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Preface

Plasma processes started to be applied for surface modification of materials in the

70’s, in the fields of microelectronics (dry etching processes for fabricating integrated

circuits) and semiconductors (deposition processes of semiconductor thin films for

solar cells). Since then, enormous advancements in the basic, diagnostic and experi-

mental aspects of plasma sciences have been made, so that many other science areas

and industrial fields have been permeated by plasma processes: polymers, textiles,

biomaterials, microfluidics, composite materials, paper, packaging, automobile,

waste treatment, cultural heritage and corrosion protection, to mention but a few.

The idea of organizing this book was developed during the second International

School of Industrial Plasma Application, held at Villa Monastero in Varenna, Italy, in

October 2004, where approximately one hundred attendees from all over the world

were assembled. The aim of the School was to describe, in a tutorial way, the

numerous modern industrial applications of plasmas.

Now, three years later, this book is issued with the same tutorial purpose: to

describe advances of low and atmospheric pressure plasmas in technological fields,

such as polymers, semiconductors, solar cells, biomaterials, displays, water treat-

ment, and space, with the introduction of some fundamental chapters on diagnos-

tics, reactor design, modeling and process control.

Advanced Plasma Technology is a collection of 25 chapters on various aspects of

plasma processes authored by well known plasma scientists. We are convinced that

this book will be of help to both students and researchers, in academia as well as in

the industry.

To all the authors, to the referees and to our publishers at Wiley-VCH we would

like to extend our warmest ‘‘thank you’’ for the creation of this book. We hope that

you, reader, will enjoy reading this book as much as we enjoyed editing it.

October 2007 Riccardo d’Agostino
Pietro Favia
Yoshinobu Kawai
Hideo Ikegami
Noriyoshi Sato
Farzaneh Arefi-Khonsari
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1

Basic Approaches to Plasma Production and Control
N. Sato

Plasma production and control are of crucial importance for ‘‘intelligent’’ plasma

processing in next-stage material and device manufacturing. The author has been

concerned with basic experiments on discharge plasmas along this line of

research. Here are presented some essential points of basic approaches to plasma

production and control. They include works on large-diameter plasma production,

electron-temperature and ion-energy controls, and dust particle collection and

removal.

At first, twomethods of plasmaproduction are presented. They are for high-density

electron cyclotron resonance (ECR) and rf plasmas yielding uniform plasma proces-

sing in actual manufacturing devices, the diameters of which are larger than several

tens of centimeters. These discharge plasmas are produced under low gas pressures.

New approaches to medium-pressure and high (atmospheric)-pressure discharge

plasmas are also described in some detail.

Electron temperature is continuously controlled in the wide range of one or two

orders of magnitude in a region separated from a discharge region. The methods

employedmight be useful for finding the best conditions for various kinds of plasma

processing. In fact, the methods have been proved to be useful for efficient produc-

tion of negative ions, formation of high-quality diamond particles, and quality

increase of a-Si :H film. A good method of ion-energy control should also be

established for ‘‘intelligent’’ plasma applications. A new approach is presented for

this purpose.

Dust collection and removal are quite important for many kinds of material and

device manufacturing. On the basis of fundamental fine-particle behaviors in

plasmas, we have proposed a simple method for collection and control of negatively

charged fine particles in plasmas. Our collector is often called ‘‘NFP-Collector’’

(negatively charged fine-particle collector). The collector has been proved to be very

efficient for collection and removal of dust particles levitating in plasmas, suggesting

big effects on plasma processing.
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1.1

Plasma Production

1.1.1

Under Low Gas Pressure (<0.1 torr)

Here, two simple methods are presented of plasma production for large-scaled

uniform-plasma processing. One of the methods is based on ECR. For the other

method, we employ themagnetron-type rf discharge. In both of them,weakly ionized

plasmas are produced by low-pressure discharges in a vacuum chamber, the wall of

which is separated into two parts. One part is electrically grounded and the other part

is used as an antenna or rf electrode. Therefore, in principle, we need no additional

electrode for plasma production in the vacuum chamber. Radial plasma profiles are

non-uniform in a region of plasma production. But, radial plasma diffusion makes

the plasmas uniform at an axial position a little away from the production region.We

employ amagnetic field to provide efficient plasma production and to control plasma

flow toward the wall (or electrode), which is closely connected with plasma loss and

particle sputtering. Themagnetic field, which is generated by permanentmagnets, is

used also to modify electronmotions for plasma-profile control, although there is no

direct magnetic effect on ions in front of substrates.

A schematic feature of ECR plasma production [1,2] is illustrated in Fig. 1.1(a). The

antenna, which is situated at one end of a vacuum chamber, consists of a back plate

with permanent magnets behind and a slotted plate separated from the back plate. A

microwave of 2.45GHz is fed through a coaxial waveguide to satisfy the ECR

condition (�875G) in a region near the magnet surfaces in front of the antenna.

The slotted plate can be covered with a thin glass plate.

Fig. 1.1 (a) Schematic of ECR plasma production using a

plane-slotted antenna with magnets and (b) radial profiles

of plasma parameters measured at z¼ 10 cm.
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The plasma produced is non-uniform radially in front of the antenna, depending

on the positions of the slots and magnets. But, with an increase in z (distance from
antenna front), inward plasma diffusion makes the plasma profile flat in the radial

direction. Typical results are presented in Fig. 1.1(b), where argon pressure �1.5�
10�2 torr andmicrowave power�1 kW.Theplasmaof densitynp� 1.3� 1011 cm�3 is
found to be uniform within 3% in the radial region of 35 cm in diameter at axial

distance z of 10 cm. The plasma density is almost proportional to the microwave

power. The axial position for the uniform radial plasma profile is controlled by

changing the magnetic configuration in front of the antenna.

