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Introduction

Chemical analysis is an indispensable element in all areas of contemporary life.
Together with progress in science and technological development, and also with
constantly increasing demand, one can observe progress in analytical chemistry as a
scientific discipline, and methods and techniques of chemical analysis for practical
application purposes. The increasing demand for analytical determinations results
from the necessity to analyze an increasing number of different samples, as well as
from the need to design analytical instruments andmethods which can be employed
directly by an end-user without the need for the services of specialized analytical
laboratories. This increasing demand includes also the need for improvement of the
quality of analytical determinations. Depending on the area of application, theremay
be a need to shorten the time of analysis, minimize the amount of sample needed for
analysis, achieve lower limits of detection or better selectivity (resolution) in multi-
component determinations, or obtain better precision and/or accuracy of the deter-
mination.
Progress in the development of analytical methods occurs in various ways and is a

combination of various factors. There are as many factors affecting it as there are
different parameters that affect the results of an analytical determination. There are
factors resulting from progress in natural science, material science, electronics and
informatics, as well as from progress in engineering of materials and devices, and
their utilization in analytical procedures. Human inventiveness and the urge for
discovery, which is a driving force for fundamental scientific research, is practically
unlimited, hence no stage of the development of science or technology should be
treated as definitive. This obviously also concerns progress in analytical chemistry
and the methods and techniques of chemical analysis.
The carrying out of analytical determinations in flow conditions can, at first

glance, be treated as a simplification of the conventional non-flow procedure by
omitting a sampling step. Probably such measurements in the area recognized
nowadays as process analysis were, in the 1930s or 1940s, the first examples of
analytical measurements in flowing conditions, for example, conductivity measure-
ments in process streams. Then, with the development of detection methods and
progress in the construction of measuring instruments, measurements of redox
potential, pH, turbidity, absorbance at a given wavelength, to mention just the most
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common ones, were carried out in the same way in flow mode. These methods are
commonly used inmodern process analysis. This separate area of chemical analysis,
very well developed in the last half century, with a large arsenal of specially designed
measuring instruments, has numerous specific problems to cope with. There is a
wide literature on this field of chemical analysis and this area of flow analysis will be
not discussed in this book.

The area of chemical analysis that is covered by this book is laboratory flow
analysis. It is associated with different environmental and technical conditions, and
different scales of processes and devices. In this case it is much easier to identify a
commonly recognized author and the background of the idea that analytical mea-
surement can be carried out during sample flow through the detector. The back-
ground to this invention was the urgent demand from clinical analytical laboratories
in large hospitals in the 1950s, which were overloaded with a huge amount of
samples, to find a solution as to how to speed up analytical procedures. The inventor
of the first laboratory flow analysis system was the American biochemist Leonard J.
Skeggs Jr., known also as the co-inventor of the modern artificial kidney, from the
hospital associated with Case Western Reserve University Medical School. He
designed the first laboratory flow system for determination of blood urea nitrogen
with photometric detection (L.T. Skeggs Jr, Am. J. Clin. Pathol., 1957,28, 311). Based
on the intuition that such a concept of analytical measurements could significantly
improve laboratory analysis, the author of this idea quickly patented the new
instrument and, in three years, it was launched on the market by Technicon Co
with great success. Already the first prototypes contained several breakthrough
instrumental solutions, not only a flow-through photometer and strip-chart recorder
for continuous signal recording, which determined the success of the concept. I will
mention a few of them to illustrate the many inventions and pioneering solutions
that were involved in the construction of this system. It was constructed for analysis
of blood samples, hence it was necessary to design a rotary sampler for aspiration of
samples from vials. The sample, aspirated into the tubing, could disperse during the
flow, but the extent of this dispersion could be limited by segmentation of the liquid
stream with air bubbles. The determination of urea required removal of proteins,
hence it was necessary to design a flow-throughmembrane dialyzer. The continuous
detection in a flowing stream was already known from liquid chromatography,
which was being developed with various detections earlier. The developed air-
segmented flow analyzing system allowed the mechanization of numerous opera-
tions (sample introduction, addition of reagents, incubation, dialysis), and this was
the most essential breakthrough in laboratory analysis.
For about the next 20 years instruments based on this concept ofmechanization of

