

Metal Vinylidenes and Allenylenes in Catalysis

From Reactivity to Applications in Synthesis

Edited by
Christian Bruneau and Pierre Dixneuf

WILEY-VCH Verlag GmbH & Co. KGaA

**Metal Vinylidenes and
Allenylidenes in Catalysis**

Edited by
Christian Bruneau and
Pierre H. Dixneuf

Related Titles

Diederich, F., Stang, P. J., Tykwiński, R. R. (eds.)

Modern Supramolecular Chemistry

Strategies for Macrocyclic Synthesis

2008

ISBN: 978-3-527-31826-1

Sheldon, R. A., Arends, I., Hanefeld, U.

Green Chemistry and Catalysis

2007

ISBN: 978-3-527-30715-9

Hiersemann, M., Nubbemeyer, U. (eds.)

The Claisen Rearrangement

Methods and Applications

2007

ISBN: 978-3-527-30825-5

Cornils, B., Herrmann, W. A., Muhler, M., Wong, C.-H. (eds.)

Catalysis from A to Z

A Concise Encyclopedia

2007

ISBN: 978-3-527-31438-6

Tietze, L. F., Brasche, G., Gericke, K. M.

Domino Reactions in Organic Synthesis

2006

ISBN: 978-3-527-29060-4

Overman, L. E.

Organic Reactions V67

2006

ISBN: 978-0-470-04145-1

Haley, M. M., Tykwiński, R. R. (eds.)

Carbon-Rich Compounds

From Molecules to Materials

2006

ISBN: 978-3-527-31224-5

Yudin, A. K. (ed.)

Aziridines and Epoxides in Organic Synthesis

2006

Hardcover

ISBN: 978-3-527-31213-9

Tidwell, T. T.

Ketenes 2e

2006

E-Book

ISBN: 978-0-471-76766-4

Cornils, B., Herrmann, W. A., Horvath, I. T., Leitner, W., Mecking, S., Olivier-Bourbigou, H., Vogt, D. (eds.)

Multiphase Homogeneous Catalysis

2005

ISBN: 978-3-527-30721-0

Metal Vinylidenes and Allenylenes in Catalysis

From Reactivity to Applications in Synthesis

Edited by
Christian Bruneau and Pierre Dixneuf

WILEY-VCH Verlag GmbH & Co. KGaA

The Editors

Pierre Dixneuf

CNRS-Université de Rennes 1
Institut de Chimie, UMR 6509
Campus de Beaulieu
035042 Rennes Cedex
France

Christian Bruneau

CNRS-Université de Rennes 1
Organométalliques et Catalyse
Campus de Beaulieu
35042 Rennes Cedex
France

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at <http://dnb.d-nb.de>.

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photostripping, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Typesetting Thomson Digital, Noida, India

Printing betz-druck GmbH, Darmstadt

Binding Litges & Dopf GmbH, Heppenheim

Cover Design Adam-Design, Weinheim

Printed in the Federal Republic of Germany
Printed on acid-free paper

ISBN: 978-3-527-31892-6

Contents

Preface *XIII*

List of Contributors *XV*

1	Preparation and Stoichiometric Reactivity of Mononuclear Metal Vinylidene Complexes	1
	<i>Michael I. Bruce</i>	
1.1	Introduction	1
1.2	Preparative Methods	2
1.2.1	From 1-Alkynes	2
1.2.1.1	Migration of Other Groups (SiR ₃ , SnR ₃ , SR, SeR)	5
1.2.2	The η^2 -Alkyne \rightarrow Hydrido(η^1 -Alkynyl) \rightarrow Vinylidene Transformation	6
1.2.3	From Metal Alkynyls	6
1.2.3.1	Some Specific Examples	8
1.2.3.2	Redox Rearrangements of Metal Alkynyls and Vinylidenes	9
1.2.4	From Metal Allenylidenes via Metal Alkynyls	11
1.2.5	From Metal-Carbyne Complexes	11
1.2.6	From Metal-Carbon Complexes	14
1.2.7	From Acyl Complexes	15
1.2.8	From Vinyls	15
1.2.9	From Alkenes	16
1.2.10	Miscellaneous Reactions Affording Vinylidenes	16
1.2.11	Vinylvinylidene Complexes	17
1.3	Stoichiometric Reactions	19
1.3.1	Reactions at C _α	20
1.3.1.1	Deprotonation	20
1.3.1.2	Group 16 Nucleophiles. Oxygen	20
1.3.1.3	Alcohols	21
1.3.1.4	Sulfur	21
1.3.1.5	Group 15 Nucleophiles. Nitrogen	22
1.3.1.6	Phosphorus	22
1.3.1.7	Halogen Nucleophiles	22

1.3.1.8	Carbon Nucleophiles	22
1.3.1.9	Hydride	22
1.3.2	Intramolecular Reactions	23
1.3.2.1	Formation of Cyclopropenes	23
1.3.2.2	Attack on Coordinated Phosphines	24
1.3.2.3	Coupling	24
1.3.2.4	Vinylidene/Alkyne Coupling	25
1.3.2.5	Formation of π -Bonded Ligands	25
1.3.3	Reactions at C_β	25
1.3.3.1	Protonation	26
1.3.3.2	Alkylation	27
1.3.3.3	Other Electrophiles	27
1.3.4	Cycloaddition Reactions	27
1.3.5	Adducts with Other Metal Fragments	28
1.3.6	Ligand Substitution	30
1.3.7	Miscellaneous Reactions	31
1.4	Chemistry of Specific Complexes	33
1.4.1	Reactions of $Ti(=C=CH_2)Cp_2^*$	33
1.4.2	Complexes Derived From $Li[M(C\equiv CR)(CO)(NO)Cp]$ ($M=Cr, W$)	34
1.4.3	Reactions of $M(=C=CRR')(CO)_5$ ($M = Cr, Mo, W$)	35
1.4.4	Reactions of $M(=C=CRR')(CO)(L)Cp$ ($M = Mn, Re$)	37
1.4.5	Reactions of $[M(=C=CRR')(L')(P)Cp']^+$ ($M = Fe, Ru, Os$)	39
1.4.6	Reactions of $[Ru(=C=C(SMe)_2)(PMe_3)_2Cp]^+$	39
1.4.7	Reactions of <i>trans</i> - $MCl(=C=CRR')(L)_2$ ($M=Rh, Ir$)	41
1.5	Reactions Supposed to Proceed via Metal Vinylidene Complexes	42
	Abbreviations	45
	References	46

2 Preparation and Stoichiometric Reactivity of Metal Allenylidene Complexes 61

Victorio Cadierno, Pascale Crochet, and José Gimeno

2.1	Introduction	61
2.2	Preparation of Allenylidene Complexes	62
2.2.1	General Methods of Synthesis	62
2.2.2	Group 6 Metals	63
2.2.3	Group 7 Metals	64
2.2.4	Group 8 Metals	65
2.2.4.1	Octahedral and Five-Coordinate Derivatives	66
2.2.4.2	Half-Sandwich Derivatives	66
2.2.4.3	Other Synthetic Methodologies	68
2.2.5	Group 9 Metals	68
2.3	Coordination Modes and Structural Features	69
2.4	Stoichiometric Reactivity of Allenylidenes	69
2.4.1	General Considerations of Reactivity	69
2.4.2	Electrophilic Additions	70

2.4.3	Nucleophilic Additions	71
2.4.3.1	Group 6 Metal-Allenylidenes	72
2.4.3.2	Group 7 Metal-Allenylidenes	73
2.4.3.3	Group 8 Metal-Allenylidenes	74
2.4.3.4	Group 9 Metal-Allenylidenes	78
2.4.4	C–C Couplings	79
2.4.5	Cycloaddition and Cyclization Reactions	81
2.4.5.1	Reactions Involving the $M=C_\alpha$ Bond	81
2.4.5.2	Reactions Involving the $C_\alpha=C_\beta$ Bond	82
2.4.5.3	Reactions Involving the $C_\beta=C_\gamma$ Bond	84
2.4.5.4	Reactions Involving Both $C_\alpha=C_\beta$ and $C_\beta=C_\gamma$ Bonds (1,2,3-Heterocyclizations)	87
2.4.6	Other Reactions	89
2.5	Concluding Remarks	90
	References	91

