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1
Ecology, Genetic Diversity and Screening Strategies of Plant
Growth Promoting Rhizobacteria (PGPR)
Jorge Barriuso, Beatriz Ramos Solano, José A. Lucas, Agustín Probanza Lobo,
Ana García-Villaraco, and Francisco J. Gutiérrez Mañero

1.1
Introduction

1.1.1
Rhizosphere Microbial Ecology

TheGerman agronomist Hiltner first defined the rhizosphere, in 1904, as the �effect�
of the roots of legumes on the surrounding soil, in terms of higher microbial activity
because of the organic matter released by the roots.
Until the end of the twentieth century, this �effect� was not considered to be an

ecosystem. It is interesting to make some brief observations about the size, in terms
of energy and extension, of this ecosystem to determine its impact on how the
biosphere functions. First, in extension, the rhizosphere is the largest ecosystem on
earth. Second, the energy flux in this system is enormous. Some authors estimate
that plants release between 20 and 50% of their photosynthates through their roots
[1,2]. Thus, rhizosphere�s impact on how the biosphere functions is fundamental.
A large number of macroscopic organisms and microorganisms such as bacteria,

fungi, protozoa and algae coexist in the rhizosphere. Bacteria are the most abundant
among them. Plants select those bacteria contributing most to their fitness by
releasing organic compounds through exudates [3], creating a very selective envi-
ronment where diversity is low [4,5]. A complex web of interactions takes place
among them, and this may affect plant growth, directly or indirectly. Since bacteria
are the most abundant microorganisms in the rhizosphere, it is highly probable that
they influence the plant�s physiology to a greater extent, especially considering their
competitiveness in root colonization [6].
Bacterial diversity can be defined in terms of taxonomic, genetic and functional

diversity [7]. In the rhizosphere, the metabolic versatility of a bacterial population
(functional diversity) is based on its genetic variability and on possible interactions
with other prokaryotic and eukaryotic organisms such as plants.
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However, a question still to be answered regarding microbial communities in the
rhizosphere is the relationship between the ecological function of communities and
soil biodiversity. In spite of the lack of information about the importance of the
diversity and the richness of species related to their ecological function [8,9], soil
organisms have been classified several times in functional groups [10].
This lack of knowledge about bacterial diversity is partly owing to the high number

of species present, as well as to the fact that most bacteria are viable but not
culturable.
The biological diversity of soil microorganisms has been expressed using a variety

of indexes [11,12] and mathematical models [13], but there is no accepted general
model to describe the relationship among abundance, species� richness and dom-
inancy. It is, therefore, reasonable that the components of diversity are studied
separately to quantify them [14].
Bacterial diversity studies aremore complex at taxonomic, functional and genetic

levels than are similar studies on eukaryotic organisms owing to the minute work-
ing scale and the large number of different bacterial species present in the envi-
ronment. Torsvik and coworkers [15] identified more than 7000 species in an
organic forest soil.
The variations in populations through space and time and their specialization in

ecological niches are two important factors in the rhizosphere that must be consid-
ered in studying how species� richness influences the functioning of the system. The
functioning of soil microbial communities is based on the fact that there is appro-
priate species diversity for the resources to be used efficiently and that this can be
maintained under changing conditions [14].
In the rhizosphere, as in other well-formed ecosystems with an appropriate

structure, changes in some of the components can affect entire or part of the system.
The degree of impact will depend on features of the system such as its resistance or
resilience. The state of this system changes depending on variables such as the age
of the plant, root area, light availability, humidity, temperature and plant nutrition
[16,17]. Under stressful conditions, the plant exerts a stronger control on release of
root exudates [18,19]. From this viewpoint, it is reasonable to assume that the
changes that occur in the plant will change the root exudation patterns and, thereby,
the rhizosphere microbial communities. There have been many studies that relate
the quality and quantity of the exudates with changes in the structure of rhizosphere
microbial communities [20].
In 1980, Torsvik [21] published the first protocol for the extraction and isolation of

