Advanced Plasma Technology

Edited by Riccardo d'Agostino, Pietro Favia, Yoshinobu Kawai, Hideo Ikegami, Noriyoshi Sato, and Farzaneh Arefi-Khonsari

WILEY-VCH Verlag GmbH & Co. KGaA

Advanced Plasma Technology

Edited by Riccardo d'Agostino, Pietro Favia, Yoshinobu Kawai, Hideo Ikegami, Noriyoshi Sato, and Farzaneh Arefi-Khonsari

Related Titles

Hippler, R., Kersten, H, Schmidt, M., Schoenbach, K H. (eds.)

Low Temperature Plasmas

Fundamentals, Technologies and Techniques

approx. 1110 pages in 2 volumes exp. 2007 Hardcover ISBN: 978-3-527-40673-9 ISBN: 3-527-40673-5

d'Agostino, R., Favia, P., Oehr, C, Wertheimer, M. R. (eds.)

Plasma Processes and Polymers

16th International Symposium on Plasma Chemistry Taormina/Italy June 22-27, 2003

545 pages with 275 figures 2005 Hardcover ISBN: 978-3-527-40487-2 ISBN: 3-527-10487-2

Woods, L C.

Physics of Plasmas

226 pages with 69 figures 2004 Softcover ISBN: 978-3-527-40461-2 ISBN: 3-527-40461-9

Marcus, R. K, Broekaert, J. A. C. (eds.)

Glow Discharge Plasmas in Analytical Spectroscopy

498 pages 2002 Hardcover ISBN: 978-0-471-60699-4 ISBN: 0-471-60699-5

Diver, D.

A Plasma Formulary for Physics, Technology and Astrophysics

220 pages with 19 figures and 23 tables 2001 Hardcover ISBN: 978-3-527-0294-6 ISBN: 3-527-10294-2

Advanced Plasma Technology

Edited by Riccardo d'Agostino, Pietro Favia, Yoshinobu Kawai, Hideo Ikegami, Noriyoshi Sato, and Farzaneh Arefi-Khonsari

WILEY-VCH Verlag GmbH & Co. KGaA

The Editors

Prof. Riccardo d'Agostino

Dipartimento di Chimica Università di Bari Italien

Prof. Pietro Favia

Dipartimento di Chimica Università di Bari Italien

Prof. Yoshinobu Kawai Kyushu University

Engineering Sciences Fukuoka, Japan

Prof. Hideo Ikegami Nagoya, Japan

Prof. Noriyoshi Sato

Graduate School of Engineering Tohoku University Sendai, Japan

Prof. F. Arefi-Khonsari

Laboratoire de Genie des Procedes Plasmas Paris, Frankreich All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de>.

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

 Typesetting
 Thomson Digital Noida, India

 Printing
 Strauss GmbH, Mörlenbach

 Binding
 Litges & Dopf GmbH, Buchbinderi

 Heppenheim
 Kathananan

Printed in the Federal Republic of Germany Printed on acid-free paper

ISBN: 978-3-527-40591-6

Contents

1

Preface XV List of Contributors XVII v

	N. Sato
1.1	Plasma Production 2
1.1.1	Under Low Gas Pressure (<0.1 torr) 2
1.1.2	Under Medium Gas Pressure (0.1–10 torr) 4
1.1.3	Under High (Atmospheric) Gas Pressure (>10 torr) 6
1.2	Energy Control 7
1.2.1	Electron-Temperature Control 7
1.2.2	Ion-Energy Control 10
1.3	Dust Collection and Removal 11
	References 15
2	Plasma Sources and Reactor Configurations 17
	P. Colpo, T. Meziani, and F. Rossi
2.1	Introduction 17
2.2	Characteristics of ICP 18
2.2.1	Principle 18
2.2.2	Transformer Model 19
2.2.3	Technological Aspects 20
2.2.3.1	Matching 20
2.2.3.2	Capacitive Coupling 22
2.2.3.3	Standing Wave Effects 22
2.3	Sources and Reactor Configuration 23
2.3.1	Substrate Shape 23
2.3.1.1	Flat Substrates 24
2.3.1.2	Complex Three-Dimensional Shapes 24
2.3.1.3	Large Area Treatment 26
2.4	Conclusions 31
	References 32

Basic Approaches to Plasma Production and Control 1

VI Contents

3	Advanced Simulations for Industrial Plasma Applications 35
	S.J. Kim, F. Iza, N. Babaeva, S.H. Lee, H.J. Lee, and J.K. Lee
3.1	Introduction 35
3.2	PIC Simulations 37
3.2.1	Capacitively Coupled O ₂ /Ar Plasmas 37
3.2.1.1	Gas Composition 38
3.2.1.2	Pressure Effect in Ar/O ₂ Plasmas 41
3.2.2	Three-Dimensional (3D) Charge-up Simulation 42
3.2.2.1	Description of 3D Charge-up Simulations 42
3.2.2.2	Effects of Secondary Electron Emission 44
3.2.2.3	Negative Ion Extraction 45
3.3	Fluid Simulations 47
3.3.1	Capacitively Coupled Discharges 48
3.3.2	Large Area Plasma Source 49
3.4	Summary 51
	References 52
4	Modeling and Diagnostics of He Discharges
	for Treatment of Polymers 55
	E. Amanatides and D. Mataras
4.1	Introduction 55
4.2	Experimental 56
4.3	Model Description 57
4.4	Results and Discussion 60
4.4.1	Electrical Properties 61
4.4.2	Gas-Phase Chemistry 66
4.4.3	Plasma–Surface Interactions 71
4.5	Conclusions 72
	References 73
5	Three-Dimensional Modeling of Thermal Plasmas
	(RF and Transferred Arc) for the Design of Sources
	and Industrial Processes 75
	V. Colombo, E. Ghedini, A. Mentrelli, and T. Trombetti
5.1	Introduction 76
5.2	Inductively Coupled Plasma Torches 77
5.2.1	Modeling Approach 77
5.2.1.1	Modeling Assumptions 77
5.2.1.2	Governing Equations of the Continuum Phase 78
5.2.1.3	Governing Equations of the Discrete Phase 79
5.2.1.4	Computational Domain and Boundary Conditions 81
5.2.2	Selected Simulation Results 82
5.2.2.1	High-Definition Numerical Simulation of Industrial
	ICPTs 82

