Institute and collaborated with HT Witt. They have all made major 
discoveries and are leading experts in the fi eld. 

 By the beginning of the 1980 ’ s, most of the cofactors of the electron transport 
chain had been discovered; many of them by through the efforts of HT Witt and 
his group of collaborators. However, interpretation of the spectroscopic results 
was diffi cult without structural information on the spatial arrangement of the 
proteins and cofactors of the electron transport chain. HT Witt was very excited 
when the structure of the fi rst membrane protein, the purple bacterial reaction 
center, was discovered in 1985 by the pioneering work of Hartmut Michel and 
Johann Deisenhofer, who crystallized the protein complex and received the Nobel 
award for their work together with Robert Huber. Now, Witt ’ s dream became to 
crystallize both Photosystem I and II    –    a task which many people considered 
impossible, taking the much greater complexity and instability of the Photosys-
tems into account. He fi rst tried to crystallize Photosystem II, as this protein was 
his  “ heartblood ” . But his wife, Dr. Ingrid Witt, who worked with him on the crys-
tallization project, convinced him to change gears and try isolating and crystalliz-
ing Photosystem I. They acquired the fi rst crystals of Photosystem I in 1988. When 
I joined the group in 1990, I had the great pleasure of working with Ingrid Witt 
for three month, before she fi nally retired and I continued her work. The projects 
on structure determination of Photosystem I and II were a collaboration of our 
group at the Max Volmer Institute at the TU - Berlin and the group of Norbert 
Krau ß  and Wolfram Saenger at the FU - Berlin. In 1993, the fi rst crystal structure 
of Photosystem I was determined at a resolution of 6  Å     –    and the atomic structure 
was fi nally solved at 2.5  Å  in 2001. This is still the largest membrane protein that 
has ever been crystallized, consisting of 36 individual proteins and 381 cofactors. 

 At the end of the 1990, Athina Zouni joined our group as post - Doctoral fellow, 
to work with us on the crystallization of Photosystem II. I still remember that we 
packed a print - out of the diffraction pattern of the fi rst PSII crystals in a gift box, 
which we gave HT Witt as a gift for his birthday on March 1, 1998. He was very 
excited. Taking all the experience with Photosystem I crystallization into account, 
it took only three years to improve the crystals and solve the fi rst structure of water 
oxidizing complex of Photosystem II at a resolution of 3.8  Å , in 2001. For the fi rst 
time, the location and shape of the water - oxidizing Mn cluster was discovered    –    and 
Witt ’ s dream of so many years fi nally came true at the age of 79. He was now able 
to see, for the fi rst time, the site of water splitting. All further structures that have 
been published at improved resolution are based on the same crystals from the 
thermophilic cyanobacterium,  TS. elongatus , that had been discovered by HT Witt 
and his coworkers. 
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 HT Witt was an elected member of the Berlin - Brandenburgische Akademie 
der Wissenschaften, Deutsche Akademie der Naturforscher Leopoldina Halle, 
Akademie der Wissenschaften zu G ö ttingen and  Ö sterreichischen Akademie der 
Wissenschaften. He has received numerous scientifi c awards and honors for his 
work including the Otto - Warburg Medal, the Peter - Mitchell Medal, the Feldberg -
 Prize and the Charles - F. Ketterling Prize. In 2001 he became honorary doctorate 
(Dr. h.c.) of the University of G ö ttingen and at the 4th of December 2006 he 
received one of the most prestigious honors of Germany: the  “ Bundesverdienst-
kreuz 1. Klasse ”  (Federal Cross of Merit 1st class). 

 HT Witt will be always remembered as a legend, and his life shows that keeping 
dreams and curiosity alive will allow scientists to fi nally unravel the secrets of one 
the great mysteries of Nature: Photosynthesis. 

 We will all keep HT Witt in our best memories. He is greatly missed by his 
colleagues, friends and his family.        
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 Preface   

   XVII

       Photosynthesis is the most important biological processes on earth. It converts 
light energy from the sun into chemical energy, and provides a food source for all 
higher life on earth. All fossil fuels have been produced by the photosynthetic 
process. Oxygenic Photosynthesis changed the atmosphere from anoxic to oxygen -
 rich 2.5 billion years ago, by using water as the electron donor for the photosyn-
thetic process. All of the oxygen in the atmosphere, which is essential for all 
respiratory processes, is produced by this route. The appearance and rise of abun-
dant atmospheric oxygen has also resulted in huge changes in the geology of our 
planet and allowed formation of the ozone layer, which protects life on the surface 
of the earth from highly damaging UV radiation. 