3 Preparation and Reactivity of Higher Metal Cumulenes Longer than Allenylidenes 99

Helmut Fischer

3.1	Introduction	99
3.2	Steric and Electronic Structure	100
3.3	Synthesis of Cumulenyldene Complexes	103
3.3.1	Butatrienyldene Complex Synthesis	103
3.3.2	Pentatetraenyldene Complex Synthesis	108
3.3.3	Hexapentaenyldene Complex Synthesis	113
3.3.4	Heptahexaenyldene Complex Synthesis	113
3.4	Reactions of Higher Metal Cumulenes	114
3.4.1	Butatrienyldene Complexes	114
3.4.2	Pentatetraenyldene Complexes	119
3.4.3	Hexapentaenyldene Complexes	123
3.4.4	Heptahexaenyldene Complexes	123
3.5	Summary and Conclusion	124
	References	125

4 Theoretical Aspects of Metal Vinylidene and Allenylidene Complexes 129

Jun Zhu and Zhenyang Lin

4.1	Introduction	129
4.2	Electronic Structures of Metal Vinylidene and Allenylidene Complexes	130
4.2.1	Metal Vinylidene Complexes	130
4.2.2	Metal Allenylidene Complexes	132
4.3	Barrier of Rotation of Vinylidene Ligands	132
4.4	Tautomerization Between η^2 -Acetylene and Vinylidene on Transition Metal Centers	134

4.4.1	η^2 -Acetylene to Vinylidene	134
4.4.2	Vinylidene to η^2 -Acetylene	139
4.5	Reversible C–C σ -bond Formation by Dimerization of Metal Vinylidene Complexes	141
4.6	Metal Vinylidene Mediated Reactions	142
4.6.1	Alkynol Cycloisomerization Promoted by Group 6 Metal Complexes	142
4.6.2	Unusual Intramolecular [2 + 2] Cycloaddition of a Vinyl Group with a Vinylidene C=C Bond	148
4.6.3	Intramolecular Methathesis of a Vinyl Group with a Vinylidene C=C Double Bond	149
4.6.4	[2 + 2] Cycloaddition of Titanocene Vinylidene Complexes with Unsaturated Molecules	150
4.7	Heavier Group 14 Analogs of Metal Vinylidene Complexes	150
4.8	Allenylidene Complexes	151
4.9	Summary	152
	References	153
5	Group 6 Metal Vinylidenes in Catalysis (Cr, Mo, W)	159
	<i>Nobuharu Iwasawa</i>	
5.1	Introduction	159
5.2	Preparation of Fischer-type Carbene Complexes through the Generation of the Vinylidene Complexes	159
5.3	Utilization of Pentacarbonyl Vinylidene Complexes of Group 6 Metals for Synthetic Reactions	164
5.3.1	Catalytic Addition of Hetero-Nucleophiles	165
5.3.2	Catalytic Addition of Carbo-Nucleophiles	172
5.3.3	Electrocyclization and Related Reactions	178
5.4	Utilization of Vinylidene to Alkyne Conversion	184
5.5	Synthetic Reactions Utilizing Other Kinds of Vinylidene Complexes of Group 6 Metals	186
5.6	Conclusion	187
	References	188
6	Ruthenium Vinylidenes in the Catalysis of Carbocyclization	193
	<i>Arjan Odedra and Rai-Shung Liu</i>	
6.1	Introduction	193
6.2	Stoichiometric Carbocyclization via Ruthenium Vinylidene	193
6.3	Catalytic Carbocyclization via Electrocyclization of Ruthenium-Vinylidene Intermediates	195
6.3.1	Cyclization of <i>cis</i> -3-En-1-Ynes	195
6.3.2	Cycloaromatization of 3,5-Dien-1-Ynes	196
6.3.3	Ruthenium-Catalyzed Cyclization of 3-Azadienynes	202
6.3.4	Cycloisomerization of <i>cis</i> -1-Ethynyl-2-Vinyloxiranes	203

6.3.5	Catalytic Cyclization of Enynyl Epoxides	204
6.4	Catalytic Carbocyclization via Cycloaddition of Ruthenium Vinylidene Intermediates	208
6.4.1	Cyclocarbonylation of 1,1'-Bis(silylethynyl)ferrocene	208
6.4.2	Dimerization of 1-Arylethyne to 1-Aryl-Substituted Naphthalenes	209
6.4.3	Ruthenium-Catalyzed Cycloaddition Reaction between Enyne and Alkene	209
6.5	Catalyzed Cyclization of Alkynals to Cycloalkenes	211
6.6	Ruthenium-Catalyzed Hydrative Cyclization of 1,5-Enynes	211
6.7	Carbocyclization Initiated by Addition of C-Nucleophile to Ruthenium Vinylidene	213
6.8	Conclusion	214
	References	214
7	Allenylidene Complexes in Catalysis	217
	<i>Yoshiaki Nishibayashi and Sakae Uemura</i>	
7.1	Introduction	217
7.2	Propargylic Substitution Reactions	219
7.2.1	Propargylic Substitution Reactions with Heteroatom-Centered Nucleophiles	219
7.2.2	Propargylic Substitution Reactions with Carbon-Centered Nucleophiles	223
7.2.3	Reaction Pathway for Propargylic Substitution Reactions	224
7.2.4	Asymmetric Propargylic Alkylation with Acetone	227
7.2.5	Cycloaddition between Propargylic Alcohols and Cyclic 1,3-Dicarbonyl Compounds	231
7.3	Propargylation of Aromatic Compounds with Propargylic Alcohols	233
7.3.1	Propargylation of Heteroaromatic and Aromatic Compounds with Propargylic Alcohols	233
7.3.2	Cycloaddition between Propargylic Alcohols and Phenol and Naphthol Derivatives	234
7.4	Carbon–Carbon Bond Formation via Allenylidene-Ene Reactions	236
7.5	Reductive Coupling Reaction via Hydroboration of Allenylidene Intermediates	238
7.6	Selective Preparation of Conjugated Enynes	239
7.7	Preparation of Dicationic Chalcogenolate-Bridged Diruthenium Complexes and Their Dual Catalytic Activity	241
7.8	Other Catalytic Reactions via Allenylidene Complexes as Key Intermediates	243
7.9	Conclusion	246
	References	247

8	Ruthenium Allenylidenes and Indenylidenes as Catalysts in Alkene Metathesis	251
	<i>Raluca Malacea and Pierre H. Dixneuf</i>	
8.1	Introduction	251
8.2	Propargyl Derivatives as Alkene Metathesis Initiator Precursors: Allenylidenes, Indenylidenes and Alkenylalkylidenes	252
8.2.1	Allenylidene-Ruthenium Complexes as Alkene Metathesis Catalyst Precursors: the First Evidence	252
8.2.2	Allenylidene-Ruthenium Complexes in RCM, Enyne Metathesis and ROMP	254
8.2.2.1	RCM Reactions	254
8.2.2.2	Enyne Metathesis	254
8.2.2.3	ROMP Promoted by Allenylidene Complexes	255
8.2.3	Indenylidene-Ruthenium Complexes: the Alkene Metathesis Catalytic Species from Allenylidene Ruthenium Complexes	256
8.2.3.1	The First Evidence	256
8.2.3.2	The Intramolecular Allenylidene to Indenylidene Rearrangement Demonstration	259
8.2.3.3	Applications of Isolated Indenylidene-Ruthenium Complexes in ROMP	261
8.2.3.4	Indenylidene-Ruthenium(arene) Catalyst in Diene and Enyne RCM	262
8.2.4	Propargylic Ethers as Alkene Metathesis Initiator Precursors: Generation of Alkenyl Alkylidene-Ruthenium Catalysts	262
8.3	Indenylidene-Ruthenium Catalysts in Alkene Metathesis	265
8.3.1	Preparation of Indenylidene-Ruthenium Catalysts	265
8.3.2	Ruthenium Indenylidene Complexes in Alkene Metathesis	268
8.3.3	Polymerization with Ruthenium Indenylidene Complexes	271
8.3.4	Other Catalytic Reactions Promoted by Indenylidenes	273
8.4	Conclusion	274
	References	274
9	Rhodium and Group 9–11 Metal Vinylidenes in Catalysis	279
	<i>Sean H. Wiedemann and Chulbom Lee</i>	
9.1	Introduction	279
9.2	Rhodium and Iridium Vinylidenes in Catalysis	280
9.2.1	Introduction	280
9.2.2	Carbocyclization/Pericyclic Reactions	281
9.2.3	Anti-Markovnikov Hydrofunctionalization	288
9.2.4	Multi-Component Coupling	294
9.3	Rhodium Alkenylidenes in Catalysis	299
9.4	Group 10 and 11 Metal Vinylidenes in Catalysis	302
9.4.1	Introduction	302
9.4.2	Nickel Vinylidenes in Catalysis	302
9.4.3	Palladium Vinylidenes in Catalysis	303