- 5.2.2.2 Numerical Simulation of the Trajectories and Thermal Histories
- of Powders Injected in Industrial ICPTs 84
- 5.3 DC Transferred Arc Plasma Torches 85
- 5.3.1 Modeling Approach 85
- 5.3.1.1 Modeling Assumptions 85
- 5.3.1.2 Governing Equations 86
- 5.3.1.3 Computational Domain and Boundary Conditions 87
- 5.3.2 Selected Simulation Results 89
- 5.3.2.1 Magnetically Deflected Transferred Arc 89
- 5.3.2.2 The Twin Torch 89
- 5.3.2.3 The Cutting Torch 94 References 95

6 Radiofrequency Plasma Sources for Semiconductor Processing 99

- F. F. Chen
- 6.1 Introduction 99
- 6.2 Capacitively Coupled Plasmas 99
- 6.2.1 Dual-Frequency CCPs 100
- 6.3 Inductively Coupled Plasmas 103
- 6.3.1 General Description 103
- 6.3.2 Anomalous Skin Depth 106
- 6.3.3 Magnetized ICPs 107
- 6.4 Helicon Wave Sources 109
- 6.4.1 General Description 109
- 6.4.2 Unusual Features 110
- 6.4.3 Extended Helicon Sources 114
 - References 114

7 Advanced Plasma Diagnostics for Thin-Film Deposition 117

R. Engeln, M.C.M. van de Sanden, W.M.M. Kessels, M. Creatore, and D.C. Schram

- 7.1 Introduction 117
- 7.2 Diagnostics Available to the (Plasma) Physicist 118
- 7.3 Optical Diagnostics 118
- 7.3.1 Thomson–Rayleigh and Raman Scattering 118
- 7.3.2 Laser-Induced Fluorescence 121
- 7.3.3 Absorption Techniques 122
- 7.3.4 Surface Diagnostics 126
- 7.4 Applications 127
- 7.4.1 Thomson–Rayleigh Scattering and Raman Scattering 127
- 7.4.2 Laser-Induced Fluorescence 128
- 7.4.3 Absorption Spectroscopy 130
- 7.4.4 Surface Diagnostics 133
 - References 134

8	Plasma Processing of Polymers by a Low-Frequency Discharge
	with Asymmetrical Configuration of Electrodes 137
	F. Arefi-Khonsari and M. Tatoulian
8.1	Introduction 137
8.2	Plasma Treatment of Polymers 139
8.2.1	Surface Activation 139
8.2.2	Functionalization (Grafting) Reactions 139
8.2.3	Crosslinking Reactions 140
8.2.4	Surface Etching (Ablation) Reactions 142
8.2.4.1	Decarboxylation 142
8.2.4.2	β-Scission 142
8.2.4.3	Plasma Cleaning/Etching Effect 142
8.3	Surface Treatment of Polymers in a Low-Frequency, Low-Pressure
	Reactor With Asymmetrical Configuration of Electrodes
	(ACE) 145
8.3.1	Surface Functionalization 147
8.3.2	Ablation Effect of an Ammonia Plasma During Grafting
	of Nitrogen Groups 148
8.3.3	Acid–Base Properties 151
8.3.3.1	Introduction 151
8.3.3.2	Contact Angle Titration Method 152
8.3.4	Aging of Plasma-Treated Surfaces 155
8.3.4.1	Aging of Ammonia Plasma-Treated PP 156
8.3.4.2	Stability of PP Treated in Plasmas of Mixtures of He + NH ₃ for
	Improved Adhesion to Aluminum 157
8.4	Plasma Polymerization 158
8.4.1	Influence of the Chemical Composition of the Substrate on the
	Plasma Polymerization of a Mixture of $CF_4 + H_2 = 160$
8.4.2	Plasma Polymerization of Acrylic Acid 165
8.5	Conclusions 169
	References 170
9	Fundamentals on Plasma Deposition of Fluorocarbon Films 175
	A. Milella, F. Palumbo, and R. d'Agostino
9.1	Deposition of Fluorocarbon Films by Continuous
	Discharges 175
9.1.1	Active Species in Fluorocarbon Plasmas 176
9.1.2	Effect of Ion Bombardment 178
9.1.3	The Activated Growth Model 179
9.2	Afterglow Deposition of Fluorocarbon Films 181
9.3	Deposition of Fluorocarbon Films by Modulated Glow
	Discharges 183
9.4	Deposition of Nanostructured Thin Films from Tetrafluoroethylene
	Glow Discharges 185
	References 193