chemical laboratory analysis predominated in large (and rich) clinical laboratories,
but then numerous other ideas of mechanization of analytical procedures became
more and more competitive. They include centrifugal analyzers, devices employing
solid-reagent strips and, especially, various designs of discrete analyzers, which in
the last 20 years have completely replaced clinical flow analyzers. They were more
efficient and versatile, designed to perform several tens of assays from one sample.
The air-segmented flow analyzers are still quite widely used, however, in routine
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analytical laboratories for environmental protection, agriculture analyses and food
control.
A crucial new impulse was given to further development of laboratory flow

analysis in the mid-1970s by the invention of flow measurements with injection
of a small volume of sample into the stream of a flowing carrier or directly into a
reagent flowing solution. Even some years earlier one can find in the literature
reports on flow measurements with the introduction of a smaller sample volume
than needed to achieve a steady-state equilibrium signal in the detector in air-
segmented systems, with conclusions that the transient signal obtained in such
systems can obviously also be used for analysis with the advantageous possibility of
increasing the sampling rate. Based on the existing literature one can notice that the
concept of flow injection measurements came simultaneously from different
branches of analytical instrumentation. In one case it can be considered as an
evolution of the earlier developed air-segmented systems by elimination of segmen-
tation of the flowing stream and injection of a small volume of sample by an
injection port instead of by continuous aspiration. This led to obtaining a transient
signal and, with simultaneous reduction of the diameter of the tubings, such a
system provided attractive fast analytical signals. Alternatively, the same concept of
measurements originated from the application of commercial instrumentation for
liquid column chromatography, and its utilization in flow measurements without a
separation column. The selectivity of the determination of a particular analyte can be
achieved by application of appropriate chemical conditions specific for the given
analyte.
The rapid increase in interest in this methodology of analytical measurements in

the next years (almost exponential, if it is measured by the number of published
papers in analytical journals) has to be assigned, to a great extent, to a tandem of
authors J. Ruzicka and E.H. Hansen, and their research group in the Technical
University of Denmark, who in numerous pioneering publications demonstrated
that, for academic laboratory research, flow injectionmeasuring systems can be built
easily with low-cost, simple components in almost every analytical laboratory, with-
out big instrumental investment. This can be a way to realize various ideas of
technical design, to carry out in such systems various chemical reactions and sample
treatment operations, and to employ various detection methods. It is then a very
attractive way of mechanization of analytical procedures in flow systems, but it has to
be admitted that this is not a way to the automation of measurements, as this term is
very commonly misused. Performing analytical measurement in flow conditions
does not mean automation of measurements as, according to automation theory,
and also following the IUPAC terminology recommendations, the automated sys-
tem has to be equipped with an intelligent control system which, with the use of a
feed-back loop mechanism, can control and regulate conditions of measurements
without the participation of a human operator.
The flow injection methodology of analytical determinations, being developed

since the 1970s, has gained already very many technical modifications such as the
most commonly known flow systems: with sequential injection of sample and
reagents into a single line system (called sequential injection analysis – SIA), flow
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measurements in tubeless systems with direct injection to the detector sensing
surface (called batch injection analysis – BIA), or application in flow injection systems
with moveable solid particles, called bead-injection analysis, with the same abbrevia-
tion BIA. Another aspect of the evolution of flow injection measuring systems is the
rapidly progressingminiaturization of particular modules of the flow system, as well
as their integration, for example, by incorporation of some modules into the
injection valve (named generally as the lab-on-valve concept), or theirminiaturization
down to microfluidic format.
Generally, it seems that flow analytical systems can be described as analytical