9.4.4	Platinum Vinylidenes in Catalysis	304
9.4.5	Copper Vinylidenes in Catalysis	306
9.4.6	Gold Vinylidenes in Catalysis	307
9.5	Conclusion	310
9.6	Note Added in Proof	310
	References	311
10	Anti-Markovnikov Additions of O-, N-, P-Nucleophiles to Triple Bonds with Ruthenium Catalysts	313
	<i>Christian Bruneau</i>	
10.1	Introduction	313
10.2	C–O Bond Formation	314
10.2.1	Addition of Carbamic Acids: Synthesis of Vinylic Carbamates and Ureas	314
10.2.2	Addition of Carboxylic Acids: Synthesis of Enol Esters	316
10.2.3	Addition of Water: Synthesis of Aldehydes	318
10.2.4	Addition of Alcohols: Synthesis of Ethers and Ketones	321
10.2.4.1	Intermolecular Addition: Formation of Unsaturated Ethers and Furans	321
10.2.4.2	Intermolecular Addition with Rearrangement: Formation of Unsaturated Ketones	321
10.2.4.3	Intramolecular Addition: Formation of Cyclic Enol Ethers and Lactones from Pent-4-yn-1-ols and But-3-yn-1-ols	323
10.3	Formation of C–N Bonds via Anti-Markovnikov Addition to Terminal Alkynes	325
10.3.1	Addition of Amides to Terminal Alkynes	325
10.3.2	Formation of Nitriles <i>via</i> Addition of Hydrazines to Terminal Alkynes	325
10.4	Hydrophosphination: Synthesis of Vinylic Phosphine	326
10.5	C–C Bond Formation: Dimerization of Terminal Alkynes	327
10.6	Conclusion	329
	References	330
	Index	333

Preface

Catalytic transformations of alkynes have recently led to tremendous developments of synthetic methods with useful applications in the synthesis of natural products and molecular materials. Among them, the selective activations of terminal alkynes and propargylic alcohols via vinylidene- and allenylidene-metal intermediates play an important role, and have opened new catalytic routes toward *anti*-Markovnikov additions to terminal alkynes, carbocyclizations or propargylations, in parallel to the production of new types of molecular catalysts.

After the discovery of the first terminal vinylidene-metal complex in 1972, it was established that the stoichiometric activation of terminal alkynes by a variety of suitable metal complexes led to 1,2-hydrogen transfer and the formation of metal-vinylidene species, which is now a classical organometallic reaction. A metal-vinylidene intermediate was proposed for the first time in 1986 to explain a catalytic *anti*-Markovnikov addition to terminal alkynes. Since then, possible metal-vinylidene intermediate formation has been researched to achieve catalytic regioselective formation of carbon–heteroatom and carbon–carbon bonds involving the alkyne terminal carbon.

In parallel, since the first preparation of allenylidene-metal complexes in 1976, the formation of these carbon-rich complexes developed rapidly after the discovery, in 1982, that allenylidene-metal intermediates could be easily formed directly from terminal propargylic alcohols via vinylidene-metal intermediates. This decisive step has led to regioselective catalytic transformations of propargylic derivatives via carbon(1)–atom bond formation or alternately to propargylation. Due to their rearrangement into indenylidene complexes, metal-allenylidene complexes were also found to be catalyst precursors for olefin and enyne metathesis.

Higher cumulenyl moieties stabilized by organometallic fragments were introduced in the eighties and have recently received much attention. Such linear unsaturated carbon-rich cumulenyl-metal complexes have allowed access to new molecular architectures and have revealed interesting properties in the field of electronics and molecular wires.

The activation of alkynes to metal-vinylidenes with transition metal complexes of Groups 6–9, essentially, provides reactive intermediates with an electrophilic

terminal carbon atom, whereas allenylidene species present two electrophilic carbon centers. Advantage has been taken of this property for the rational design of new catalytic transformations, and useful atom-economical catalytic transformations have been brought to light. The new trends aim at the use of multifunctional acetylenic substrates with the objective of performing unprecedented cascade catalytic reactions.

The content of this book gathers in the same volume all aspects of vinylidene- and allenylidene-metal complexes, including the preparation of these organometallic carbon-rich systems with a metal–carbon double bond, their stoichiometric reactivity and theoretical aspects, and their applications in catalysis for the production of fine chemicals, mainly in the field of selective transformations of functional terminal alkynes. It provides essential general information on catalytic transformations of alkynes and their use in synthesis.

This book should be of interest to academic and industrial researchers involved in the fields of organometallic, coordination and bioinorganic chemistry, transition metal catalysis, and organic synthesis.

We are grateful to the team from Wiley-VCH who made this project possible and to all contributors to this book for their enthusiasm in writing a chapter on their favorite selected topic.

*Christian Bruneau
Pierre H. Dixneuf*

List of Contributors

Michael I. Bruce

University of Adelaide
School of Chemistry & Physics
Adelaide 5005
South Australia
Australia

Christian Bruneau

UMR 6509 CNRS-Université de
Rennes1
Institut Sciences Chimiques de Rennes
Campus de Beaulieu
Laboratoire Catalyse et
Organométalliques
35042 Rennes Cedex
France

Victorio Cadierno

Universidad de Oviedo
Departamento de Química Orgánica e
Inorgánica
Instituto Universitario de Química
Organometálica "Enrique Moles"
(Unidad Asociada al CSIC)
Facultad de Química
c/ Julián Claveria 8
33071 Oviedo
Spain

Pascale Crochet

Universidad de Oviedo
Departamento de Química Orgánica e
Inorgánica
Instituto Universitario de Química
Organometálica "Enrique Moles"
(Unidad Asociada al CSIC)
Facultad de Química
c/ Julián Claveria 8
33071 Oviedo
Spain

Pierre H. Dixneuf

UMR 6226 CNRS-Université de
Rennes1
Institut Sciences Chimiques de Rennes
Laboratoire Catalyse et
Organométalliques
Campus de Beaulieu
35042 Rennes Cedex
France

Helmut Fischer

Universität Konstanz
Fachbereich Chemie
Universitätsstr. 1
78457 Konstanz
Germany

Jos Gimeno

Universidad de Oviedo
Departamento de Química Orgánica e
Inorgánica
Instituto Universitario de Química
Organometálica "Enrique Moles"
(Unidad Asociada al CSIC)
Facultad de Química
33071 Oviedo
Spain

Nobuharu Iwasawa

Tokyo Institute of Technology
Department of Chemistry
Ookayama
Meguro-ku
Tokyo 152-8551
Japan

Chulbom Lee

Princeton University
Department of Chemistry
59 Frick Building
Princeton
NJ 08544
USA

Zhenyang Lin

The Hong Kong University of Science
and Technology
Clear Water Bay
Kowloon
Hong Kong
The People's Republic of China

Rai-Shung Liu

National Tsing-Hua University
Department of Chemistry
Hsinchu
Taiwan

Raluca Malacea

UMR 6226 CNRS-Université de Rennes
Institut Sciences Chimiques de Rennes
Laboratoire "Catalyse et
Organométalliques"
Campus of Beaulieu
35042 Rennes Cedex
France

Yoshiaki Nishibayashi

The University of Tokyo
Institute of Engineering Innovation
School of Engineering
Yayoi
Bunkyo-ku
Tokyo 113-8656
Japan

Arjan Odedra

National Tsing-Hua University
Department of Chemistry
101, Sec 2
Kuang Fu Road
Hsinchu 300
Taiwan

Sakae Uemura

Okayama University of Science
Faculty of Engineering
Okayama 700-0005
Japan

Sean H. Wiedemann

Princeton University
Department of Chemistry
60 Frick Building
Princeton
NJ 08544
USA

Jun Zhu

The Hong Kong University of Science
and Technology
Clear Water Bay
Kowloon
Hong Kong
The People's Republic of China

1

Preparation and Stoichiometric Reactivity of Mononuclear Metal Vinylidene Complexes

Michael I. Bruce

1.1

Introduction

Vinylidene, $:C=CH_2$, is a tautomer of ethyne, $HC\equiv CH$, to which it is related by a 1,2-H shift (Equation 1.1):

Attempts to produce vinylidene in the free state result in rapid reversion to ethyne, with a lifetime of 10^{-10} s [1]. As with many reactive organic intermediates, however, vinylidene can be stabilized by complexation to a metal center, using the lone pair for coordination and thus preventing the reversion to ethyne. Most 1-alkynes can be converted into the analogous vinylidene complexes by simple reactions with appropriate transition metal substrates (Equation 1.2):

The first vinylidene complex, $Fe_2(\mu-C=CPh_2)(CO)_8$, was obtained by Mills and Redhouse by irradiation of diphenylketene with $Fe(CO)_5$ [2]. The first terminal vinylidene complex, $MoCl\{=C=C(CN)_2\}(PPh_3)_2Cp$, was prepared by King and Saran from the reaction between $Mo\{CCl=C(CN)_2\}(CO)_3Cp$ and PPh_3 [3]. Several groups reported synthetic approaches to metal vinylidene complexes during the late seventies, including platinum-stabilized carbenium ions by Clark and Chisholm [4], manganese and rhenium vinylidenes by Russian workers [5, 6], an iron vinylidene by Mays [7], and the present author's work on ruthenium and osmium systems [8]. Further studies, including Hughes's conversion of iron acyls to vinylidenes with Tf_2O [9] and Mansuy's serendipitous synthesis of a vinylidene-iron porphyrin system [10] followed soon after.