10	Plasma CVD Processes for Thin Film Silicon Solar Cells 197 A. Matsuda
10.1	Introduction 197
10.2	Dissociation Reaction Processes in SiH ₄ and SiH ₄ /H ₂
10.2	Plasmas 198
10.3	Film-Growth Processes on the Surface 199
10.3.1	Growth of a-Si:H 199
10.3.2	Growth of µc-Si:H 200
10.3.2.1	Nucleus Formation Process 201
10.3.2.2	Epitaxial-Like Crystal Growth 203
10.4	Defect Density Determination Process in a-Si:H and µc-Si:H 203
10.4.1	Growth of a-Si:H and μ c-Si:H with SiH ₃ (H) Radicals 203
10.4.2	Contribution of Short-Lifetime Species 204
10.5	Solar Cell Applications 206
10.6	Recent Progress in Material Issues for Thin-Film Silicon
	Solar Cells 207
10.6.1	Control of Photoinduced Degradation in a-Si:H 207
10.6.2	High-Rate Growth of Device-Grade µc-Si:H 208
10.7	Summary 210
	References 210
11	VHF Plasma Production for Solar Cells 211
	Y. Kawai, Y. Takeuchi, H. Mashima, Y. Yamauchi, and H. Takatsuka
11.1	Introduction 211
11.2	Characteristics of VHF H ₂ Plasma 212
11.3	Characteristics of VHF SiH ₄ Plasma 214
11.4	Characteristics of Large-Area VHF H ₂ Plasma 219
11.5	Short-Gap VHF Discharge H ₂ Plasma 222
	References 226
12	Growth Control of Clusters in Reactive Plasmas and Application
	to High-Stability a-Si:H Film Deposition 227
	Y. Watanabe, M. Shiratani, and K. Koga
12.1	Introduction 227
12.2	Review of Cluster Growth Observation in SiH ₄ HFCCP 228
12.2.1	Precursor for Cluster Growth Initiation 228
12.2.2	Cluster Nucleation Phase 230
12.2.3	Effects of Gas Flow on Cluster Growth 231
12.2.4	Effects of Gas Temperature Gradient on Cluster Growth 232
12.2.5	Effects of H_2 Dilution on Cluster Growth 233
12.2.6	Effects of Discharge Modulation on Cluster Growth 234
12.3	Cluster Growth Kinetics in SiH_4 HFCCP 235
12.4	Growth Control of Clusters 237
12.4.1	Control of Production Rate of Precursor Radicals 238
1212	Control of Crowth Practions and Transport Loss of Clusters 229

12.4.2 Control of Growth Reactions and Transport Loss of Clusters 238

X Contents

12.5	Application of Cluster Growth Control to High-Stability a-Si:H Film Deposition 238
12.6	Conclusions 241 References 241
13	Micro- and Nanostructuring in Plasma Processes for Biomaterials: Micro- and Nano-features as Powerful Tools to Address Selective Biological Responses 243 E. Sardella, R. Gristing, R. d'Agostino, and P. Favia
13.1	Introduction: Micro and Nano, a Good Point of View in Biomedicine 243
13.2	Micro- and Nanofeatures Modulate Biointeractions <i>In Vivo</i> and <i>In Vitro</i> 246
13.3	Micro- and Nano-fabrication Technologies 249
13.3.1	Photolithography: The Role of Photolithographic Masks 249
13.3.1.1	Role of Plasma Processes in Photolithography 253
13.3.1.2	Limits of Photolithography 255
13.3.2	Soft Lithography 255
13.3.2.1	Description of the Technique 255
13.3.2.2	Role of Plasma Processes in Soft Lithography 255
13.3.2.3	Limits of Soft Lithography 256
13.3.3	Plasma-Assisted Micropatterning: The Role of Physical
	Masks 256
13.3.3.1	Micropatterning 257
13.3.3.2	Nanopatterning 260
13.3.4	Novel Approaches in Plasma-Patterning Procedures 262
13.3.4.1	Plasma Polymerization and Patterning of "Smart" Materials 262
13.3.4.2	Deposition of Micro- and Nanostructured Coatings 263
13.4	Conclusions 264
	References 264
14	Chemical Immobilization of Biomolecules on Plasma-Modified Substrates for Biomedical Applications 269
14.1	Introduction 270
14.2	Immobilization of Biomolecules 274
14 2 1	Immobilization of PEO Chains (Unfouling Surfaces) 274
1427	Immobilization of Polysaccharides 275
1472	Immobilization of Proteins and Pertides 275
1472.J	Immobilization of Collagen 277
14727	Immobilization of Pentides 279
1471 1471	Immobilization of Enzymes 280
1425	Immobilization of Carbohydrates 201
14.2.3	Conclusions 202
14.3	

- 14.4 List of Abbreviations 283 References 284 15 In Vitro Methods to Assess the Biocompatibility of Plasma-Modified Surfaces 287 M. Nardulli, R. Gristina, Riccardo d'Agostino, and Pietro Favia Introduction 287 15.1 15.2 Surface Modification Methods: Plasma Processes and Biomolecule Immobilization 289 15.3 In Vitro Cell Culture Tests of Artificial Surfaces 290 15.4 Cytotoxicity Analysis 292 Viability Assays 292 15.4.1 15.4.2 Metabolic Assavs 293 15.4.3 Irritancy Assays 294 15.5 Analysis of Cell Adhesion 294 15.6 Analysis of Cell Functions 298 15.7 Conclusions 299 References 299 16 Cold Gas Plasma in Biology and Medicine 301 E. Stoffels, I.E. Kieft, R.E.J. Sladek, M.A.M.J. Van Zandvoort, and D.W. Slaaf 16.1 Introduction 301 16.2 Experiments 303 16.3 Plasma Characteristics 307 Bacterial Inactivation 311 16.4 16.5 Cell and Tissue Treatment 314 Concluding Remarks and Perspectives 317 16.6 References 317 17 Mechanisms of Sterilization and Decontamination of Surfaces by Low-Pressure Plasma 319 F. Rossi, O. Kylián, and M. Hasiwa Introduction 319 17.1 17.1.1 Overview of Sterilization and Decontamination Methods 320 Current Cleaning and Sterilization Processes 17.1.1.1 320 Low-Pressure Plasma-Based Method 322 17.1.1.2 17.2 Bacterial Spore Sterilization 322 17.3 Depyrogenation 324 17.4 Protein Removal 324 17.5 Experimental 325 17.5.1 Experimental Setup 325 17.5.2 Biological Tests 326 17.5.3 Pyrogen Samples Detection 326
- Protein Removal Tests 327 17.5.4