 Interest in Photosynthesis goes far beyond the academic, since understanding 
of the structures and molecular details of the processes has huge implications for 
the future of mankind. Discovery of the molecular mechanisms of Photosynthesis 
holds the clue for solving the energy crisis, forming the basis for development of 
new routes towards biological energy sources. 

 Nature has been developing and optimizing Photosynthesis for the past 2.5 
billion years. Light is captured by huge antenna systems and transferred to the 
photosynthetic reaction centers, which are large, nanoscale, biosolar energy con-
verters consisting of more than 100   000 atoms each. The electrons for these events 
are extracted from water, which is split into oxygen and protons. Nature uses a 
fundamental electrical concept for the primary energy conversion process. First, 
the membrane is  “ charged ” , like a battery, during the event of electron and proton 
transfer. Then, the energy is stored in the form of chemical bonds, in the high -
 energy molecule ATP, as well as in the form of reduced hydrogen, as NADPH. 
These molecules are later used in the  “ dark ”  reactions of Photosynthesis, to build 
up carbohydrates and all other biomolecules in the biosphere. The primary pro-
cesses in Photosynthesis drive all higher life on our planet Earth. Once we are able 
to understand how nature has accomplished this remarkable task, we will be 
better - equipped to secure the energy needs of humans through the conversion and 
utilization of solar energy. 

 The major structures of the photosynthetic complexes have only been revealed 
relatively recently. This is the fi rst book to describe the structure and function of 
all major photosynthetic complexes on the basis of high - resolution structures. This 
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book is also unique in that all 15 chapters are written by experts in the fi eld, who 
are key players in the discovery of the structure and function of the protein com-
plexes of Photosynthesis. The structures and functions of all of the major protein 
complexes that catalyze the primary events in Photosynthesis, from light capturing 
to electron transfer and ATP and NADPH production, are described in this 
book. 

 This book is an essential tool for comprehensive understanding of Photosynthe-
sis, and is aimed at a very broad audience. Readers from high - school level to 
engineers working on bioenergy conversion, as well as experts in Photosynthesis, 
will enjoy reading it, with the beautiful and fascinating structures of the protein 
complexes shown in full color, and all color fi gures directly included in the text. 
Another very important feature is that it is designed as a teaching tool. It is accom-
panied by a website, at  www.wiley - vch.de/publish/en/books/ISBN978 - 3 - 527 - 31730 - 1 , 
where all fi gures from the book are freely accessible and can be downloaded 
without any password protection. The fi gures can be directly used for lectures and 
teaching in the classroom. The website is constantly updated with new animations 
and fi gures. In addition, abstracts of all the chapters are freely accessible, and 
individual chapters can be downloaded, using a pay - per - view option, from the 
publisher ’ s website at  www.interscience.wiley.com . 

 I want to thank all of the authors who have contributed to this book. They are 
very busy researchers from all over the world, on the verge of making new discov-
eries every day, and I am very happy that they so kindly agreed to devote so much 
of their busy time to write the chapters. These authors have brought to life a dream 
of publishing this unique and exciting book about one of the major discoveries in 
science  –  the unraveling of the secrets of Photosynthesis, which were invented by 
Nature 2.5 Billion years ago. 

 I am sure that you, as a reader, will love this book and fi nd it a powerful tool 
for research and teaching.    

 Read it and enjoy!! 

 Tempe, July 2008   Petra Fromme  
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        Abbreviations 

   Δ �μH
+    trans - membrane proton electrochemical potential gradient 

 accChl   accessory chlorophyll 
 AFM   atomic force microscopy 
 Ant   antheraxanthin 
 APC   allophycocyanin 
 BChl   bacteriochlorophyll 
 BIF   banded iron formation 
 C   carbon 
 Car   carotenoid 
 CCA   complimentary chromatic adaptation 
 Chl   chlorophyll 
 Chl D1  and Chl D2    two accessory chlorophyll  a  molecules bound to D1 and D2 

subunits, respectively 
 ChlZ D1  and ChlZ D2    two peripheral chlorophyll  a  molecules bound to D1 and 