microbial DNA from soil. Since then, there have been many studies directed at the
development of new methods and molecular tools for the analysis of soil microbial
communities. However, molecular genetics is not the only tool used in solving
the difficulties in analyzing soil microbial communities. A multimethodological
approach using conventional techniques such as bacterial isolation and physiologi-
cal studies, together with molecular genetics, will be necessary to fully develop the
study of microbial ecology [22,23].
The bacterial community can be studied using several approaches: first, a struc-

tural approach, attempting to study the entire soil bacterial community; second, the
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relationships between populations and the processes that regulate the system; and
finally, a functional approach.
Recent research has shown that, within a bacterial population, cells are not

isolated from each other but communicate to coordinate certain activities. This
communication is key to their survival since microbial success depends on the
ability to perceive and respond rapidly to changes in the environment [24]. Bacteria
have developed complex communication mechanisms to control the expression of
certain functions in a cell density-dependent manner, a phenomenon termed as
quorum sensing (QS).
Quorum sensing confers an enormous competitive advantage on bacteria, im-

proving their chances to survive as they can explore more complex niches. This
mechanism is also involved in the infection ability of some plant bacterial pathogens
(such as Xanthomonas campestris and Pseudomonas syringae) [25].
Bacterial communication by quorum sensing is based on the production and

release of signal molecules into the medium, termed autoinducers, concentration
being proportional to cell density. When bacteria detect the signal molecule at a
given concentration, the transcription of certain genes regulated by this mechanism
is induced or repressed. There are many microbial processes regulated by quorum
sensing, including DNA transference by conjugation, siderophore production, bio-
luminescence, biofilm formation and the ability of some bacteria to move, called
swarming [26,27].
Recent studies have shown the importance of this type of regulation mechanism

in putative beneficial bacterial traits for the plant, such as plant growth promotion,
protection against pathogens or saline stress protection [28,29]. In addition, coevo-
lution studies of plants and bacteria have determined that some plants release
molecules, which mimic acyl homoserine lactones (AHLs) and even enzymes that
are able to degrade the AHL molecule in root exudates. Somehow, plants have
�learned� the language of bacteria and use it for their own benefit. Some studies
have discovered that this behavior leads to defense against plant bacterial pathogens,
altering or blocking communication among bacteria, thus dramatically reducing
their infection efficiency.

1.1.2
Plant Growth Promoting Rhizobacteria (PGPR)

Bacteria inhabiting the rhizosphere and beneficial to plants are termed PGPR [30].
Thus, the rhizosphere of wild plant species appears to be the best source fromwhich
to isolate plant growth promoting rhizobacteria [4,31].
A putative PGPR qualifies as PGPR when it is able to produce a positive effect on

the plant upon inoculation, hence demonstrating good competitive skills over the
existing rhizosphere communities. Generally, about 2–5% of rhizosphere bacteria
are PGPR [32].
Some PGPR have been produced commercially as inoculants for agriculture, but

it must be borne in mind that the inoculation of these bacteria in soil may affect the
composition and structure of microbial communities, and these changes must be
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studied since they have, at times, been related to the inefficiency of biofertilizers
when applied to plant roots [33,34]. On the contrary, many studies [35] have tested
the efficiency of PGPR in various conditions, observing that PGPR are efficient
under determined conditions only [36]. Knowledge of the structure of rhizosphere
microbial communities and their diversity, as related to other essential processes
within the system such as complexity, natural selection, interpopulational relations
(symbiosis, parasitism, mutualism or competence), succession or the effect of dis-
turbances, is the key to a better understanding of the system and for the correct
utilization of PGPR in biotechnology.
Taking all of the above into consideration, it appears that quorum sensing can be a

very useful tool in agriculture, with the potential to prevent bacterial pathogen attack
and improve PGPR performance. There already exist transgenic plants that have
been engineered to produce high levels of AHLs or an enzyme capable of degrading
AHLs and that have demonstrated considerable capacity in blocking pathogen in-
fection or altering PGPR performance [24].