XII Contents

17.6	Results 327
17.6.1	Sterilization 327
17.6.2	Depyrogenation 329
17.6.3	Protein Removal 331
17.7	Discussion 332
17.7.1	Plasma Sterilization 332
17.7.2	Depyrogenation 338
17.7.3	Protein Removal 338
17.8	Conclusions 338
17.0	References 339
18	Application of Atmospheric Pressure Glow Plasma:
	Powder Coating in Atmospheric Pressure Glow Plasma 341
	M Kogoma and K Tanaka
18 1	Introduction 341
18.2	Development of Silica Coating Methods for Powdered Organic and
10.2	Inorganic Pigments with Atmospheric Pressure Clow Plasma 341
1821	Evperimental 3/2
10.2.1	Popults and Discussion 3/3
10.2.2	Conclusion 347
10.2.5	Application to TiO Fine Douvder Costing with Thin Film
18.5	of SiO_2 to Quench the Photosensitive Ability of the Powder 348
18.3.1	Experimental 348
18.3.2	Results and Discussion 349
18.3.2.1	XPS Analysis 349
18.3.2.2	TEM Analysis of Powder 350
18.3.2.3	GC/MS Spectrum of the Vapor from UV-Irradiated Squalene
	Oil That Mixed With the Powders 351
18.3.3	Conclusion 352
	References 352
19	Hydrocarbon and Fluorocarbon Thin Film Deposition in
	Atmospheric Pressure Glow Dielectric Barrier Discharges 353
	F. Fanelli, R. d'Agostino, and F. Fracassi
19.1	Introduction 353
19.2	DBDs for Thin Film Deposition: State of the Art 354
19.2.1	Filamentary and Glow Dielectric Barrier Discharges 354
19.2.2	Electrode Configurations and Gas Injection Systems 356
19.2.3	Hydrocarbon Thin Film Deposition 357
19.2.4	Fluorocarbon Thin Film Deposition 359
19.3	Experimental Results 360
19.3.1	Apparatus and Diagnostics 360
19.3.2	Deposition of Hydrocarbon Films by Means of
	$He-C_2H_4GDBDs$ 361

19.3.3	Deposition of Fluorocarbon Films by Means of $He-C_3F_6$ and $He-C_5E_6-H_2$ GDBDs 364
19.4	Conclusion 366
	References 367
20	Remark on Production of Atmospheric Pressure Non-thermal
	Plasmas for Modern Applications 371
20.4	R. Itatani
20.1	Introduction 3/1
20.2	Attractive 372
20.3	Origin of Activities of Plasmas 373
20.4	Limits of Similarity Law of Gas Discharge 373
20.5	Reduction of Gas Temperature 374
20.6	Examples of Realization of the Above Discussion 375
20.7	Large-Area Plasma Production 376
20.8	Summery of Evidence To Date to Obtain Uniform DBDs 376
20.9	Consideration to Realize Uniform Plasmas of Large Area 377
20.10	Factors to be Considered to Realize Uniformity of DBD Plasma 377
20.11	Remote Plasmas 378
20.12	Conclusion 379
	References 380
21	Present Status and Future of Color Plasma Displays 381
21	Present Status and Future of Color Plasma Displays 381 T. Shinoda
21 21.1	Present Status and Future of Color Plasma Displays 381 <i>T. Shinoda</i> Introduction 381
21 21.1 21.2	Present Status and Future of Color Plasma Displays 381 <i>T. Shinoda</i> Introduction 381 Development of Color PDP Technologies 383
21 .1 21.2 21.2.1	Present Status and Future of Color Plasma Displays 381 <i>T. Shinoda</i> Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383
21 21.1 21.2 21.2.1 21.2.2	Present Status and Future of Color Plasma Displays 381 <i>T. Shinoda</i> Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387
21 21.1 21.2 21.2.1 21.2.2 21.3	Present Status and Future of Color Plasma Displays381T. ShinodaIntroduction381Development of Color PDP Technologies383Panel Structure383Driving Technologies387Latest Research and Development388
21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1	Present Status and Future of Color Plasma Displays 381 <i>T. Shinoda</i> Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388
21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2	Present Status and Future of Color Plasma Displays 381 <i>T. Shinoda</i> Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388 High Luminance and High Luminous Efficiency 389
21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2 21.3.3	Present Status and Future of Color Plasma Displays 381 <i>T. Shinoda</i> Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388 High Luminance and High Luminous Efficiency 389 ALIS Structure 390
21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2 21.3.3 21.4	Present Status and Future of Color Plasma Displays 381 <i>T. Shinoda</i> Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388 High Luminance and High Luminous Efficiency 389 ALIS Structure 390 Conclusion 391
21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2 21.3.3 21.4	Present Status and Future of Color Plasma Displays381T. ShinodaIntroduction381Development of Color PDP Technologies383Panel Structure383Driving Technologies387Latest Research and Development388Analysis of Discharge in PDPs388High Luminance and High Luminous Efficiency389ALIS Structure390Conclusion391References391
21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2 21.3.3 21.4	Present Status and Future of Color Plasma Displays381T. ShinodaIntroduction381Development of Color PDP Technologies383Panel Structure383Driving Technologies387Latest Research and Development388Analysis of Discharge in PDPs388High Luminance and High Luminous Efficiency389ALIS Structure390Conclusion391References391
21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2 21.3.3 21.4 22	Present Status and Future of Color Plasma Displays381T. ShinodaIntroduction381Development of Color PDP Technologies383Panel Structure383Driving Technologies387Latest Research and Development388Analysis of Discharge in PDPs388High Luminance and High Luminous Efficiency389ALIS Structure390Conclusion391References391Characteristics of PDP Plasmas393H. Ikegami
21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2 21.3.3 21.4 22 22.1	 Present Status and Future of Color Plasma Displays 381 T. Shinoda Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388 High Luminance and High Luminous Efficiency 389 ALIS Structure 390 Conclusion 391 References 391 Characteristics of PDP Plasmas 393 H. Ikegami Introduction 393
 21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.3 21.4 22 22.1 22.2 	 Present Status and Future of Color Plasma Displays 381 T. Shinoda Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388 High Luminance and High Luminous Efficiency 389 ALIS Structure 390 Conclusion 391 References 391 Characteristics of PDP Plasmas 393 H. Ikegami Introduction 393 PDP Operation 394
 21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.3 21.4 22 22.1 22.2 22.3 	 Present Status and Future of Color Plasma Displays 381 T. Shinoda Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388 High Luminance and High Luminous Efficiency 389 ALIS Structure 390 Conclusion 391 References 391 Characteristics of PDP Plasmas 393 H. Ikegami Introduction 393 PDP Operation 394 PDP Plasma Structure 395
 21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2 21.3.3 21.4 22 22.1 22.2 22.3 22.4 	 Present Status and Future of Color Plasma Displays 381 T. Shinoda Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388 High Luminance and High Luminous Efficiency 389 ALIS Structure 390 Conclusion 391 References 391 Characteristics of PDP Plasmas 393 H. Ikegami Introduction 393 PDP Operation 394 PDP Plasma Structure 395 Plasma Density and Electron Temperature 397
 21 21.1 21.2 21.2.1 21.2.2 21.3 21.3.1 21.3.2 21.3.3 21.4 22 22.1 22.2 22.3 22.4 22.5 	 Present Status and Future of Color Plasma Displays 381 T. Shinoda Introduction 381 Development of Color PDP Technologies 383 Panel Structure 383 Driving Technologies 387 Latest Research and Development 388 Analysis of Discharge in PDPs 388 High Luminance and High Luminous Efficiency 389 ALIS Structure 390 Conclusion 391 References 391 Characteristics of PDP Plasmas 393 H. Ikegami Introduction 393 PDP Operation 394 PDP Plasma Structure 395 Plasma Density and Electron Temperature 397 Remarks 399

