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Preface

Catalytic transformations of alkynes have recently led to tremendous developments
of synthetic methods with useful applications in the synthesis of natural products
and molecular materials. Among them, the selective activations of terminal alkynes
and propargylic alcohols via vinylidene- and allenylidene-metal intermediates play an
important role, and have opened new catalytic routes toward anti-Markovnikov
additions to terminal alkynes, carbocyclizations or propargylations, in parallel to
the production of new types of molecular catalysts.

After the discovery of the first terminal vinylidene-metal complex in 1972, it was
established that the stoichiometric activation of terminal alkynes by a variety of
suitable metal complexes led to 1,2-hydrogen transfer and the formation of metal-
vinylidene species, which is now a classical organometallic reaction. A metal-
vinylidene intermediate was proposed for the first time in 1986 to explain a catalytic
anti-Markovnikov addition to terminal alkynes. Since then, possible metal-
vinylidene intermediate formation has been researched to achieve catalytic regiose-
lective formation of carbon-heteroatom and carbon-carbon bonds involving the
alkyne terminal carbon.

In parallel, since the first preparation of allenylidene-metal complexes in 1976, the
formation of these carbon-rich complexes developed rapidly after the discovery, in
1982, that allenylidene-metal intermediates could be easily formed directly from
terminal propargylic alcohols via vinylidene-metal intermediates. This decisive step
has led to regioselective catalytic transformations of propargylic derivatives via
carbon(1)-atom bond formation or alternately to propargylation. Due to their
rearrangement into indenylidene complexes, metal-allenylidene complexes were
also found to be catalyst precursors for olefin and enyne metathesis.

Higher cumulenyl moieties stabilized by organometallic fragments were intro-
duced in the eighties and have recently received much attention. Such linear
unsaturated carbon-rich cumulenyl-metal complexes have allowed access to new
molecular architectures and have revealed interesting properties in the field of
electronics and molecular wires.

The activation of alkynes to metal-vinylidenes with transition metal complexes
of Groups 6-9, essentially, provides reactive intermediates with an electrophilic

X
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Preface

terminal carbon atom, whereas allenylidene species present two electrophilic carbon
centers. Advantage has been taken of this property for the rational design of new
catalytic transformations, and useful atom-economical catalytic transformations
have been brought to light. The new trends aim at the use of multifunctional
acetylenic substrates with the objective of performing unprecedented cascade cata-
lytic reactions.

The content of this book gathers in the same volume all aspects of vinylidene- and
allenylidene-metal complexes, including the preparation of these organometallic
carbon-rich systems with a metal-carbon double bond, their stoichiometric reacti-
vity and theoretical aspects, and their applications in catalysis for the production of
fine chemicals, mainly in the field of selective transformations of functional term-
inal alkynes. It provides essential general information on catalytic transformations
of alkynes and their use in synthesis.

This book should be of interest to academic and industrial researchers involved in
the fields of organometallic, coordination and bioinorganic chemistry, transition
metal catalysis, and organic synthesis.

We are grateful to the team from Wiley-VCH who made this project possible and
to all contributors to this book for their enthusiasm in writing a chapter on their
favorite selected topic.

Christian Bruneau
Pierre H. Dixneuf
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1

Preparation and Stoichiometric Reactivity of Mononuclear
Metal Vinylidene Complexes

Michael I. Bruce

1.1
Introduction

Vinylidene, :C=CH,, is a tautomer of ethyne, HC=CH, to which it is related by a
1,2-H shift (Equation 1.1):

HC=CH —:C=CH, (1.1)

Attempts to produce vinylidene in the free state result in rapid reversion to ethyne,
with a lifetime of 10~ '%s [1]. As with many reactive organic intermediates, however,
vinylidene can be stabilized by complexation to a metal center, using the lone pair for
coordination and thus preventing the reversion to ethyne. Most 1-alkynes can be
converted into the analogous vinylidene complexes by simple reactions with appro-
priate transition metal substrates (Equation 1.2):

ML, + HC=CR — L,M=C=CHR (1.2)

The first vinylidene complex, Fe,(u-C=CPh,)(CO)g, was obtained by Mills and
Redhouse by irradiation of diphenylketene with Fe(CO)s [2]. The first terminal
vinylidene complex, MoCl{=C=C(CN),}(PPhs),Cp, was prepared by King and Saran
from the reaction between Mo{CCl=C(CN),}(CO)3Cp and PPhj; [3]. Several groups
reported syntheticapproaches to metal vinylidene complexes during the late seventies,
including platinum-stabilized carbenium ions by Clark and Chisholm [4], manganese
and rhenium vinylidenes by Russian workers[5, 6], an iron vinylidene by Mays [7], and
the present author’s work on ruthenium and osmium systems [8]. Further studies,
including Hughes’s conversion of iron acyls to vinylidenes with Tf,0 [9] and Mansuy’s
serendipitous synthesis of avinylidene-iron porphyrin system [10] followed soon after.