1.2
Rhizosphere Microbial Structure

1.2.1
Methods to Study the Microbial Structure in the Rhizosphere

As mentioned above, the bacterial community can be studied through two ap-
proaches: structural and functional. To understand the structural approach, wemust
know the groups of individuals, their species and abundance. Traditionally, this has
been done by extracting microorganisms from the system, culturing them in the
laboratory and performing many morphological, biochemical and genetic tests.
Bacteria extraction methods require a dispersing agent to disintegrate the links
among cells and need to be performed using either physical or chemical agents
or a combination of both.
When handling bulk soil, rhizosphere soil and plant roots, dispersion methods

need to be used owing to the intimate relationship between bacteria and the
substrate. The efficiency of these methods is evaluated by comparing the microbial
biomass of the original substrate before and after extraction. However, microbial
biomass is difficult to calculate. There are several ways to approach these para-
meters including direct counting under a microscope (e.g. by using acridine
orange dye) [37], microbial respiration (i.e. substrate induced respiration, SIR
[38]), ATP level assay [39], counting viable cells with the most probable number
(MPN) [40], using biomarkers such as lipids [41] and soil fumigation with chloro-
form [42].
After extracting bacteria, several simple methods can be applied to isolate and

count soil bacteria, such as growing them in a nonselective medium to obtain the
total viable count (TVC). The data obtained with this method are expressed as colony
forming units (CFUs).
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These studies, in which bacteria are grown on plates, are used to calculate the soil
bacterial diversity, by observing the number and abundance of each species. Diver-
sity indexes, such as the Shannon index (H), the Simpson index and the equitability
index (J), have all been used to describe the structure of communities from a
mathematical viewpoint [43].
The percentage of culturable microorganisms in soil is very low; however, some

researchers estimate this at only 10% [44], while others suggest 1% [43] or even
lower (between 0.2 and 0.8%) [45]. Because of the limitation of some methods,
techniques in which it is not necessary to culture microorganisms on plates are
required. One such technique is the phospholipid fatty acid analysis (PLFA)
[33,34,46–48]. Phospholipids are integrated in the bacterial cell membranes
[49]. Different groups of microorganisms possess different fatty acid patterns. It
is not usually possible to detect specific strains or species, but changes in the
concentration of specific fatty acids can be correlated to changes in specific groups
of microorganisms.
Another approach to nonculturable diversity is through techniques of molecular

genetics, which, in the past 20 years, has revealed new information about soil micro-
bial communities [50]. Techniques include DNA and/or RNA hybridization [51],
polymerase chain reaction (PCR), ribosomal RNA sequencing [52], GþCpercentages
[53] and DNA reassociation between bacteria in the community [53,54].
At present, the most notable techniques are temperature gradient gel electropho-

resis (TGGE) and denaturing gradient gel electrophoresis (DGGE), both based
on the direct extraction of DNA or RNA from soil; the amplification of this DNA
(by means of PCR), followed by electrophoretic separation in a temperature gradient
for the former or by using chemical denaturing substances for the latter. These
techniques allow the separation of DNA fragments of exactly the same length but
with different sequences, based on their melting properties [54–56]. Other techni-
ques include restriction fragment length polymorphism (RFLP) [57,58], techniques
related to the analysis and cutting of different restriction enzymes (amplified
ribosomal DNA restriction analysis, ARDRA) [59] or cloning the rDNA 16S
and then sequencing [5]. The use of microarrays [22] is also an emerging techni-
que with a promising future, which permits the identification of specific genes
[60].
Each of themethods described above possesses its own distinctive advantages and

disadvantages. Generally, the more selective the method, the less able it is to detect
global changes in communities and vice versa. Using these tools can provide an
estimate of the microbial diversity in the soil.