23	Recent Progress in Plasma Spray Processing 401	
23.1	Introduction 401	
23.1	Key Elements in Thermal Plasma Spray Technology 401	
23.2	Thermal Plasma Spraving for Coating Technologies 402	
23.3	Plasma Powder Spraving 403	
23.3.1	Plasma Spray CVD 406	
23.3.2	Plasma Spray PVD 407	
23.3.5	Thermal Barrier Coatings 407	
23.3.4	Thermal Plasma Spraving for Powder Metallurgical	
23.4	Engineering 414	
23.4.1	Thermal Plasma Spheroidization 414	
23.4.2	Plasma Spray CVD 415	
23.4.3	Plasma Spray PVD 415	
23.5	Thermal Plasma Spraying for Waste Treatments 416	
23.6	Concluding Remarks and Prospects 417	
	References 418	
24	Flectrohydraulic Discharge Direct Plasma Water	
	Treatment Processes 421	
	I-S Chang S Dickson Y Guo K Urashima and M B Emelko	
24 1	Introduction 421	
24.1	Characteristics of Electrohydraulic Discharge Systems 421	
24.3	Treatment Mechanisms Generated by Electrohydraulic Discharge 42	2
24.4	Treatment of Chemical Contaminants by Electrohydraulic	-
2	Discharge 424	
24.5	Disinfection of Pathogenic Contaminants by PAED 429	
24.6	Municipal Sludge Treatment 430	
24.7	Concluding Remarks 432	
	References 432	
25	Development and Division Jacobs of an Advanced Course Day 11	~
25	Development and Physics issues of an Advanced Space Propulsion 43	С
25.1	M. Inutake, A. Ando, H. Tobari, and K. Hattori	
25.1	Introduction 436	
25.2	Performance of Rocket Propulsion Systems 43/	
25.3	Experimental Researches for an Advanced Space Thruster 440	
25.3.1	Experimental Apparatus and Diagnostics 440	-
25.3.2	Improvement of an MPDA Plasma Using a Magnetic Laval Nozzle 44	2
25.3.3	KF Heating of a High Mach Number Plasma Flow 444	
25.4	Summary 44/	
	Reterences 448	
	Index 449	

Index 449

Preface

Plasma processes started to be applied for surface modification of materials in the 70's, in the fields of microelectronics (dry etching processes for fabricating integrated circuits) and semiconductors (deposition processes of semiconductor thin films for solar cells). Since then, enormous advancements in the basic, diagnostic and experimental aspects of plasma sciences have been made, so that many other science areas and industrial fields have been permeated by plasma processes: polymers, textiles, biomaterials, microfluidics, composite materials, paper, packaging, automobile, waste treatment, cultural heritage and corrosion protection, to mention but a few.

The idea of organizing this book was developed during the second International School of Industrial Plasma Application, held at Villa Monastero in Varenna, Italy, in October 2004, where approximately one hundred attendees from all over the world were assembled. The aim of the School was to describe, in a tutorial way, the numerous modern industrial applications of plasmas.

Now, three years later, this book is issued with the same tutorial purpose: to describe advances of low and atmospheric pressure plasmas in technological fields, such as polymers, semiconductors, solar cells, biomaterials, displays, water treatment, and space, with the introduction of some fundamental chapters on diagnostics, reactor design, modeling and process control.

Advanced Plasma Technology is a collection of 25 chapters on various aspects of plasma processes authored by well known plasma scientists. We are convinced that this book will be of help to both students and researchers, in academia as well as in the industry.