Much of the chemistry of metal-vinylidene complexes has been summarized in
several reviews [11-14] and the following will merely summarize the main prepara-
tive methods and survey the reactions of many of the metal complexes so obtained.
Complexes of most transition metals have been described, although most work has
been developed using electron-rich ruthenium derivatives, which have been used in



2

1 Preparation and Stoichiometric Reactivity of Mononuclear Metal Vinylidene Complexes

the multitude of catalytic reactions (either directly or prepared in situ) described in the
main part of this volume. A special issue of Coordination Chemistry Reviews was
devoted to the chemistry of vinylidene, allenylidene and cumulenylidene com-
plexes [15]. Specific reviews of vinylidene complexes of elements of various Periodic
groups have been published: Ti, [16] Mn [17, 18], W, [19] Fe, Ru, Os, [20-23] Rh, Ir, [24]
and much chemistry is summarized in the particular Group volumes in the recently
published COMC 3[25]. Applications of metal vinylidene complexes to catalysis form
the major part of this volume and have been previously reviewed [26-30].

There is not sufficient space to discuss all vinylidene complexes which have
been reported, for example over 200 crystal structures are listed in the CCDC.
Consequently, this article largely concentrates on the chemistry of metal vinylidene
complexes which has been described since 1995. Vinylidene complexes are
generally available for the metals of Groups 4-9, with several reactions of Group
10 alkynyls being supposed to proceed via intermediate vinylidenes. However, few
of the latter compounds have yet been isolated. This chapter contains a summary
of various preparative methods available, followed by a survey of stoichiometric
reactions of vinylidene-metal complexes. A short section covers several non-
catalytic reactions which are considered to proceed via vinylidene complexes. The
latter, however, have been neither isolated nor detected under the prevailing
conditions.

1.2
Preparative Methods

The main synthetic approaches to metal-vinylidene complexes will be discussed
under the following headings:

. From 1-alkynes via a 1,2-hydrogen shift.

. The n*alkyne — hydrido(n'-alkynyl) — vinylidene transformation.
. From metal alkynyls.

. From metal allenylidenes via metal alkynyls.

. By deprotonation of metal-carbyne complexes.

From metal-carbon complexes.

. From acyl complexes.

. From metal-vinyl complexes.

. From alkenes.

. Miscellaneous methods involving the use of other precursors.
. Vinylvinylidenes.

_
= O

1.2.1
From 1-Alkynes (Equation 1.3)

ML, +HC=CR —L,M=C=CHRML, (1.3)
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This is the most common route to vinylidene complexes and occurs in reactions of
the 1-alkynes with metal complexes, preferably with labile neutral or anionic ligands,
which give neutral or cationic complexes, respectively. In the latter case, halide is
commonly extracted, either by spontaneous displacement by a polar solvent, or by
using sodium, silver or thallium salts.

Isomerization of the 1-alkyne to vinylidene generally occurs at d® metal centers
which are coordinatively unsaturated. The relative stability of the vinylidene complex
increases with rising electron density at the metal center. The kinetics and mechan-
isms of the various reactions have been studied extensively, commonly accepted
mechanisms being initial formation of an n*-alkyne complex which then undergoes
either a 1,2-H migration with concomitant formation of the n'-vinylidene directly, or
an oxidative addition to form a hydrido(alkynyl) complex, from which the vinylidene
ligand is formed by a 1,3 H-shift. A variety of theoretical treatments of the course of
this reaction have appeared, a recent comprehensive summary by Wakatsuki [31]
providing a useful starting point for discussion.