1.2.2
Ecology and Biodiversity of PGPR Living in the Rhizosphere

In the last few years, the number of PGPR that have been identified has seen a great
increase, mainly because the role of the rhizosphere as an ecosystem has gained
importance in the functioning of the biosphere and also because mechanisms of
action of PGPR have been deeply studied.
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Currently, there aremany bacterial genera that include PGPR among them, reveal-
ing a highdiversity in this group. Adiscussion of someof themost abundant genera of
PGPR follows to describe the genetic diversity and ecology of PGPR.

1.2.2.1 Diazotrophic PGPR
Free nitrogen-fixing bacteria were probably the first rhizobacteria used to promote
plant growth. Azospirillum strains have been isolated and used ever since the 1970s
when it was first used [61]. This genus has been studied widely, the study by Bashan
et al. [62] being the most recent one reporting the latest advances in physiology,
molecular characteristics and agricultural applications of this genus.
Other bacterial genera capable of nitrogen fixation that is probably responsible for

growth promotion effect, are Azoarcus sp., Burkholderia sp., Gluconacetobacter dia-
zotrophicus, Herbaspirillum sp., Azotobacter sp and Paenibacillus (Bacillus) polymyxa
[63]. These strains have been isolated from a number of plant species such as rice,
sugarcane, corn, sorghum, other cereals, pineapple and coffee bean.
Azoarcus has recently gained attention due to its great genetic and metabolic

diversity. It has been split into three different genera (Azovibrio, Azospira and
Azonexus) [64]. The most distinctive characteristic of these genera, which particu-
larly differentiates them from other species, is their ability to grow in carboxylic acids
or ethanol instead of sugars, with their optimum growth temperature ranging
between 37 and 42 �C. Azoarcus is an endophyte of rice and is currently considered
the model of nitrogen-fixing endophytes [65].

1.2.2.2 Bacillus
Ninety-five percent of Gram-positive soil bacilli belong to the genus Bacillus. The
remaining 5% are confirmed to beArthrobacter and Frankia [66]. Members of Bacillus
species are able to formendospores andhence surviveunderadverse conditions; some
species are diazotrophs such as Bacillus subtilis [67], whereas others have different
PGPR capacities, asmany reports on their growth promoting activity reveal [33,68,69].

1.2.2.3 Pseudomonas
Among Gram-negative soil bacteria, Pseudomonas is the most abundant genus in the
rhizosphere, and the PGPR activity of some of these strains has been known for
many years, resulting in a broad knowledge of the mechanisms involved [33,70,71].
The ecological diversity of this genus is enormous, since individual species have

been isolated from a number of plant species in different soils throughout the world.
Pseudomonas strains show high versatility in their metabolic capacity. Antibiotics,
siderophores or hydrogen cyanide are among the metabolites generally released by
these strains [72]. These metabolites strongly affect the environment, both because
they inhibit growth of other deleterious microorganisms and because they increase
nutrient availability for the plant.

1.2.2.4 Rhizobia
Among the groups that inhabit the rhizosphere are rhizobia. Strains from this
genus may behave as PGPR when they colonize roots from nonlegume plant
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species in a nonspecific relationship. It is well known that a number of indivi-
dual species may release plant growth regulators, siderophores and hydrogen
cyanide or may increase phosphate availability, thereby improving plant nutrition
[73]. An increase in rhizosphere populations has been reported after crop rota-
tion with nonlegumes [74], with this abundance benefiting subsequent crops
[75].