To all the authors, to the referees and to our publishers at Wiley-VCH we would like to extend our warmest "thank you" for the creation of this book. We hope that you, reader, will enjoy reading this book as much as we enjoyed editing it.

October 2007

Riccardo d'Agostino Pietro Favia Yoshinobu Kawai Hideo Ikegami Noriyoshi Sato Farzaneh Arefi-Khonsari

List of Contributors

E. Amanatides

Plasma Technology Lab Department Chemical Engineering University of Patras P.O. Box 1407 26504 Patras Greece

Akira Ando

Department of Electrical Engineering Tohoku University 6-6-05 Aoba-yama Aoba Sendai 980-8579 Japan

Farzaneh Arefi-Khonsari

Laboratoire de Génie des Procédés Plasma et Traitements de Surface Université Pierre et Marie Curie ENSCP 11 rue Pierre et Marie Curie 75231 Paris cedex 05 France

Natalia Babaeva

Department of Electrical and Computer Engineering Iowa State University Ames, IA 50011 USA

Jen-Shih Chang

McMaster University (Professor Emeritus) NRB 118 Hamilton Ontario L8S 4M1 Canada

Francis F. Chen

Electrical Engineering Department University of California Los Angeles, CA 90095-1594 USA

Vittorio Colombo

Department of Mechanical Engineering (DIEM) and Research Center for Applied Mathematics (CIRAM) University of Bologna Via Saragozza 8 40123 Bologna Italy

Pascal Colpo

European Commission Joint Research Centre Institute for Health and Consumer Protection 21020 Ispra (VA) Italy

XVIII List of Contributors

Riccardo d'Agostino

Department of Chemistry University of Bari via Orabona 4 70126 Bari Italy

Sarah E. Dickson

Department of Civil Engineering McMaster University Hamilton Ontario L8S 4B2 Canada

Monica B. Emelko

Department of Civil and Environmental Engineering University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada

R. Engeln

Department of Applied Physics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

F. Fanelli

Department of Chemistry University of Bari via Orabona 4 70126 Bari Italy

Pietro Favia

Department of Chemistry University of Bari via Orabona 4 70126 Bari Italy

F. Fracassi

Department of Chemistry University of Bari via Orabona 4 70126 Bari Italy

Emanuele Ghedini

Department of Mechanical Engineering (DIEM) and Research Center for Applied Mathematics (CIRAM) University of Bologna Via Saragozza 8 40123 Bologna Italy

Roberto Gristina

Department of Chemistry University of Bari via Orabona 4 70126 Bari Italy

Yiping Guo

Department of Civil Engineering McMaster University Hamilton Ontario L8S 4B2 Canada

Marina Hasiwa

European Commission Joint Research Centre Institute for Health and Consumer Protection 21020 Ispra (VA) Italy

Kunihiko Hattori

Nippon Institute of Technology Miyashiro-machi Minami-saitama-gun Saitama 345-8501 Japan

H. Huang

Department of Materials Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-Ku Tokyo 113-8656 Japan

Hideo Ikegami

National Institute for Fusion Science Toki Gifu 509-5292 Japan

Masaaki Inutake

Department of Electrical Engineering Tohoku University 6-6-05 Aoba-yama Aoba Sendai 980-8579 Japan

Ryohei Itatani

601-1311 Daigo-Ohtakacho 11-18 Husimi-ku Kyoto Japan

Felipe Iza

Department of Electronic and Electrical Engineering Pohang University of Science and Technology Pohang 790-784 South Korea

M. Kambara

Department of Materials Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-Ku Tokyo 113-8656 Japan

Yoshinobu Kawai

Research Institute for Applied Mechanics Kyushu University Kasugakoen 6-1 Kasuga Fukuoka 816-8580 Japan

W. M. M. Kessels

Department of Applied Physics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

I. E. Kieft

Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

Sung Jin Kim

Department of Electronic and Electrical Engineering Pohang University of Science and Technology Pohang 790-784 South Korea

Kazunori Koga

Graduate School of Information Science & Electrical Engineering Kyushu University Fukuoka 812-8581 Japan

Masuhiro Kogoma

Department of Chemistry Faculty of Science and Technology Sophia University 7-1 Kioicho Chiyoda-ku 102-8554 Japan

XX List of Contributors

Ondřej Kylián

European Commission Joint Research Centre Institute for Health and Consumer Protection 21020 Ispra (VA) Italy

Sung Hee Lee

Department of Electronic and Electrical Engineering Pohang University of Science and Technology Pohang 790-784 South Korea

Hae June Lee

Busan National University Busan 609-735 South Korea

Jae Ko Lee

Department of Electronic and Electrical Engineering Pohang University of Science and Technology Pohang 790-784 South Korea

Hiroshi Mashima

Nagasaki Research & Development Center Mitsubishi Heavy Industries Ltd. Fukahori Nagasaki 851-0392 Japan

D. Mataras

Plasma Technology Lab Department Chemical Engineering University of Patras P.O. Box 1407 26504 Patras Greece

Akihisa Matsuda

Tokyo University of Science 2641 Yamazaki Noda-shi Chiba 278-8510 Japan

Andrea Mentrelli

Research Center for Applied Mathematics (CIRAM) University of Bologna Via Saragozza 8 40123 Bologna Italy

Tarik Meziani

European Commission Joint Research Centre Institute for Health and Consumer Protection 21020 Ispra (VA) Italy

Antonella Milella

Department of Chemistry University of Bari via Orabona 4 70126 Bari Italy

Marina Nardulli

Department of Chemistry University of Bari via Orabona 4 70126 Bari Italy

F. Palumbo

Institute of Inorganic Methodologies and Plasmas IMIP-CNR via Orabona 4 70126 Bari Italy