Much of the chemistry of metal-vinylidene complexes has been summarized in several reviews [11–14] and the following will merely summarize the main preparative methods and survey the reactions of many of the metal complexes so obtained. Complexes of most transition metals have been described, although most work has been developed using electron-rich ruthenium derivatives, which have been used in

the multitude of catalytic reactions (either directly or prepared *in situ*) described in the main part of this volume. A special issue of *Coordination Chemistry Reviews* was devoted to the chemistry of vinylidene, allenylidene and cumulenylidene complexes [15]. Specific reviews of vinylidene complexes of elements of various Periodic groups have been published: Ti, [16] Mn [17, 18], W, [19] Fe, Ru, Os, [20–23] Rh, Ir, [24] and much chemistry is summarized in the particular Group volumes in the recently published COMC 3 [25]. Applications of metal vinylidene complexes to catalysis form the major part of this volume and have been previously reviewed [26–30].

There is not sufficient space to discuss all vinylidene complexes which have been reported, for example over 200 crystal structures are listed in the CCDC. Consequently, this article largely concentrates on the chemistry of metal vinylidene complexes which has been described since 1995. Vinylidene complexes are generally available for the metals of Groups 4–9, with several reactions of Group 10 alkynyls being supposed to proceed via intermediate vinylidenes. However, few of the latter compounds have yet been isolated. This chapter contains a summary of various preparative methods available, followed by a survey of stoichiometric reactions of vinylidene-metal complexes. A short section covers several non-catalytic reactions which are considered to proceed via vinylidene complexes. The latter, however, have been neither isolated nor detected under the prevailing conditions.

1.2

Preparative Methods

The main synthetic approaches to metal-vinylidene complexes will be discussed under the following headings:

1. From 1-alkynes via a 1,2-hydrogen shift.
2. The η^2 -alkyne \rightarrow hydrido(η^1 -alkynyl) \rightarrow vinylidene transformation.
3. From metal alkynyls.
4. From metal allenylidenes via metal alkynyls.
5. By deprotonation of metal-carbyne complexes.
6. From metal-carbon complexes.
7. From acyl complexes.
8. From metal-vinyl complexes.
9. From alkenes.
10. Miscellaneous methods involving the use of other precursors.
11. Vinylvinylidenes.

1.2.1

From 1-Alkynes (Equation 1.3)

This is the most common route to vinylidene complexes and occurs in reactions of the 1-alkynes with metal complexes, preferably with labile neutral or anionic ligands, which give neutral or cationic complexes, respectively. In the latter case, halide is commonly extracted, either by spontaneous displacement by a polar solvent, or by using sodium, silver or thallium salts.

Isomerization of the 1-alkyne to vinylidene generally occurs at d^6 metal centers which are coordinatively unsaturated. The relative stability of the vinylidene complex increases with rising electron density at the metal center. The kinetics and mechanisms of the various reactions have been studied extensively, commonly accepted mechanisms being initial formation of an η^2 -alkyne complex which then undergoes either a 1,2-H migration with concomitant formation of the η^1 -vinylidene directly, or an oxidative addition to form a hydrido(alkynyl) complex, from which the vinylidene ligand is formed by a 1,3 H-shift. A variety of theoretical treatments of the course of this reaction have appeared, a recent comprehensive summary by Wakatsuki [31] providing a useful starting point for discussion.

The reactions on Rh/Ir usually proceed via oxidative addition to give hydrido(alkynyl) complexes, which then undergo 1,3-H shifts to form the vinylidene complexes. In general, a unimolecular mechanism has been considered to be operative. Recent studies of $\text{RhCl}(\text{PPr}_2^i\text{R})_2$ ($\text{R} = \text{C}=\text{NCBu}^t = \text{CHNMe}$) complexes have shown a remarkable acceleration of the isomerization, with the $=\text{C}=\text{CHBu}$ complex being formed within seconds [32]. Suitable cross-over experiments showed that a bimolecular mechanism, earlier suggested by some experimental and computational results [33], did not operate.

A range of metal-ligand centers has been shown to facilitate the formation of vinylidene complexes from 1-alkynes, a selection of recent examples being given in Table 1.1. In some cases, the preparation of the vinylidene is improved by deprotonation of the initial product to give the corresponding alkynyl compound, which can be reprotonated (see next section). Syntheses of both cationic and neutral vinylidene complexes can be achieved, the former by displacement of halide or triflate in a polar solvent, or of a labile neutral ligand, such as dinitrogen in $\text{ReCl}(\text{N}_2)(\text{dppe})_2$. Neutral vinylidene complexes are obtained by the latter route and offer the opportunity of exchange of halide for other anionic ligands (for example).

Efficient syntheses of ruthenium complexes from readily available starting materials, such as $\text{RuCl}_2(=\text{C}=\text{CH}_2)(\text{L})_2$ from $\{\text{RuCl}_2(\text{cod})\}_n$, H_2 and PPr_3^i (L) in 2-butanol with C_2H_2 [34] or $\text{RuCl}_2(=\text{C}=\text{CHBu}^t)(\text{PCy}_3)(\text{Imes})$ from $\{\text{RuCl}_2(p\text{-cymene})\}_2$, $[\text{ImesH}] \text{Cl}$, NaOBu^t and $\text{HC}\equiv\text{CBu}^t$ [35], have been described. Reactions of allyl-Ru complexes with 1-alkynes in the presence of HCl result in ready displacement of the allyl group and formation of neutral complexes $\text{RuCl}(=\text{C}=\text{CHR})(\text{PPh}_3)$ Cp' [36, 37]. Alternatively, complexes containing hemi-labile ligands, such as $\text{PPr}_2^i\{\text{CH}_2\text{C}(\text{O})\text{OMe}\}$, $\text{PPr}_2^i(\text{CH}_2\text{CH}_2\text{OMe})$, and $\text{PPr}_2^i(\text{CH}_2\text{CH}_2\text{NMe}_2)$ ($=\text{P} \sim \text{O}$, $\text{P} \sim \text{N}$), can be used to generate a vacant coordination site for the incoming vinylidene [38]. Reactions of $[\text{Ru}(\text{PPh}_3)\{\kappa^2\text{-PPh}_2(\text{CH}_2\text{CH}=\text{CH}_2)\}(\eta^5\text{-C}_9\text{H}_7)]^+$ with $\text{HC}\equiv\text{CAr}$ give $[\text{Ru}(=\text{C}=\text{CHAR})(\text{PPh}_3)\{\kappa^1\text{-PPh}_2(\text{CH}_2\text{CH}=\text{CH}_2)\}(\eta^5\text{-C}_9\text{H}_7)]^+$ [39]. In Group 9, other starting materials include $\{\text{RhCl}(\text{L})_2\}_2$ and $\text{IrH}_2\text{Cl}(\text{L})_2$ (the complex $\text{IrCl}(\text{L})_2$ is inaccessible). Direct reaction of $\text{Rh}(\text{C}\equiv\text{CH})(\eta\text{-C}_2\text{H}_4)(\text{L})_2$ with $\text{HC}\equiv\text{CH}$ in

Table 1.1 Some metal-vinylidene complexes, $L_nM=C=CRR'$, prepared from 1-alkynes.