The reactions on Rh/Ir usually proceed via oxidative addition to give hydrido
(alkynyl) complexes, which then undergo 1,3-H shifts to form the vinylidene
complexes. In general, a unimolecular mechanism has been considered to be
operative. Recent studies of RhCl(PPr';R), (R=C=NCBu'=CHNMe) complexes
have shown a remarkable acceleration of the isomerization, with the =C=CHBu
complex being formed within seconds [32]. Suitable cross-over experiments showed
that a bimolecular mechanism, earlier suggested by some experimental and compu-
tational results [33], did not operate.

A range of metal-ligand centers has been shown to facilitate the formation of
vinylidene complexes from 1-alkynes, a selection of recent examples being given in
Table 1.1. In some cases, the preparation of the vinylidene is improved by deprotona-
tion of the initial product to give the corresponding alkynyl compound, which can be
reprotonated (see next section). Syntheses of both cationic and neutral vinylidene
complexes can be achieved, the former by displacement of halide or triflate in a polar
solvent, or of a labile neutral ligand, such as dinitrogen in ReCl(N,)(dppe),. Neutral
vinylidene complexes are obtained by the latter route and offer the opportunity of
exchange of halide for other anionic ligands (for example).

Efficient syntheses of ruthenium complexes from readily available starting
materials, such as RuCl,(=C=CH,)(L), from {RuCl,(cod)},, H, and PPr'; (L) in
2-butanol with C,H, [34] or RuCl,(=C=CHBu")(PCys)(Imes) from {RuCl,(p-cym-
ene)},, [ImesH]Cl, NaOBu' and HC=CBu' [35], have been described. Reactions of
allyl-Ru complexes with 1-alkynes in the presence of HCI result in ready displace-
ment of the allyl group and formation of neutral complexes RuCl(=C=CHR)(PPh;)
Cp’ [36, 37]. Alternatively, complexes containing hemi-labile ligands, such as
PPr',{CH,C(O)OMe}, PPr'y(CH,CH,0Me, and PPr’)(CH,CH,NMe,) (=P~ O,
P~N), can be used to generate a vacant coordination site for the incoming
vinylidene [38]. Reactions of [Ru(PPh;){k*-PPh,(CH,CH=CH,)}(n’>-CoH;)]" with
HC=CAr give [Ru(=C=CHAT)(PPhs){k'-PPh,(CH,CH=CH,)}(n*-CoH,)] " [39]. In
Group 9, other starting materials include {RhCI(L),}, and IrH,CI(L), (the complex
IrCl(L), is inaccessible). Direct reaction of Rh(C=CH)(n-C,H,)(L), with HC=CH in
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Table 1.1 Some metal-vinylidene complexes, L,M=C=CRR/, prepared from 1-alkynes.

Metal ML,

Co Co(PBu',CH,CH,n-CsH,)[56]

Fe Fe(CO),(PEts) [57], Fe(PP)Cpx [58], FeCl(PP), [59]

Ir Ir{N(SiMe,CH,PPh,),}[60]

Mn Mn(CO)3(PP) [61], Mn(CO),Cp [5, 6]

Mo Mo(PP)(n-C,H,)[62]

Os 0s(CO)(NO)(PMeBu',), [63], Os(CO)(L)Cp [64, 65], OsX(pcp) [66, 67],

OsXP; [68], OsCIPCp [69], OSHX,P; [70-72], OsP,(n-arene) [73, 74],
OsP,Cp’ [75-77]

Re Re(CO);P; [78], Re(CO),{MeC(CH,PPh,)3} [79-81], Re(CO),Cp [82],
ReCl(PP), [42]

Rh RhX(L), [40, 52]

Ru RuXLP, [83], RuHXP, [84-86], RuP,L° [87], RuXP(N;) [88], Ru(pnp) [89],

RuCl(NN)P; [46, 47], RuCl(P ~ O), [90-93], RuClL, [48-50, 94, 95],
RuCl(PP); [53, 54, 96-100], Ru(CO)LCp’ [101-104], Ru(L)PCp [105, 106],
RuL,Cp’ [39, 45, 107, 108], RuCIPCp’ [109-111], RuP,Cp’ [112-120],
RuP,Cpx [44, 121, 122], RuL,Cpx* [123-125], RuXPTp [111, 125],
Rul,Tp’ [126, 127], RuP,Tp’ [127-130], RuCIP{O,CCH (dmpz),} [47],
Ru(P ~ O)(n-arene) [131], RuCIP(n-arene)[132]

Tc TcCl(PP), [133]

A\ W(CO);(PP)[134]

the presence of NEt; affords trans-Rh(C=CH)(=C=CH,)(L), [40] while the more
basic [Rh(PMejs)4]Cl reacts directly with 1-alkynes by C-H activation and oxidative
addition to give [RhH(C=CR)(PMe;),4]Cl, no migration of H to the metal being
observed [41].