François Rossi

European Commission Joint Research Centre Institute for Health and Consumer Protection 21020 Ispra (VA) Italy

Eloisa Sardella

Department of Chemistry University of Bari via Orabona 4 70126 Bari Italy

Noriyoshi Sato

Tohoku University (Professor Emeritus) Kadan 4-17-113 Sendai 980-0815 Japan

D. C. Schram

Department of Applied Physics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

Tsutae Shinoda

Fujitsu Laboratories Ltd. 64 Nishiwaki Ohkubo-cho Akashi 674-0054 Japan

Masaharu Shiratani

Graduate School of Information Science & Electrical Engineering Kyushu University Fukuoka 812-8581 Japan

D. W. Slaaf

Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

R. E. J. Sladek

Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

E. Stoffels

Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

Hiromu Takatsuka

Nagasaki Shipyard & Machinery Works Mitsubishi Heavy Industries Ltd. Isahaya Nagasaki 854-0065 Japan

Yoshiaki Takeuchi

Nagasaki Research & Development Center Mitsubishi Heavy Industries Ltd. Fukahori Nagasaki 851-0392 Japan

Kunihito Tanaka

Department of Chemistry Faculty of Science and Technology Sophia University 7-1 Kioicho Chiyoda-ku 102-8554 Japan

XXII List of Contributors

M. Tatoulian

Laboratoire de Génie des Procédés Plasma et Traitements de Surface Université Pierre et Marie Curie ENSCP 11 rue Pierre et Marie Curie 75231 Paris cedex 05 France

Hiroyuki Tobari

Japan Atomic Energy Agency Naka Ibaraki 311-0193 Japan

T. Trombetti

Department of Mechanical Engineering (DIEM) University of Bologna Via Saragozza 8 40123 Bologna Italy

Kuniko Urashima

McMaster University (Professor Emeritus) NRB 118 Hamilton Ontario L8S 4M1 Canada

M. C. M. van de Sanden

Department of Applied Physics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

M. A. M. J. van Zandvoort

Department of Biomedical Engineering Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands

Yukio Watanabe

Kyushu University (Professor Emeritus) Iki-Danchi Fukuoka 819-0042 Japan

Yasuhiro Yamauchi

Nagasaki Shipyard & Machinery Works Mitsubishi Heavy Industries Ltd. Isahaya Nagasaki 854-0065 Japan

T. Yoshida

Department of Materials Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-Ku Tokyo 113-8656 Japan

1 Basic Approaches to Plasma Production and Control

N. Sato

Plasma production and control are of crucial importance for "intelligent" plasma processing in next-stage material and device manufacturing. The author has been concerned with basic experiments on discharge plasmas along this line of research. Here are presented some essential points of basic approaches to plasma production and control. They include works on large-diameter plasma production, electron-temperature and ion-energy controls, and dust particle collection and removal.

At first, two methods of plasma production are presented. They are for high-density electron cyclotron resonance (ECR) and rf plasmas yielding uniform plasma processing in actual manufacturing devices, the diameters of which are larger than several tens of centimeters. These discharge plasmas are produced under low gas pressures. New approaches to medium-pressure and high (atmospheric)-pressure discharge plasmas are also described in some detail.

Electron temperature is continuously controlled in the wide range of one or two orders of magnitude in a region separated from a discharge region. The methods employed might be useful for finding the best conditions for various kinds of plasma processing. In fact, the methods have been proved to be useful for efficient production of negative ions, formation of high-quality diamond particles, and quality increase of a-Si:H film. A good method of ion-energy control should also be established for "intelligent" plasma applications. A new approach is presented for this purpose.

Dust collection and removal are quite important for many kinds of material and device manufacturing. On the basis of fundamental fine-particle behaviors in plasmas, we have proposed a simple method for collection and control of negatively charged fine particles in plasmas. Our collector is often called "NFP-Collector" (negatively charged fine-particle collector). The collector has been proved to be very efficient for collection and removal of dust particles levitating in plasmas, suggesting big effects on plasma processing.

2 1 Basic Approaches to Plasma Production and Control

1.1 Plasma Production

1.1.1

Under Low Gas Pressure (<0.1 torr)

Here, two simple methods are presented of plasma production for large-scaled uniform-plasma processing. One of the methods is based on ECR. For the other method, we employ the magnetron-type rf discharge. In both of them, weakly ionized plasmas are produced by low-pressure discharges in a vacuum chamber, the wall of which is separated into two parts. One part is electrically grounded and the other part is used as an antenna or rf electrode. Therefore, in principle, we need no additional electrode for plasma production in the vacuum chamber. Radial plasma profiles are non-uniform in a region of plasma production. But, radial plasma diffusion makes the plasmas uniform at an axial position a little away from the production region. We employ a magnetic field to provide efficient plasma production and to control plasma flow toward the wall (or electrode), which is closely connected with plasma loss and particle sputtering. The magnetic field, which is generated by permanent magnets, is used also to modify electron motions for plasma-profile control, although there is no direct magnetic effect on ions in front of substrates.

A schematic feature of ECR plasma production [1,2] is illustrated in Fig. 1.1(a). The antenna, which is situated at one end of a vacuum chamber, consists of a back plate with permanent magnets behind and a slotted plate separated from the back plate. A microwave of 2.45 GHz is fed through a coaxial waveguide to satisfy the ECR condition (\sim 875 G) in a region near the magnet surfaces in front of the antenna. The slotted plate can be covered with a thin glass plate.

(b)

Fig. 1.1 (a) Schematic of ECR plasma production using a plane-slotted antenna with magnets and (b) radial profiles of plasma parameters measured at z = 10 cm.