D2 subunits, respectively 
 CL   cardiolipid 
 CP   chlorophyll binding protein 
 CP43   chlorophyll  a  - containing protein with apparent molecular 

mass of 43 - kDa 
 CP47   chlorophyll  a  - containing protein with apparent molecular 

mass of 47 - kDa 
 cyt   cytochrome 
 D1   reaction center subunits of PSII 
 D2   reaction center subunits of PSII 
 DBMIB   2,5 - dibromo, 3 - methyl, 6 - isopropyl - benzoquinone 
 DGDG   digalactosyl diacylglycerol 
 ELIP   early light - induced protein 
 EM   electron microscopy 
 E m    midpoint oxidation – reduction potential 
 EPR   electron paramagnetic resonance 
 ETC   electron transport (or transfer) chain 
 EXAFS   extended x - ray absorption fi ne structure 
 FAD   fl avin adenine dinucleotide 

   XXV



 FAP   fi lamentous anoxygenic phototroph 
 Fd   ferredoxin 
 FeS - type   RCs that have FeS as fi nal electron acceptors, also known 

as Type I RC 
 FMN   fl avin mononucleotide 
 FMO   Fenna - Matthews - Olson protein 
 FNR   ferredoxin - NADP +  reductase 
 GSB   green sulfur bacteria 
 H - , L - , M -    the 3 major integral polypeptide subunits of the  Rb. 

sphaeroides  purple bacterial reaction center 
 IsiA   iron - stress - induced protein A 
  k  2    second - order rate constant 
  K  A    equilibrium constant for complex association 
  k  et    electron transfer rate constant 
  K  R    equilibrium constant for complex reorganization 
 LHC - I   light - harvesting complex I in plants and algae 
 LHC - II   light - harvesting complex II in plants and algae 
 LH1   light - harvesting complex 1 in purple bacteria 
 LH2   light - harvesting complex 2 in purple bacteria 
 LMM   low - molecular mass 
 LPC   lysophosphatidylcholine 
 LP   linker protein 
 MGDG   monogalactosyldiacylglycerol 
 NADP +    nicotinamide adenine dinucleotide phosphate 
 NASA   National Aeronautics and Space Administration 
 Neo   neoxanthin 
 NG   nonyl - + - D - glucoside 
 NMA   N - methyl asparagine 
 NMR   nuclear magnetic resonance 
 NPQ   non - photochemical quenching 
 NQNO   2 - n - nonyl - 4 - hydroxyquinoline N - oxide 
 NRD   non - radiative dissipation 
 OEC   oxygen - evolving complex 
 PBP   phycobiliprotein 
 PBS   phycobilisome 
 Pc   plastocyanin 
 PC   phycocyanin 
 PCB   phycocyanobilin 
 P D1  and P D2    PS II reaction center chlorophylls bound to D1 and D2 

subunits, respectively 
 PDB   Protein Data Bank 
 PE   phycoerythrin 
 PEB   phycoerythrobilin 
 PEC   phycoerythrocyanin 
 PG   phosphatidyldiacylglycerol 

 XXVI  Abbreviations



 pheo   pheophytin 
 PQ   plastoquinone 
 PQH 2    plastoquinol 
 pseudo - C2   pseudo - twofold 
 PS   photosystem (consisting of the RC fused or associated with 

the core antenna domain) 
 PSI   photosystem I 
 PSII   photosystem II 
 PUB   phycoeurobilin 
 PVB   phycoviolobilin 
 Q A    tightly bound quinone in photosystem II and the purple 

bacterial reaction center 
 Q B    mobile quinone in photosystem II and the purple bacterial 

reaction center 
 qE   high - energy quenching 
 qI   photoinhibition 
 QM/MM   quantum mechanical/molecular mechanical modeling 
 Q - type   RCs that have a mobile quinone as fi nal electron acceptor, 

also known as Type II RC 
 RC   reaction center 
 rf   radio frequency 
 r.m.s.d.   root mean squared deviation 
 ROS   reactive oxygen species 
 SH3   Src homology 3 
 SQ   semiquinone 
 SQDG   sulfoquinovosyldiacylglycerol 
 suIV   subunit IV 
 TDS   tridecyl - stigmatellin 
 TMH   transmembrane helix 
 Tyr Z    redox - active tyrosines, D1 - Tyr161 in photosystem II 
 Tyr D    redox - active tyrosines, D2 - Tyr160 in photosystem II 
 UQ   ubiquinone 
 UQH 2    ubiquinol 
 UV   ultraviolet 
 VDE   violaxanthin de - epoxidase 
 Xanc   xanthophyll - cycle 
 XANES   x - ray absorption near edge structure 
 XAS   x - ray absorption spectroscopy 
 Zea   zeaxanthin   
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