Metal	ML_n
Co	$Co(PBu^t_2CH_2CH_2\cdot\eta\text{-}C_5H_4)$ [56]
Fe	$Fe(CO)_2(PEt_3)_2$ [57], $Fe(PP)Cp^*$ [58], $FeCl(PP)_2$ [59]
Ir	$Ir\{N(SiMe_2CH_2PPh_2)_2\}$ [60]
Mn	$Mn(CO)_3(PP)$ [61], $Mn(CO)_2Cp$ [5, 6]
Mo	$Mo(PP)(\eta\text{-}C_7H_7)$ [62]
Os	$Os(CO)(NO)(PMoBu^t_2)_2$ [63], $Os(CO)(L)Cp$ [64, 65], $OsX(pcp)$ [66, 67], $OsXP_2$ [68], $OsClCp$ [69], $OsHX_2P_2$ [70–72], $OsP_2(\eta\text{-}arene)$ [73, 74], OsP_2Cp' [75–77]
Re	$Re(CO)_3P_2$ [78], $Re(CO)_2\{MeC(CH_2PPh_2)_3\}$ [79–81], $Re(CO)_2Cp$ [82], $ReCl(PP)_2$ [42]
Rh	$RhX(L)_2$ [40, 52]
Ru	$RuXLP_2$ [83], $RuHXP_2$ [84–86], RuP_2L^{OEt} [87], $RuXP(N_3)$ [88], $Ru(pnp)$ [89], $RuCl(NN)P_2$ [46, 47], $RuCl(P\sim O)_2$ [90–93], $RuClL_2$ [48–50, 94, 95], $RuCl(PP)_2$ [53, 54, 96–100], $Ru(CO)LCp'$ [101–104], $Ru(L)PCp$ [105, 106], RuL_2Cp' [39, 45, 107, 108], $RuClCp'$ [109–111], RuP_2Cp' [112–120], RuP_2Cp^* [44, 121, 122], RuL_2Cp^* [123–125], $RuXPTp$ [111, 125], RuL_2Tp' [126, 127], RuP_2Tp' [127–130], $RuClP\{O_2CCH(dmpz)_2\}$ [47], $Ru(P\sim O)(\eta\text{-}arene)$ [131], $RuClP(\eta\text{-}arene)$ [132]
Tc	$TcCl(PP)_2$ [133]
W	$W(CO)_3(PP)$ [134]

the presence of NEt_3 affords $trans$ - $Rh(C\equiv CH)(=C=CH_2)(L)_2$ [40] while the more basic $[Rh(PMe_3)_4]Cl$ reacts directly with 1-alkynes by C–H activation and oxidative addition to give $[RhH(C\equiv CR)(PMe_3)_4]Cl$, no migration of H to the metal being observed [41].

A variety of substituents can be tolerated (usually H, alkyl, aryl, $SiMe_3$, CO_2R), but in some cases, intramolecular nucleophilic attack on a presumed intermediate vinylidene complex results in the formation of carbene complexes. Ready replacement of $SiMe_3$ by H makes $HC\equiv CSiMe_3$ an attractive precursor for the parent complexes containing $=C=CH_2$ ligands. However, the strongly nucleophilic character of the OH group in hydroxyalkyl-alkynes often results in rapid addition to C_α . If the alkyl chain is long enough, cyclic oxacarbenes can be formed; if not, then intermolecular attack on a second molecule results in binuclear derivatives, which may contain both carbene and vinylidene functions (see Section 1.5).

Some notable complexes which have been reported include $[Re(CN)(=C=CHPh)(dppe)_2]^+$ from aminocarbene $[ReCl(CNH_2)(dppe)_2]^+$ and $HC\equiv CR$ [42]; $[Ru\{=C=CHC\equiv C[RuCl(CO)_2(PPh_3)_2]\}(PPh_3)_2Cp]PF_6$, from $RuCl(C\equiv CC\equiv CH)(CO)_2(PPh_3)_2$ and $[Ru(thf)(PPh_3)_2Cp]PF_6$ [43]; the fullerene derivative $RuCl\{(R)\text{-prophos}\}(\eta^5\text{-}C_{60}Me_5)$ can be converted to $[Ru\{=C=CHPh\}\{(R)\text{-prophos}\}(\eta^5\text{-}C_{60}Me_5)]^+$ with good diastereoselectivity [44].

Although the majority of ruthenium complexes contain tertiary phosphines as co-ligands, *N*-donor ligands are present in complexes obtained with $Ru(tmesta)Cp$ [45], $RuCl(Me_2bpy)(PPh_3)_2$ [46], $RuCl(L)$ [$L=(dmpz)_2\text{-acetate}$ [47], $2,6\text{-(dmpz)}_2$]

pyridine [48], 2,6-(NMe₂CH₂)₂C₅H₃N [49]] fragments. Structurally characterized macrocyclic ruthenium vinylidene complexes include RuCl{=C=CH(C₆H₄X-4)} (16-tmc) (R = H, Cl, Me, OMe; 16-tmc = tetramethyl-1,5,9,13-tetra-azacyclohexadecane) [50], while [Ru(N₄Me₈) (=C=CHR)]²⁻ (N₄Me₈ = octamethylporphyrinogen; R = H, Ph) have been obtained from the anionic [Ru(N₄Me₈)²⁻] and ethyne or HC≡CPh, respectively [51]. In this case, formation of an intermediate η^2 -alkyne complex is unlikely, the probable mechanism being deprotonation of the alkyne and coordination of the alkynyl anion followed by proton transfer.

Complexes containing several vinylidene-ruthenium fragments attached to branching organic centers are formed from suitable poly(ethynyl) precursors containing branching organic centers, such as HC≡C-X-C≡CH [X = 1, 4-HOC₆H₄OH, 1,4-C₆H₄{CPh(OH)}₂] and {RhCl(L)₂} [52], or from 1,3,5-tri(alkynyl)benzenes (triskela) [53], while convergent syntheses of polynuclear dendrimer complexes have also been described [54]. Reactions between HC≡CR (R = Bu^t, Ph) and {RuCl(η -C₂H₄)(PCy₃)₂}(μ -Cl)₃{Ru(η^6 -*p*-cymene)} afford {RuCl{=C=CHR}(PCy₃)₂}(μ -Cl)₃{Ru(η^6 -*p*-cymene)}; ethyne gives an unusual tetranuclear μ -carbido complex [55].

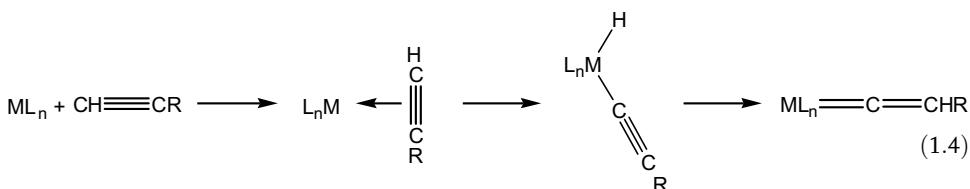
1.2.1.1 Migration of Other Groups (SiR₃, SnR₃, SR, SeR)

Although the vast majority of the reactions involving 1-alkynes proceed by 1,2-migration of the terminal H atom, other groups have been found to participate in this transfer. The nature of the other substituent on the 1-alkyne is often crucial, in some cases, for example, the presence of H providing a high kinetic barrier to the alkyne/vinylidene rearrangement. This barrier is lowered by the presence of Group 14 substituents, such as SiMe₃ or SnPh₃, with well-documented examples of facile 1,2-migration of the heavier groups. The Group 14 substituent may be replaced by H *in situ* by conventional means, such as treatment with [NBu₄]F.

An early example was provided by the reactions between {RhCl(L)₂}_n and RC≡CSiMe₃ [R = Me, Ph, CO₂Et, CO₂SiMe₃, CH₂OH, C(O)CHPh₂] [135]. Kinetic studies carried out with FcC≡CSiMe₃ in the same reaction confirmed the 1,2-migration of the SiMe₃ group [136]. Similar silyl migration reactions have been found with C₂(SiMe₃)₂ and Ru(OTf)(NO)(L)₂ [137], Co(η -C₅H₄CH₂CH₂PBu^t)₂) [56], IrCl(N₂)(PPh₃)₂ [138] and IrPh₂(N₂)Tp* [139]. For the former, Me₃SiC≡CC≡CSiMe₃ affords IrCl{=C=C(SiMe₃)C≡CSiMe₃}(PPh₃). The reaction of an excess of C₂(SiMe₃)₂ with Ru(NCMe)₂{(C₂B₁₀H₁₀)CMe₂(η -C₅H₄)} afforded the first bis(vinylidene)ruthenium complex, Ru{=C=C(SiMe₃)₂}₂{(C₂B₁₀H₁₀)CMe₂(η -C₅H₄)} [108].