A variety of substituents can be tolerated (usually H, alkyl, aryl, SiMes, CO,R), but
in some cases, intramolecular nucleophilic attack on a presumed intermediate
vinylidene complex results in the formation of carbene complexes. Ready replace-
ment of SiMe; by H makes HC=CSiMe; an attractive precursor for the parent
complexes containing =C=CH, ligands. However, the strongly nucleophilic charac-
ter of the OH group in hydroxyalkyl-alkynes often results in rapid addition to C,. If the
alkyl chain is long enough, cyclic oxacarbenes can be formed,; if not, then intermo-
lecular attack on a second molecule results in binuclear derivatives, which may
contain both carbene and vinylidene functions (see Section 1.5).

Some notable complexes which have been reported include [Re(CN)(=C=CHPh)
(dppe),]" from aminocarbene [ReCl(CNH,)(dppe),]” and HC=CR [42]; [Ru{=C=
CHC=C[RuCl(CO),(PPhs),]}(PPhs),Cp]PFs, from RuCl(C=CC=CH)(CO),(PPhs),
and [Ru(thf) (PPhs),Cp]PF[43]; the fullerene derivative RuCl{ (R)-prophos}(n*-CgoMes)
can be converted to [Ru(=C=CHPh){(R)-prophos}(n’-C¢sMes)] " with good diastereo-
selectivity [44].

Although the majority of ruthenium complexes contain tertiary phosphines as
co-ligands, N-donor ligands are present in complexes obtained with Ru(tmeda)
Cp [45], RuCl(Me,bpy)(PPhs), [46], RuCl(L) [L = (dmpz),-acetate [47], 2,6-(dmpz),-
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pyridine [48], 2,6-(NMe,CH,),CsH;N [49]] fragments. Structurally characterized
macrocyclic ruthenium vinylidene complexes include RuCl{=C=CH(CsH,X-4)}
(16-tmc) (R=H, Cl, Me, OMe; 16-tmc = tetramethyl-1,5,9,13-tetra-azacyclohexade-
cane) [50], while [Ru(N4Meg)(=C=CHR)]*~ (N,Meg = octamethylporphyrinogen;
R=H, Ph) have been obtained from the anionic [Ru(N4Mes)]>” and ethyne or
HC=CPh, respectively [51]. In this case, formation of an intermediate n*-alkyne
complex is unlikely, the probable mechanism being deprotonation of the alkyne and
coordination of the alkynyl anion followed by proton transfer.

Complexes containing several vinylidene-ruthenium fragments attached to
branching organic centers are formed from suitable poly(ethynyl) precursors contain-
ing branching organic centers, such as HC=C—X—-C=CH [X=1, 4-HOC¢H,OH,
1,4-CsH4{CPh(OH)},] and {RhCl(L),}, [52], or from 1,3,5-tri(alkynyl)benzenes (tris-
kela) [53], while convergent syntheses of polynuclear dendrimer complexes have
also been described [54]. Reactions between HC=CR (R=Bu', Ph) and {RuCl(n-
C,H,) (PCys) H(u-Cl)s{Ru(n®-p-cymene)} afford {RuCl(=C=CHR)(PCys)}(u-Cl)s{Ru
(n®-p-cymene)}; ethyne gives an unusual tetranuclear p-carbido complex [55].

1.2.1.1 Migration of Other Groups (SiR3, SnR;, SR, SeR)

Although the vast majority of the reactions involving 1-alkynes proceed by 1,2-
migration of the terminal H atom, other groups have been found to participate in this
transfer. The nature of the other substituent on the 1-alkyne is often crucial, in some
cases, for example, the presence of H providing a high kinetic barrier to the alkyne/
vinylidene rearrangement. This barrier is lowered by the presence of Group 14
substituents, such as SiMe; or SnPh;, with well-documented examples of facile 1,2-
migration of the heavier groups. The Group 14 substituent may be replaced by H in
situ by conventional means, such as treatment with [NBuyJF.