measuring devices in which all operations of sample pretreatment and detection of
analyte are carried out in flowing streams. This seems to be a very common under-
standing of flow analysis, but at the same time one can find several inaccuracies or
problems with such a description. Can one include as flow analysis simple AAS
measurements with flame atomization, where the sample is aspirated, nebulized
and then transported to the flame for optical detection? Can we talk about flow
analysis in the case of mass spectrometry measurements with direct sample injec-
tion, where the injected liquid sample is evaporated, the analytes are ionized (and
also can be fragmented), separated and then transported to the detector? And the
most difficult problem to solve, namely the differentiation of liquid column chro-
matography and flow analysis. In column chromatography analytes present in an
injected sample are separated on the column, then they can also sometimes be
derivatized and then transported to a flow-through detector. A similar situation
arises with capillary electrophoresis. From the point of view of tradition and history
of development, and also, muchmore importantly, the role in analytical chemistry, it
does not seem to be appropriate to include column chromatography in flow analysis.
On the other hand, in typical flow systems of any kind (air-segmented continuous
systems, flow injection systems etc.), packed reactors are very commonly used for
sample clean-up, or preconcentration, and the operations carried out are chromato-
graphic ones if we follow the commonmechanism of chromatography. So, where to
draw the line? For the sake of a framework for the subject of this book, as flow
analysis is meant analysis in measuring systems where all operations of sample
treatment and detection are carried out in flowing solutions but without multi-
component chromatographic or electrophoretic separation. Most often it is a single
component method with mechanized sample pretreatment, while multicomponent
analysis in flow systems is carried out in a system with more complex manifolds or
by employing detectors that aremulticomponent in themechanism of their sensing.
The dynamic properties of flow measurements are widely employed in sample
processing, in many cases for improvement of the parameters of some detection
methods, however, still very little is done on the design of multicomponent deter-
minations.
The principal intention in the preparation of this joint work was to present the

achievements of flow analysis in recent years that may be helpful in the determina-
tion of its position in modern chemical analysis. In spite of many thousands of
papers published during the 60 years since the pioneering invention of Skeggs, this
methodology of analytical measurements seems to be underestimated in various
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fields of routine chemical analysis. Certainly, the spectacular success in the 1960s
and 1970s was the application of commercial flow analyzers with air-segmentation
in clinical laboratories. Long years of development, numerous published papers,
some commercial instruments for flow injection methods, have not introduced flow
injection methods sufficiently into routine analytical laboratories. Nowadays, if
some flow analyzers are used in routine analytical laboratories, they are mostly
continuous flow analyzers with air-segmented flow and recording of a steady-state
equilibrium signal.
The selection of subjects for all chapters was my subjective choice, as I am

convinced that in these areas of flow analysis the largest progress has been made
in recent years. I express thanks to our Publisher for acceptance of my choice. My
special thanks I address to all the authors who acceptedmy invitation to contribute to
this joint work. I am convinced they all share my hope that this book will be fruitful
for the further development of flow analysis and the promotion of these methods of
chemical analysis.
I would also address my thanks to all colleagues who accepted my invitation for

collaboration, andwho reviewed some chapters, namely ProfessorDianeBeauchemin
of Queen�s University, Kingston, Canada, Professor Ursula Bilitewski of Helmholtz-
Centre for Infection Research, Braunschweig, Germany, Professor Ari Ivaska of
Abo Akademi University, Finland, Professor Bo Karlberg of Stockholm University,
Sweden, Professor Pawel Koscielniak of Jagiellonian University, Cracow, Poland,
Professor Petr Kuban of the Mendel University of Agriculture and Forestry, Brno,
Czech Republic, Professor Mark E. Meyerhoff of the University of Michigan, Ann
Arbor, USA, Professor Boaventura Reis of CENA, University of Sao Paulo, Piracicaba,
Brazil, Professor Petr Solich of Charles University, Hradec Kralove, Czech Republic,
Professor Julian Tyson of the University ofMassachusetts, Amherst, USA,Dr Bogdan
Szostek of DuPont,Wilmington, USA, and Professor PaulWorsfold of the University
of Plymouth, UK. I am grateful for their valuable help in giving a final shape to the
reviewed chapters. I thank also all the staff members of Wiley-VCH Verlag who took
part in this project, particularly Dr Manfred KÅhl, Dr Waltraud Wüst and Ms Claudia
Nussbeck for their collaboration.

Marek Trojanowicz
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