A sub-set of these reactions is provided by the redox rearrangements of several complexes which have been extensively studied by Connolly and coworkers [140]. Oxidation of the η^2 -alkyne complexes M(η^2 -Me₃SiC₂SiMe₃)(CO)₂(η -arene) (M = Cr, Mo) results in formation of the vinylidene cations [M{=C=C(SiMe₃)₂}](CO)₂(η -arene)⁺.

Reactions of RC≡CSnMe₃ with MnCp'(η^6 -C₇H₈) in the presence of dmpe give Mn{=C=CR(SnMe₃)}(dppe)Cp', while with Ph₃SnC≡CC≡CSnPh₃, the alkynylvinylidene Mn{=C=C(SnPh₃)C≡CSnPh₃}(dmpe)Cp' is first formed. Subsequent irradiation then affords butatrienylidene Mn{=C=C=C(SnPh₃)₂}(dmpe)Cp'


[141–143]. Stannyalkynes and $\{\text{RhCl}(\text{L})_2\}_2$ afford many $\text{Rh}\{=\text{C}=\text{CR}(\text{SnPh}_3)\}(\text{L})_2$ complexes directly, which react with H^+ to cleave the SnPh_3 group [144].

The reaction of $\text{C}_2(\text{SMe})_2$ with $\text{RuCl}(\text{PMe}_3)_2\text{Cp}$ gives $[\text{Ru}\{=\text{C}=\text{C}(\text{SMe})_2\}(\text{PMe}_3)_2\text{Cp}]^+$ via the $\eta^2\text{-C}_2(\text{SMe})_2$ complex [145]. A 1,2-shift of SeR occurs in the reaction between $\text{RuCl}(\text{PPh}_3)_2\text{Cp}$ and $\text{PhC}\equiv\text{CSePr}^i$ in the presence of $\text{Na}[\text{BPh}_4]$, which affords $[\text{Ru}\{=\text{C}=\text{CPh}(\text{SePr}^i)\}(\text{PPh}_3)_2\text{Cp}]^+$ [146].

1,2-Halogen shifts have been found for tungsten, with assumed formation of iodovinylidenes in reactions of 1-iodo-1-alkynes with $\text{W}(\text{CO})_5(\text{thf})$ en route to cyclization of 2-(iodoethynyl)styrenes to naphthalenes and of iodo-alkynyl silyl enol ethers [147], while more substantial confirmation is found in $\text{Mn}\{=\text{C}=\text{C}(\text{I})\text{CH}(\text{OR})_2\}(\text{CO})_2\text{Cp}$ [$\text{R} = \text{Me, Et; (OR)}_2 = \text{O}(\text{CH}_2)_3\text{O}$], of which the XRD structure of $\text{Mn}\{=\text{C}=\text{C}(\text{I})\text{CH}(\text{OMe})_2\}(\text{CO})_2\text{Cp}$ was determined [148].

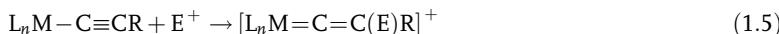
1.2.2

The $\eta^2\text{-Alkyne} \rightarrow \text{Hydrido}(\eta^1\text{-Alkynyl}) \rightarrow \text{Vinylidene Transformation (Equation 1.4)}$

Formation of the intermediate $\eta^2\text{-alkyne}$ complex has been reported in some reactions of 1-alkynes with metal centers, followed by rearrangement to the $\eta^1\text{-vinylidene}$. This occurs but rarely in the ruthenium series, for example, with $\text{Ru}(\text{PMe}_2\text{Ph})_2\text{Cp}$, where both $\eta^2\text{-alkyne}$ and vinylidene isomers of the product from C_2H_2 have been structurally characterized [149], and $\text{Ru}(\text{dippe})\text{Cp}^*$, where metastable $[\text{RuH}(\text{C}\equiv\text{CR})(\text{dippe})\text{Cp}^*]^+$ ($\text{R} = \text{Ph, CO}_2\text{Me, SiMe}_3$) transform into $[\text{Ru}(\text{C}=\text{CHR})(\text{dippe})\text{Cp}^*]^+$ in solution or the solid state [123]. Direct conversion of $[\text{Ru}(\eta^2\text{-HC}_2\text{Ph})(\text{CO})(\text{PMePr}^i_2)\text{Cp}^*]^+$, prepared at -40°C , to $[\text{Ru}(\text{C}=\text{CHPh})(\text{CO})(\text{PMePr}^i_2)\text{Cp}^*]^+$ occurs upon warming to 25°C [104]. In contrast, the alkyne complex predominates in the room temperature solution equilibrium of the PPh_3 analog [150].

The transformation predominates in Group 9 (Rh, Ir) chemistry. Reactions of $\{\text{RhCl}(\text{L})_2\}_2$ with 1-alkynes give the $\eta^2\text{-alkyne}$ complexes which slowly convert to the hydrido(alkynyl)s at room temperature. The latter are sensitive to air and not often isolated. Addition of pyridine affords $\text{RhHCl}(\text{C}\equiv\text{CR})(\text{py})(\text{L})_2$, which readily lose pyridine in hydrocarbon solvents to give square-planar *trans*- $\text{RhCl}(\text{C}=\text{CHR})(\text{L})_2$. Alternatively, the Cp complexes $\text{Rh}(\text{C}=\text{CHR})(\text{L})\text{Cp}$ can be obtained by reaction of the chloro complexes with TiCp . In the iridium series, heating for 36 h in refluxing toluene afforded the vinylidenes in 80–90% yields. Table 1.2 lists several examples of reactions in which the $\eta^2\text{-alkyne}$ complexes have been detected.

1.2.3


From Metal Alkynyls

In contrast to the alkynyl anion, coordination to a metal center results in C_α being electron-poor and subject to frontier-orbital controlled nucleophilic attack, while the

Table 1.2 Some vinylidene complexes, $L_nM=C=CRR'$, obtained by η^2 -alkyne \rightarrow hydrido(η^1 -alkynyl) \rightarrow vinylidene transformations.

Metal	ML_n
Co	$Co[P(CH_2CH_2PPh_2)_2]$ [151]
Fe	$Fe(CO)_2(PEt_3)_2$ [152]
Ir	$IrCl(PPr^1_2CH_2CH_2OMe/NMe_2)_2$ [153], $IrClP_2$ [138, 154–156]
Mn	$Mn(CO)_2Cp$ [157]
Os	$Os(CO)(NO)P_2$ [63], $OsHX(L)P_2$ [158], $OsXPCp$ [159], OsP_2Cp [160]
Rh	$RhCl(PPr^1_2CH_2CH_2OMe/NMe_2)_2$ [161, 162], $RhXP_2$ [32, 40, 163–166]
Ru	$Ru(tmeda)Cp$ [45], $RuCl(P)Cp$ [36], $RuHCl(CO)P_2$ [158], RuP_2Cp [149, 167]
W	$W(CO)_5$ [168], $W(CO)_3(PP)$ [169]

metal center and C_β are electron-rich and electrophilic attack is charge controlled. Consequently, a common route to vinylidene complexes is addition of electrophiles (E^+) to pre-formed neutral alkynyl-metal complexes, taking advantage of the polarization of the $M-C\equiv C-$ fragment so that C_β is the preferred site of attack (Equation 1.5):

The alkynyl-metal complexes are strong carbon bases, with measured pK_a values for $M(C\equiv CBu^t)L_2Cp$ being 13.6 [$ML_2 = Fe(CO)(PMe_3)$] and 20.8 [$ML_2 = Ru(PMe_3)_2$] [170].

Table 1.3 lists several examples of ML_n groups supporting this reaction.