An early example was provided by the reactions between {RhCl(L),}, and
RC=CSiMe; [R = Me, Ph, CO,Et, CO,SiMe;, CH,0H, C(O)CHPh,] [135]. Kinetic
studies carried out with FcC=CSiMe; in the same reaction confirmed the 1,2-
migration of the SiMes group [136]. Similar silyl migration reactions have been
found with C(SiMes), and Ru(OTf)(NO)(L), [137], Co(n-CsH,CH,CH,PBu') [56],
IrCI(N,)(PPhs), [138] and IrPh,(N,)Tp* [139]. For the former, Me;SiC=CC=CSiMe;
affords IrCl{=C=C(SiMe;)C=CSiMe;}(PPh;). The reaction of an excess of
C,(SiMes), with Ru(NCMe),{(C,B1oH10)CMe,(n-CsHy)} afforded the first bis(vi-
nylidene)ruthenium complex, Ru{=C=C(SiMe;),},{(C2B10H10)CMe,(n-CsH4)}
[108].

A sub-set of these reactions is provided by the redox rearrangements of several
complexes which have been extensively studied by Connelly and coworkers [140].
Oxidation of the n*alkyne complexes M(n*-Me;SiC,SiMe;)(CO),(n-arene) (M = Cr,
Mo) results in formation of the vinylidene cations [M{=C=C(SiMe;),}(CO),(n-
arene)]".

Reactions of RC=CSnMe; with MnCp'(n°-C;Hg) in the presence of dmpe give
Mn{=C=CR(SnMe;)}(dppe)Cp’, while with Ph;SnC=CC=CSnPh;, the alkynylvi-
nylidene Mn{=C=C(SnPh3)C=CSnPh;}(dmpe)Cp’ is first formed. Subsequent
irradiation then affords butatrienylidene Mn{=C=C=C=C(SnPh;),}(dmpe)Cp’
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[141-143]. Stannylalkynes and {RhCl(L),}, afford many Rh{=C=CR(SnPhs)}(L),
complexes directly, which react with H to cleave the SnPh; group [144].

The reaction of C,(SMe), with RuCl(PMe;),Cp gives [Ru{=C=C(SMe),}
(PMe;),Cp]" via the n%-C,(SMe), complex [145]. A 1,2-shift of SeR occurs in the
reaction between RuCl(PPh;),Cp and PhC=CSePr' in the presence of Na[BPh,],
which affords [Ru{=C=CPh(SePr')}(PPhs),Cp]" [146].

1,2-Halogen shifts have been found for tungsten, with assumed formation of
iodovinylidenes in reactions of 1-iodo-1-alkynes with W(CO)s(thf) en route to
cyclization of 2-(iodoethynyl)styrenes to naphthalenes and of iodo-alkynyl silyl enol
ethers [147], while more substantial confirmation is found in Mn{=C=C(I)CH
(OR),}(CO),Cp [R = Me, Et; (OR), = O(CH,);0], of which the XRD structure of Mn
{=C=C(I)CH(OMe),}(CO),Cp was determined [148].

1.2.2
The m?-Alkyne — Hydrido(n'-Alkynyl) — Vinylidene Transformation (Equation 1.4)

LM
\c —> ML,=—=C==CHR
\\\C (1.4)

R

Formation of the intermediate n*-alkyne complex has been reported in some
reactions of 1-alkynes with metal centers, followed by rearrangement to the n'-
vinylidene. This occurs but rarely in the ruthenium series, for example, with Ru
(PMe,Ph),Cp, where both n*-alkyne and vinylidene isomers of the product from C,H,
have been structurally characterized [149], and Ru(dippe)Cpx, where metastable [RuH
(C=CR)(dippe)Cp*]" (R = Ph, CO,Me, SiMes) transform into [Ru(=C=CHR)(dippe)
Cp#]" in solution or the solid state [123]. Direct conversion of [Ru(n*HC,Ph)(CO)
(PMePr',)Cp#]™, prepared at —40°C, to [Ru(=C=CHPh)(CO)(PMePr,)Cpx]" occurs
upon warming to 25°C [104]. In contrast, the alkyne complex predominates in the
room temperature solution equilibrium of the PPh; analog [150].