A reactive plasmaproducedby thismethodwas confirmed to yielduniformetching

of poly-silicon [3]. An antenna system shown in Fig. 1.2 has been proposed for actual

plasma processing [4].

A schematic feature of modified magnetron-type (MMT) plasma production [5] is

illustrated in Fig. 1.3(a). An rf power of 13.56MHz is fed to a ring electrode of 55 cm

in diameter and 7 cm in length, which is a central part of a cylindrical vacuum

chamber of 55 cm in diameter. A discharge is triggered between this powered

electrode and the other parts of the vacuumchamber,which are electrically grounded,

in the range of argon pressure 5.0� 10�4–5.0� 10�2 torr. Permanent magnets,

which are situated just outside the cylinder to construct azimuthal magnet rings,

provide magnetic mirrors axially near the inner surface of the ring electrode. This

magnetic configuration enhances plasma production because high-energy electrons

responsible for ionizationmove in the azimuthal direction, being well trapped in the

magnetic mirrors inside the region near the ring electrode. This motion of electrons

reduces a potential drop in front of the electrode, which is closely connected with an

interaction of ions with the electrode.

Fig. 1.2 Details of apparatus proposed for ECR plasma production in plasma application.
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The plasma density is found to have a peak near the electrode and decreases in the

direction toward the radial center. But, with an increase in z (axial distance from

machine center), the plasma diffuses toward the radial center, flattening the radial

density profile. This MMTrf discharge yields an almost uniform plasma in the radial

region of 40 cm in diameter at z¼ 6.0 cm where substrates (S) can be situated, as

shown for argon pressure of 1.0� 10�3 torr and rf power of 200W in Fig. 1.3(b). Now

we canproduce a uniformplasma, the diameter ofwhich is larger than 100 cm [6,7]. A

feedback control is effective for meter-size uniform processing, where the signal due

to the non-uniformity is used as a feedback signal to a small electrode for additional

discharge to provide uniform processing.

The potential drop in front of the ring electrode is changed by varying themagnetic

strength and configuration. Therefore we can control energies of ions toward

substrates [8] and particle sputtering due to high-energy ions accelerated by the

potential drop. In the experiment, we could find the condition where there is no

appreciable sputtering from the electrode [9]. Figure 1.4 demonstrates the MMT

plasma reactor developed by Hitachi Kokusai Electric Inc. for semiconductor

manufacturing [10].

1.1.2

Under Medium Gas Pressure (0.1–10 torr)

A parallel-plate rf discharge in this pressure range has been widely used for plasma

production in applications. Multi-hollows formed in a cathode (rf powered electrode)

are known to be effective for increasing the plasma density. A cathode with isolated

hollows (CIH) (see Fig. 1.5(a)) is used in many cases. But, the discharge is often

localized in the special hollow(s). There is also a possibility of dust particle trapping in

the isolated hollows.

Here, a cathode with connected hollows (CCH) (see Fig. 1.5(b) is employed to

eliminate these problems in the CIH [11]. In this case, the hollows are connected

Fig. 1.3 (a) Schematic of MMT plasma production and (b)

measured variation of radial plasma density profiles in the

axial direction.
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by ditches [3]. The CCH is topologically different from the CIH. Gas-feed holes are

made in the bottoms of the hollows and/or between the hollows. An apparatus with

the CCH is shown, together with photographs of (a) parallel-plate discharge and (b)

CCH discharge, in Fig. 1.6. In the case of the CCH, the discharge brightness is

enhanced and the plasma density is twice as high as that in the case of plane parallel-

plate discharge at the same input rf power. The density has been confirmed to

Fig. 1.5 Uneven electrodes: (a) concave-type electrode (CIH) and (b) convex-type electrode (CCH).

Fig. 1.4 MMT reactor used in plasma processing for

semiconductor manufacturing (Hitachi Kokusai Electric

Inc. [10]).
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increase with an increase in the rf power, without localization of the discharge,

yielding a uniform plasma for large-scaled processing.

1.1.3

Under High (Atmospheric) Gas Pressure (>10 torr)

Plasma processing using atmospheric plasmas is now quite useful for various kinds

of applications. So-called ‘‘barrier discharges’’ are well known as amethod of plasma

production under high (atmospheric) gas pressure. Electrodes for this discharge are

shown in Fig. 1.7(a), where one of the electrodes is covered by dielectric material. An

equivalent circuit for this situation of discharge is shown in Fig. 1.7(b).

We have proposed a quite simple method of plasma production under high

(atmospheric) gas pressure. Pole-type electrodes, which are coupled with external

capacitors, are set near a metal plate. This arrangement is just a direct realization of

the circuit in Fig. 1.6(b). This is called capacity-coupledmulti-discharge (CCMD) [12].

Under some conditions, the pole length is set to be so short that the electrodes are

almost small plates. Being different from the barrier discharges, the discharge power

of the CCMD can be externally controlled to increase by increasing the capacity of the

capacitors. Measurements have proved that the CCMD provides high-power dis-

charges, suggesting new possibilities for plasma applications in the high (atmo-

spheric) pressure range.

Fig. 1.6 Left: apparatus with CCH. (a) Parallel-plate discharge and (b) CCH discharge.

Fig. 1.7 (a) Typical barrier-discharge electrodes and (b)

electrodes for capacitor-coupled multidischarge (CCMD).
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