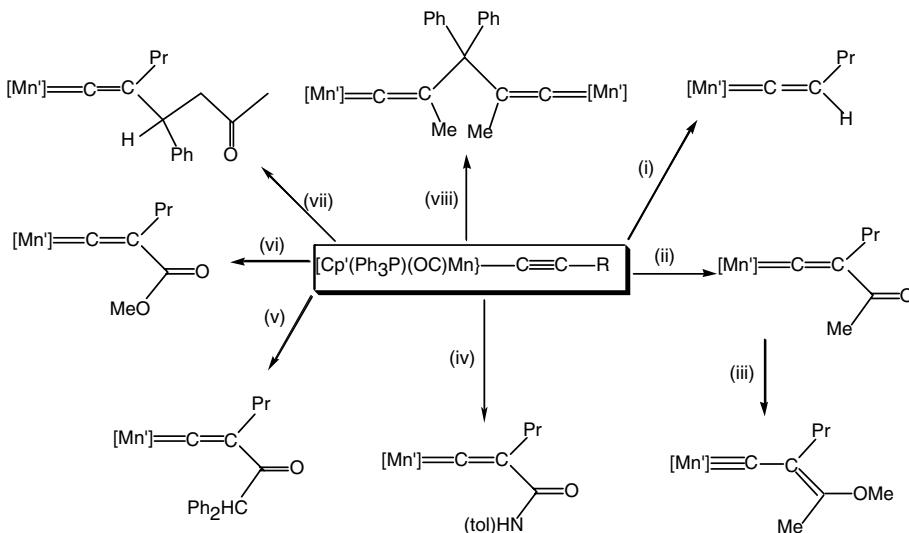
While protonation affords the vinylidene expected by H migration from the original 1-alkyne, use of other electrophiles provides a convenient route to disubstituted vinylidenes. The stereospecificity of this reaction with $Re(C\equiv CR)(NO)(PPh_3)$

Table 1.3 Some metal vinylidene complexes, $L_nM=C=CRR'$, obtained from alkynyl-metal systems.

Metal	ML_n
Cr, Mo, W	$M(CO)(NO)Cp$ [173–177]
Fe	FeP_4 [178], $Fe(PP)Cp$ [179–183]
Ir	$IrCl(L)_2$ [154]
Mn	$Mn(CO)_2Cp$ [184], $Mn(PP)Cp$ [185]
Mo	$Mo(CO)(P)_2Cp$ [186], $MoH_3(PP)_2$ [187]
Nb	$NbLCp^{Si}_2$ [188]
Os	$OsH(GePh_3)(L)Cp$ [189]
Pt	$PtMeP_2$ [190]
Re	$Re(NO)(PPh_3)Cp^*$ [191, 192]
Rh	$RhCl\{N(CH_2CH_2PPh_2)_3\}$ [193, 194], $RhClP_2$ [195]
Ru	$Ru(PO)_4$ [196], RuP_2Cp' [171, 197–201], RuP_2Tp [202, 203]
W	$W(CO)_5$ [204, 205], $W(CO)_2Cp$ [186], $WI(O)Tp$ [206]

Cp has been discussed [170b]. Alkylation with haloalkanes (often iodoalkanes), triflates (alkyl, benzyl, cyclopropyl), or $[R_3O]^+$ ($R = Me, Et$) is often the best entry to vinylidenes of any particular system. Other common electrophiles, such as halogens (Cl, Br, I), acylium ($[RCO]^+$), azoarenes ($[ArN_2]^+$), tropylium ($[C_7H_7]^+$), triphenylcarbenium (trityl, $[CPh_3]^+$), arylthio (ArS) and arylseleno (ArSe) have also been used.

Several complexes have been obtained from reactions of alkynyl anions, such as $[M(C\equiv CR)(CO)_5]^-$ or $[M(C\equiv CR)(CO)(NO)Cp]^-$ ($M = Cr, Mo, W$), obtained from $M(CO)_2(NO)Cp$ and $LiC\equiv CR$, or $[Mn(C\equiv CR)(CO)_2Cp]^-$, under charge-control.

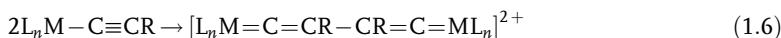

Alkylation may sometimes afford unusual complexes as a result of subsequent reactions (see also below). Reactions of $Ru(C\equiv CPh)(PPh_3)\{P(OMe)_3\}Cp$ with halides XCH_2R ($R = CN, Ph, C_6F_5, C_6H_4CN-4, C_6H_4CF_3-4, 1-nap, CO_2Me$) give $Ru\{P(O)(OMe)_2\}\{=C=CPhCH_2R\}(PPh_3)Cp$ via an initial cationic vinylidene which loses MeX in an Arbuzov-like reaction [171]. A similar reaction with RNCS gives $Ru\{P(O)(OMe)_2\}\{=C=CPh(SH=NR)\}(PPh_3)Cp$ with low yields, which can be improved by working at higher temperatures [172].

1.2.3.1 Some Specific Examples

An interesting series of bimetallic vinylidene complexes is formed in reactions of $[W(C\equiv CBu^t)(CO)_5]^-$ with cationic hydrocarbon-metal carbonyls, such as $[M(CO)_3(\eta-C_7H_7)]^+$ ($M = Cr, W$), $[Mn(CO)_3(\eta-C_6H_6)]^+$, $[Re(CO)_4(\eta-C_2H_4)]^+$, $[Fe(CO)_3(\eta^5-C_6H_6R)]^+$ or $[Fe(CO)_3(\eta^5-C_7H_8)]^+$ [207]. Reaction of the heterocumulene CO_2 with $[W(C\equiv CR)(CO)_3(dppe)]^-$ gives $Li[W(=C=CRCO_2)(CO)_3(dppe)]$ which can be alkylated with $[Me_3O]^+$ to neutral $W(=C=CR(CO_2Me))(CO)_3(dppe)$ [208].

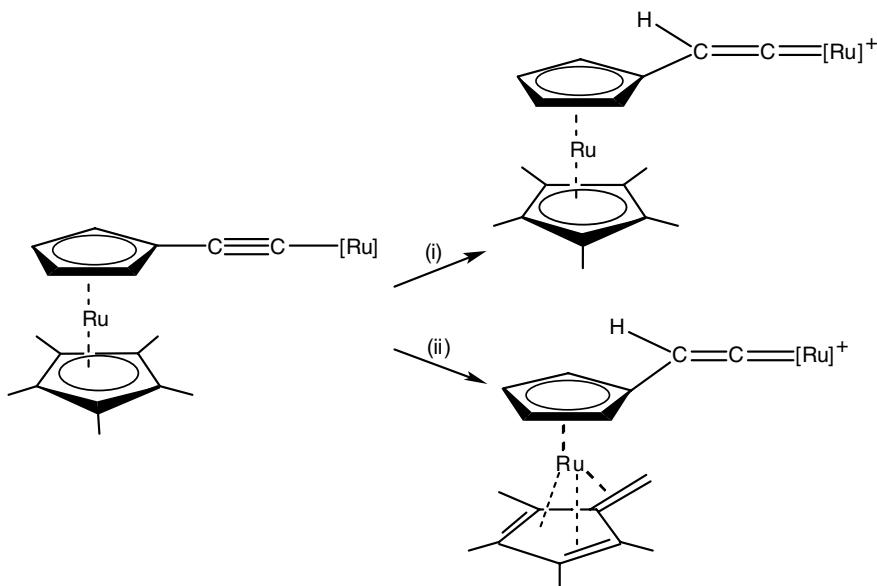
Reactions of $M(CO)_2(NO)Cp$ ($M = Mo, W$) with $LiC\equiv CR$ [$R = Ph, Bu^t, CH_2OCH_2CH=CH_2, (CH_2)_2OSiMe_2Bu^t$] give $Li[M(C\equiv CR)(CO)(NO)Cp]$ which react further with electrophiles to give either vinylidene or η^2 -alkyne complexes. The former are obtained when aqueous acids (HCl) or MeOTf (hard electrophiles) are used [174]. The parent complex $W(=C=CH_2)(CO)(NO)Cp$ was formed when the product from $LiC\equiv CSiMe_3$ was quenched with aqueous $NaHCO_3$. Treatment of the vinylidene with $LiBu$ reforms the alkynyl anion [174, 175]. η^2 -Alkyne complexes are formed with soft electrophiles, such as $SiClMe_3$, their formation resulting from the initial product by thermal isomerization [209]. In the case of Mo ($=C=CHBu^t)(CO)(NO)Cp$, depending on solvent, tautomerization may occur via either a 1,2-H shift (non-polar) or by a multi-step route involving deprotonation/protonation and reductive elimination (in EtOH).