The transformation predominates in Group 9 (Rh, Ir) chemistry. Reactions of
{RhCI(L),}, with 1-alkynes give the n*-alkyne complexes which slowly convert to the
hydrido(alkynyl)s at room temperature. The latter are sensitive to air and not often
isolated. Addition of pyridine affords RhHCI(C=CR)(py)(L),, which readily lose
pyridine in hydrocarbon solvents to give square-planar trans-RhCl(=C=CHR)(L),.
Alternatively, the Cp complexes Rh(=C=CHR)(L)Cp can be obtained by reaction of
the chloro complexes with TICp. In the iridium series, heating for 36 h in refluxing
toluene afforded the vinylidenes in 80-90% yields. Table 1.2 lists several examples of
reactions in which the n*-alkyne complexes have been detected.

oI

ML,+ CH=CR —> | M —<—

|

pole]

123
From Metal Alkynyls

In contrast to the alkynyl anion, coordination to a metal center results in C, being
electron-poor and subject to frontier-orbital controlled nucleophilic attack, while the
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Table1.2 Some vinylidene complexes, L,M=C=CRR’, obtained by
n?-alkyne — hydrido (n "-alkynyl) — vinylidene transformations.

Metal ML,

Co Co{P(CH,CH,PPh,),}{151]

Fe Fe(CO),(PEts), [152]

Ir IrCl(PPr',CH,CH,0Me/NMe,), [153], IrCIP, [138, 154-156]

Mn Mn(CO),Cp [157]

Os 0s(CO)(NO)P, [63], OsHX(L)P, [158], OsXPCp [159], OsP,Cp [160]

Rh RhCI(PPr,CH,CH,0Me/NMe,), [161, 162], RhXP, [32, 40, 163-166]

Ru Ru(tmeda)Cp [45], RuCl(P)Cp [36], RuHCI(CO)P, [158], RuP,Cp [149, 167]
W W(CO)s [168], W(CO)3(PP)[169]

metal center and Cp are electron-rich and electrophilic attack is charge controlled.
Consequently, a common route to vinylidene complexes is addition of electrophiles
(E™) to pre-formed neutral alkynyl-metal complexes, taking advantage of the polari-
zation of the M—C=C-— fragment so that Cg is the preferred site of attack (Equa-
tion 1.5):

L,M—C=CR+E" — [L,M=C=C(E)R] " (1.5)

The alkynyl-metal complexes are strong carbon bases, with measured pK, values
for M(C=CBu")L,Cp being 13.6 [ML,=Fe(CO)(PMe;s)] and 20.8 [ML,=Ru
(PMej),] [170].

Table 1.3 lists several examples of ML,, groups supporting this reaction.

While protonation affords the vinylidene expected by H migration from the
original 1-alkyne, use of other electrophiles provides a convenient route to disubsti-
tuted vinylidenes. The stereospecificity of this reaction with Re(C=CR)(NO)(PPhs)

Table 1.3 Some metal vinylidene complexes, L,M=C=CRR/,
obtained from alkynyl-metal systems.

Metal ML,

Cr, Mo, W M(CO)(NO)Cp [173-177]

Fe FeP, [178], Fe(PP)Cp [179-183]

Ir IrCl(L), [154]

Mn Mn(CO),Cp [184], Mn(PP)Cp [185]

Mo Mo(CO)(P),Cp [186], MoH;(PP), [187]

Nb NbLCp®, [188]

Os OsH(GePh;)(L)Cp [189]

Pt PtMeP, [190]

Re Re(NO)(PPh;)Cp+ [191, 192]

Rh RhCI{N(CH,CH,PPh,);} [193, 194], RhCIP, [195]
Ru Ru(PO)4 [196], RuP,Cp’ [171, 197-201], RuP,Tp [202, 203]

W W(CO)s [204, 205], W(CO),Cp [186], WI(O)Tp [206]
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Cp has been discussed [170b]. Alkylation with haloalkanes (often iodoalkanes),
triflates (alkyl, benzyl, cyclopropyl), or [R;0]" (R=Me, Et) is often the best entry
to vinylidenes of any particular system. Other common electrophiles, such as
halogens (Cl, Br, I), acylium ([RCO]"), azoarenes ([ArN,]"), tropylium ([C;H;]"),
triphenylcarbenium (trityl, [CPh;]"), arylthio (ArS) and arylseleno (ArSe) have also
been used.