(a)

The plasma produced is non-uniform radially in front of the antenna, depending on the positions of the slots and magnets. But, with an increase in *z* (distance from antenna front), inward plasma diffusion makes the plasma profile flat in the radial direction. Typical results are presented in Fig. 1.1(b), where argon pressure $\approx 1.5 \times 10^{-2}$ torr and microwave power ≈ 1 kW. The plasma of density $n_p \approx 1.3 \times 10^{11}$ cm⁻³ is found to be uniform within 3% in the radial region of 35 cm in diameter at axial distance *z* of 10 cm. The plasma density is almost proportional to the microwave power. The axial position for the uniform radial plasma profile is controlled by changing the magnetic configuration in front of the antenna.

A reactive plasma produced by this method was confirmed to yield uniform etching of poly-silicon [3]. An antenna system shown in Fig. 1.2 has been proposed for actual plasma processing [4].

A schematic feature of modified magnetron-type (MMT) plasma production [5] is illustrated in Fig. 1.3(a). An rf power of 13.56 MHz is fed to a ring electrode of 55 cm in diameter and 7 cm in length, which is a central part of a cylindrical vacuum chamber of 55 cm in diameter. A discharge is triggered between this powered electrode and the other parts of the vacuum chamber, which are electrically grounded, in the range of argon pressure 5.0×10^{-4} – 5.0×10^{-2} torr. Permanent magnets, which are situated just outside the cylinder to construct azimuthal magnet rings, provide magnetic mirrors axially near the inner surface of the ring electrode. This magnetic configuration enhances plasma production because high-energy electrons responsible for ionization move in the azimuthal direction, being well trapped in the magnetic mirrors inside the region near the ring electrode. This motion of electrons reduces a potential drop in front of the electrode, which is closely connected with an interaction of ions with the electrode.

Fig. 1.2 Details of apparatus proposed for ECR plasma production in plasma application.

Basic Approaches to Plasma Production and Control

Fig. 1.3 (a) Schematic of MMT plasma production and (b) measured variation of radial plasma density profiles in the axial direction.

The plasma density is found to have a peak near the electrode and decreases in the direction toward the radial center. But, with an increase in z (axial distance from machine center), the plasma diffuses toward the radial center, flattening the radial density profile. This MMT rf discharge yields an almost uniform plasma in the radial region of 40 cm in diameter at z = 6.0 cm where substrates (S) can be situated, as shown for argon pressure of 1.0×10^{-3} torr and rf power of 200 W in Fig. 1.3(b). Now we can produce a uniform plasma, the diameter of which is larger than 100 cm [6,7]. A feedback control is effective for meter-size uniform processing, where the signal due to the non-uniformity is used as a feedback signal to a small electrode for additional discharge to provide uniform processing.

The potential drop in front of the ring electrode is changed by varying the magnetic strength and configuration. Therefore we can control energies of ions toward substrates [8] and particle sputtering due to high-energy ions accelerated by the potential drop. In the experiment, we could find the condition where there is no appreciable sputtering from the electrode [9]. Figure 1.4 demonstrates the MMT plasma reactor developed by Hitachi Kokusai Electric Inc. for semiconductor manufacturing [10].

1.1.2

Under Medium Gas Pressure (0.1-10 torr)

A parallel-plate rf discharge in this pressure range has been widely used for plasma production in applications. Multi-hollows formed in a cathode (rf powered electrode) are known to be effective for increasing the plasma density. A cathode with isolated hollows (CIH) (see Fig. 1.5(a)) is used in many cases. But, the discharge is often localized in the special hollow(s). There is also a possibility of dust particle trapping in the isolated hollows.

Here, a cathode with connected hollows (CCH) (see Fig. 1.5(b) is employed to eliminate these problems in the CIH [11]. In this case, the hollows are connected

(a)

Fig. 1.4 MMT reactor used in plasma processing for semiconductor manufacturing (Hitachi Kokusai Electric Inc. [10]).

by ditches [3]. The CCH is topologically different from the CIH. Gas-feed holes are made in the bottoms of the hollows and/or between the hollows. An apparatus with the CCH is shown, together with photographs of (a) parallel-plate discharge and (b) CCH discharge, in Fig. 1.6. In the case of the CCH, the discharge brightness is enhanced and the plasma density is twice as high as that in the case of plane parallelplate discharge at the same input rf power. The density has been confirmed to

Fig. 1.5 Uneven electrodes: (a) concave-type electrode (CIH) and (b) convex-type electrode (CCH).

Fig. 1.6 Left: apparatus with CCH. (a) Parallel-plate discharge and (b) CCH discharge.

increase with an increase in the rf power, without localization of the discharge, yielding a uniform plasma for large-scaled processing.

1.1.3 Under High (Atmospheric) Gas Pressure (>10 torr)

Plasma processing using atmospheric plasmas is now quite useful for various kinds of applications. So-called "barrier discharges" are well known as a method of plasma production under high (atmospheric) gas pressure. Electrodes for this discharge are shown in Fig. 1.7(a), where one of the electrodes is covered by dielectric material. An equivalent circuit for this situation of discharge is shown in Fig. 1.7(b).

We have proposed a quite simple method of plasma production under high (atmospheric) gas pressure. Pole-type electrodes, which are coupled with external capacitors, are set near a metal plate. This arrangement is just a direct realization of the circuit in Fig. 1.6(b). This is called capacity-coupled multi-discharge (CCMD) [12]. Under some conditions, the pole length is set to be so short that the electrodes are almost small plates. Being different from the barrier discharges, the discharge power of the CCMD can be externally controlled to increase by increasing the capacity of the capacitors. Measurements have proved that the CCMD provides high-power discharges, suggesting new possibilities for plasma applications in the high (atmospheric) pressure range.

Fig. 1.7 (a) Typical barrier-discharge electrodes and (b) electrodes for *capacitor-coupled multidischarge* (CCMD).