Reactions of $[Mn(C\equiv CR)(CO)(PPh_3)Cp^{Me}]^-$ ($R = Me, Pr$) with electrophiles such as H^+ , RI ($R = Me, Et, Bu^t$), $MeOTf$, $[Et_3O]^+$, $RC(O)Cl$ ($R = Me, Ph$), $(tol)NCO$, $Ph_2C=C=O$, CO_2 and $PhCH=CHCOMe$ give directly the neutral complexes $Mn(=C=CEMe)(CO)(PPh_3)Cp^{Me}$ [$E = H$, alkyl, $RC(O)$, $C(O)NH(tol)$, $C(O)CHPh_2$, $C(O)OMe$ (after treatment with $MeOTf$) and $CHPhCH_2C(O)Me$, respectively] (Scheme 1.1) [184, 210]. Aldehydes and ketones react with the propynyl anion to give vinylcarbyne cations after hydroxide elimination, which react with bulky nucleophiles (PPh_3) to give vinylidenes [211]. Similarly, the BF_3 adducts of epoxides react with $[Mn(C\equiv CMe)(CO)(PPh_3)Cp^{Me}]^-$ to afford anionic $[Mn$


Scheme 1.1 $[\text{Mn}'] = \text{Mn}(\text{CO})(\text{PPh}_3)\text{Cp}'$. Reagents: (for $\text{R} = \text{Pr}$, $\text{Cp}' = \text{Cp}^{\text{Me}}$) (i) H^+ ; (ii) $\text{MeC}(\text{O})\text{Cl}$; (iii) MeOTf ; (iv) NCO , then H^+ ; (v) $\text{Ph}_2\text{C}=\text{O}$, then H^+ ; (vi) CO_2 , then MeOTf ; (vii) $\text{PhCH} = \text{CHC}(\text{O})\text{Me}$; (viii) (for $\text{R} = \text{Me}$, $\text{Cp}' = \text{Cp}$) $[\text{Mn}(\equiv \text{CCMe}=\text{CPh}_2)(\text{CO})(\text{PPh}_3)\text{Cp}]^+$.

$\{=\text{C}=\text{CMeCH}_2\text{CMe}_2(\text{CH}_2)_n\text{O}(\text{BF}_3)\}(\text{CO})(\text{PPh}_3)\text{Cp}^{\text{Me}}\text{e}^-$ ($n = 0, 1$, respectively), possibly via intermediate hydroxyalkyl-vinylidene $\text{Mn}=\text{C}=\text{CMeCH}_2\text{CMe}_2(\text{OH})\}(\text{CO})(\text{PPh}_3)\text{Cp}^{\text{Me}}$ which undergo intramolecular attack at C_α [210].

Protonation of $\text{Ru}\{\text{C}\equiv\text{CCPh}_2(\text{C}_2\text{H}[\text{Co}_2(\text{CO})_6])\}(\text{PPh}_3)_2(\eta^5\text{-C}_9\text{H}_7)$ and $(E,Z)\text{-Ru}\{\text{C}\equiv\text{CCH}=\text{CH}(\text{C}_2\text{Ph}[\text{Co}_2(\text{CO})_6])\}(\text{PPh}_3)_2(\eta^5\text{-C}_9\text{H}_7)$ gives the corresponding vinylidene [212]. The complex *trans*- $\text{Rh}(\text{C}\equiv\text{CH})(\eta\text{-C}_2\text{H}_4)(\text{L})_2$ is protonated with $[\text{pyH}]\text{BF}_4^-$ to give *trans*- $[\text{Rh}(\equiv \text{C}=\text{CH}_2)(\text{py})(\text{L})_2]^+$ and reacts with cyclopentadiene to give $\text{Rh}(\equiv \text{C}=\text{CH}_2)(\text{L})\text{Cp}$ [40].


1.2.3.2 Redox Rearrangements of Metal Alkynyls and Vinylidenes

Oxidative coupling of metal alkynyls to give binuclear bis(vinylidene) complexes is exemplified by $\text{ML}_n = \text{Nb}(\text{C}\equiv\text{CPh})\text{Cp}^{\text{Si}}_2$ [213], $\text{Fe}(\text{PP})\text{Cp}^*$ [214] or $\text{Ru}(\text{PP})\text{Cp}^*$ (Equation 1.6): [215]

Suitable oxidizing agents are $[\text{FeCp}_2]^+$ or Ag^+ , while the cationic species may be reduced back to the alkyne complexes using CoCp_2 . Some of this chemistry has been reviewed [216].

Oxidation of *trans*- $\text{RuCl}(\text{C}\equiv\text{CCHPh}_2)(\text{dppe})_2$ favors hydrogen atom transfer leading to *trans*- $[\text{RuCl}(\equiv \text{C}=\text{CHCHPh}_2)(\text{dppe})_2]^+$ [217]. Chemical oxidation of $\text{Ru}(\text{C}\equiv\text{CRc})(\text{PPh}_3)_2\text{Cp}$ (Rc = ruthenocenyl) gives the cyclopentadienylidene-ethylidene

Scheme 1.2 $[\text{Ru}] = \text{Ru}(\text{PPh}_3)\text{Cp}$. Reagents: (i) $[\text{FeCp}_2]^+$; (ii) *p*-benzoquinone.

complex $[\text{Ru}\{\eta^1:\eta^6-(=\text{C}=\text{C}=\text{C}_5\text{H}_4)\text{RuCp}\}(\text{PPh}_3)_2\text{Cp}]^+$, while $\text{Ru}\{\text{C}\equiv\text{C}-\eta\text{-C}_5\text{H}_4\}\text{RuCp}^*$ gives successively $[\text{Ru}\{=\text{C}=\text{CH}(\eta\text{-C}_5\text{H}_4)\text{RuCp}^*\}(\text{PPh}_3)_2\text{Cp}]^+$ and the fulvene-vinylidene $[\text{Ru}\{=\text{C}=\text{CH}(\eta\text{-C}_5\text{H}_4)\text{Ru}(\eta^6\text{-C}_5\text{Me}_4\text{CH}_2)\}(\text{PPh}_3)_2\text{Cp}]^{2+}$ (Scheme 1.2) [218].

Examples of oxidative dehydro-dimerisation of vinylidenes are found with $\text{Mo}(\text{PP})(\eta\text{-C}_7\text{H}_7)$ [219], $\text{M}(\text{CO})_2\text{Cp}$ ($\text{M} = \text{Mn, Re}$) [220, 221] or $\text{Mn}(\text{PP})\text{Cp}^{\text{Me}}$ [185] centers (Equation 1.7):

For $\text{M}(\text{CO})_2\text{Cp}$, this reaction proceeds via a 16-e alkynyl cation radical $[\text{M}(\text{C}\equiv\text{CPh})(\text{CO})_2]^+$, which, for $\text{M} = \text{Mn}$, couples at C_β to give the bis(carbyne) dication [220]. For $\text{M} = \text{Re}$, a similar cation radical is formed, which with NEt_3 affords a mixture of $\{\text{Cp}(\text{OC})_2\text{Re}\}=\text{C}=\text{CPhCPh}=\text{C}=\{\text{Re}(\text{CO})_2\text{Cp}\}$ and the isomeric μ -vinylidene $\{\text{Cp}(\text{OC})_2\text{Re}\}_2\{\mu\text{-C}=\text{CPh}(\text{C}\equiv\text{CPh})\}$ by competitive $\text{C}_\beta-\text{C}_\beta$ and $\text{C}_\beta-\text{M}$ coupling [221]. With an alternative ligand set, the $\text{Mn}\{=\text{C}=\text{CR}(\text{SnMe}_3)\}$ complexes can be destannylated with $[\text{NBu}_4]\text{F}$ before oxidative coupling to the bis(vinylidene). Reductive uncoupling also occurs, making these systems of interest as potential energy sinks [142].

Oxidation $[\text{PhIO}$ or $\text{Cu}(\text{OAc})_2]$ of $[\text{Fe}(\text{=C}=\text{CHMe})(\text{dppe})\text{Cp}]^+$ affords bis(vinylidene) $[\{\text{Fe}(\text{dppe})\text{Cp}\}_2(\mu\text{-C}_4\text{Me}_2)]^{2+}$, possibly via an intermediate radical cation [222]. Similar oxidative coupling of cyclopropenyl $\text{Ru}\{\text{C}=\text{CPhCH}(\text{CN})\}(\text{PPh}_3)_2\text{Cp}$ affords bis(vinylidene) $[\{\text{Cp}(\text{Ph}_3\text{P})_2\text{Ru}\}=\text{C}=\text{CPhCH}(\text{CN})_2]^{2+}$ which, in turn, can be deprotonated to the bis(cyclopropenyl) [223]. Oxidation of $[\text{Ru}(\text{N}_4\text{Me}_8)(\text{=C}=\text{CH}_2)]^{2-}$ with PhN_3 or $[\text{FeCp}_2]^+$ affords $[\{\text{Ru}(\text{N}_4\text{Me}_8)\}_2(\mu\text{-C}=\text{CHCH}=\text{C})]^{4-}$ [51].