Several complexes have been obtained from reactions of alkynyl anions, such as [M
(C=CR)(CO)s] or [M(C=CR)(CO)(NO)Cp]~ (M = Cr, Mo, W), obtained from M
(CO),(NO)Cp and LiC=CR, or [Mn(C=CR)(CO),Cp], under charge-control.

Alkylation may sometimes afford unusual complexes as a result of subsequent
reactions (see also below). Reactions of Ru(C=CPh)(PPh;){P(OMe);}Cp with halides
XCH,R (R=CN, Ph, C¢Fs, C¢H4,CN-4, CcH,CF;-4, 1-nap, CO,Me) give Ru{P(O)
(OMe),}(=C=CPhCH,R) (PPh;)Cp via an initial cationic vinylidene which loses
MeX in an Arbuzov-like reaction [171]. A similar reaction with RNCS gives Ru{P(O)
(OMe),{=C=CPh(SH=NR)}(PPh;)Cp with low yields, which can be improved by
working at higher temperatures [172].

1.2.3.1 Some Specific Examples

An interesting series of bimetallic vinylidene complexes is formed in reactions of
[W(C=CBu')(CO)s]” with cationic hydrocarbon-metal carbonyls, such as [M
(CO(M-C/H)]" (M=Cr, W), [Mn(CO)s(n-CeHq)I", [Re(CO)s(n-CoH)]", [Fe
(CO)3(n>-C¢HgR)]" or [Fe(CO)3(n>-CsHy)]" [207]. Reaction of the heterocumulene
CO, with [W(C=CR)(CO)s(dppe)]” gives Li[W(=C=CRCO,)(CO);(dppe)] which
can be alkylated with [Me;O]* to neutral W{=C=CR(CO,Me)}(CO);(dppe) [208].

Reactions of M(CO),(NO)Cp (M=Mo, W) with LiIC=CR [R=Ph, Bu',
CH,0CH,CH=CH,, (CH,),0SiMe,Bu'] give Lii]M(C=CR)(CO)(NO)Cp] which react
further with electrophiles to give either vinylidene or n2-alkyne complexes. The
former are obtained when aqueous acids (HCl) or MeOTf (hard electrophiles) are
used [174]. The parent complex W(=C=CH,)(CO)(NO)Cp was formed when
the product from LiC=CSiMe; was quenched with aqueous NaHCOs3. Treatment
of the vinylidene with LiBu reforms the alkynyl anion [174, 175]. n*-Alkyne com-
plexes are formed with soft electrophiles, such as SiClMej, their formation resulting
from the initial product by thermal isomerization [209]. In the case of Mo
(=C=CHBU")(CO)(NO)Cp, depending on solvent, tautomerization may occur via
either a 1,2-H shift (non-polar) or by a multi-step route involving deprotonation/
protonation and reductive elimination (in EtOH).

Reactions of [Mn(C=CR)(CO)(PPh3)Cp™¢]™ (R = Me, Pr) with electrophiles such
as H, RI (R=DMe, Et, Bu'), MeOTf, [Et;0]", RC(O)Cl (R =Me, Ph), (tol)NCO,
Ph,C=C=0, CO, and PhCH=CHCOMe give directly the neutral complexes Mn
(=C=CEMe)(CO)(PPh3)Cp™® [E = H, alkyl, RC(O), C(O)NH tol), C(O)CHPh,, C(O)
OMe (after treatment with MeOTf) and CHPhCH,C(O)Me, respectively]
(Scheme 1.1) [184, 210]. Aldehydes and ketones react with the propynyl anion to
give vinylcarbyne cations after hydroxide elimination, which react with bulky
nucleophiles (PPhs) to give vinylidenes [211]. Similarly, the BF; adducts of
epoxides react with [Mn(C=CMe)(CO)(PPh;)Cp™¢]~ to afford anionic [Mn
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Scheme 1.1 [Mn'] = Mn(CO)(PPh;)Cp’. Reagents: (for R=Pr,
Cp' =CpM?) (i) H*; (i) MeC(O)Cl; (iii) MeOTF: (iv) NCO,
then H*; (v) Ph,C=C=0, then H™; (vi) CO,, then MeOTf; (vii)
PhCH = CHC(O)Me; (viii) (for R=Me,Cp’ =Cp) [Mn
(=CCMe=CPh,) (CO) (PPh3)Cp] "

{=C=CMeCH,CMe,(CH,),O(BF;)}(CO)(PPh3)Cp™]~ (n=0, 1, respectively),
possibly via intermediate hydroxyalkyl-vinylidenes Mn{=C=CMeCH,CMe,(OH)}
(CO)(PPh3)Cp™® which undergo intramolecular attack at C,, [210].

Protonation of Ru{C=CCPh,(C,H[Co,(CO)¢))}(PPhs),(n°-CoHy) and (E,Z)-Ru
{C=CCH=CH(C,Ph|Co,(CO)g])}(PPhs),(n’-CoHy) gives the corresponding vinyli-
denes [212]. The complex trans-Rh(C=CH)(n-C,H,)(L), is protonated with [pyH]BF,
to give trans[Rh(=C=CH,)(py)(L),]" and reacts with cyclopentadiene to give Rh
(=C=CH,;)(L)Cp [40].

1.2.3.2 Redox Rearrangements of Metal Alkynyls and Vinylidenes

Oxidative coupling of metal alkynyls to give binuclear bis(vinylidene) complexes is
exemplified by ML, = Nb(C=CPh)Cp®', [213], Fe(PP)Cpx[214] or Ru(PP)Cp* (Equa-
tion 1.6): [215]

2L,M—C=CR — [L,M=C=CR—CR=C=ML,** (1.6)

Suitable oxidizing agents are [FeCp,]* or Ag*, while the cationic species may be
reduced back to the alkyne complexes using CoCp,. Some of this chemistry has been
reviewed [216].

Oxidation of trans-RuCl(C=CCHPh,)(dppe), favors hydrogen atom transfer lead-
ing to trans[RuCl(=C=CHCHPh,)(dppe),]" [217]. Chemical oxidation of Ru
(C=CRc)(PPhs;),Cp (Rc =ruthenocenyl) gives the cyclopentadienylidene-ethylidene
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SN

C—C—IRu]"

\C:C:[Ru]+

Scheme 1.2 [Ru] = Ru(PPhs)Cp. Reagents: (i) [FeCp.]™; (i) p-benzoquinone.

complex [Ruf{n'n®(=C=C=CsH,)RuCp}(PPhs),Cp]", while Ru{C=C-n-CsH,)
RuCp*}(PPh;),Cp gives successively [Ru{=C=CH(n-CsH4)RuCpx*}(PPh;),Cp]*
and the fulvene-vinylidene [Ru{=C=CH(n-CsH4)Ru(n°-CsMe,CH,)}(PPhs),Cp]**
(Scheme 1.2) [218].

Examples of oxidative dehydro-dimerisation of vinylidenes are found with Mo(PP)
(n-CyHy) [219], M(CO),Cp (M = Mn, Re) [220, 221] or Mn(PP)Cp™® [185] centers
(Equation 1.7):

2L,M=C=CHR — L,M=C=CR—CR=C=ML, (1.7)

For M(CO),Cp, this reaction proceeds via a 16-e alkynyl cation radical [M(C=CPh)
(CO),]", which, for M = Mn, couples at Cg to give the bis(carbyne) dication [220]. For
M = Re, a similar cation radical is formed, which with NEt; affords a mixture of {Cp
(OC),Re}=C=CPhCPh=C={Re(CO),Cp} and the isomeric p-vinylidene {Cp
(OC);Re},{n-C=CPh(C=CPh)} by competitive C3—Cgand Cg—M coupling [221]. With
an alternative ligand set, the Mn{=C=CR(SnMe;)} complexes can be destannylated
with [NBuy]F before oxidative coupling to the bis(vinylidene). Reductive uncoupling also
occurs, making these systems of interest as potential energy sinks [142].

Oxidation [PhIO or Cu(OAc),] of [Fe(=C=CHMe)(dppe)Cp|" affords bis(vinyli-
dene) [{Fe(dppe)Cp},(u-CsMe,)]**, possibly via an intermediate radical cation [222].
Similar oxidative coupling of cyclopropenyl Ru{C=CPhCH(CN)}(PPhs),Cp affords
bis(vinylidene) [{Cp(Ph;P),Ru}=C=CPhCH(CN),},]*" which, in turn, can be de-
protonated to the bis(cyclopropenyl) [223]. Oxidation of [Ru(N4Meg)(=C=CH,)]*"
with PhN; or [FeCp,]" affords [{Ru(NMeg)},(1-C=CHCH=C)]*~ [51].