1.3
Microbial Activity and Functional Diversity in the Rhizosphere

1.3.1
Methods to Study Activity and Functional Diversity in the Rhizosphere

The classical approach to determining functional diversity is to use culturable
bacteria grown on a plate and subject them to selected biochemical tests. Another
method involves analyzing bacterial growth rate on a plate, which is considered as an
indicator of the physiological state of the bacteria in the environment, the availability
of nutrients and the adaptation strategy [76]. It is known that culturable bacteria are
scarce in soil but are considered responsible for the most important chemical and
biochemical processes. This is based on the fact that nonculturable bacteria are
mostly �dwarfs�, measuring less than 0.4mm in diameter and are considered as dying
forms with almost no activity [77]. Bååth [37] studied the incorporation of radioactive
precursors of DNA ([H3]-thymidine, to assess population growth), and proteins
(L-[C14]-leucine, to assess population activity) in various fractions of soil filtrates.
His research revealed that the culturable bacteria fraction (the larger size) is respon-
sible for most of the growth and activity of the soil communities, whereas the
fraction of cells less than 0.4 mm, considered nonculturable, had little importance
in the metabolism and soil activity. Finally, using the PLFA technique, it has been
demonstrated that there are no significant differences between the phospholipid
fatty acids of bacteria in soil and bacteria culturable from this soil.
In contrast, other authors state that in rhizospheric communities, there are some

difficulties in culturing groups of bacteria present in low densities that are meta-
bolically very active; they can synthesize high amounts of proteins, use different
substrates [78] and are believed to be important in fundamental processes in the soil.
These bacteria are called keystone species, some of which include Nitrosomonas and
Nitrobacter, playing a very important role in the nitrogen cycle [79].
At present, enzymatic activity measurement is one of the more widely used

techniques to determine microbial diversity, in which it is possible to perform
studies with a specific enzyme. An other approach is to use Biolog plates, which
permit microbial communities to be characterized according to their physiological
profile (community-level physiological profile, CLPP [47,80]) calculated from the
different utilization patterns of many carbon and nitrogen sources, determined by a
redox reaction that changes color after inoculation and incubation of the microbial
communities [47,81].
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New approaches such as the search for new catabolic, biosynthetic or antibiotic
functions in soil samples [82] are required to identify new, potentially nonculturable
genotypes. The cloning and sequencing of large DNA fragments (BAC library) will
provide researchers with information about the metabolic diversity of nonculturable
and culturable strains in the future and also provide important information on
ecological laws and the operation of the soil ecosystem [22]. Undoubtedly, future
studies on soil communities will involve microarray techniques [22] that will permit
the study of differences in the structure of communities, identifying groups that are
active or inactive during a specific treatment [60] leading to the identification of
strains isolated from different environments and explaining differences or similari-
ties in the operation of niches [83]. These techniques are complemented with
transcriptomic techniques, based on the description of the activity of a gene by its
expressed mRNA, and the proteomic approximation [22,82].

1.3.2
Activity and Effect of PGPR in the Rhizosphere

Some researchers approach the study of biochemical diversity in soil by identifying
biochemical activities related to putative physiological PGPR traits in bacteria iso-
lated from the rhizosphere (Table 1.1) [31].
Microbial activity in the rhizosphere indicates how metabolically active the mi-

crobial communities are. Using PGPR as inoculants in soil, besides altering the
structure of the communities, will also influencemicrobial activity, and this could be
related to the survival of the PGPR in the environment [34]. Some of the factors
influencing the survival and activity of bacteria in the rhizosphere are physical
(texture, temperature and humidity), while others are chemical, such as pH, nutrient

Table 1.1 Frequency of physiological PGPR traits in the
mycorrhizosphere of P. pinaster and P. pinea and the associated
mycosphere of L. deliciosus [31].

P. pinaster P. pinea

PGPR trait Mycorrhizosphere Mycosphere Mycorrhizosphere Mycosphere

Aux (%) 14 0 50 42
AuxþPDYA (%) 0 0 0 2
AuxþCAS (%) 0 3 11 2
AuxþACC (%) 0 0 7 0
AuxþCASþPDYA (%) 0 3 0 0
PDYA (%) 47 35 11 32
PDYAþACC (%) 3 0 0 0
CAS (%) 36 40 14 11
CASþPDYA (%) 0 3 0 0
CASþPDYA+ACC (%) 0 3 0 0
ACC (%) 0 13 7 11

Aux, auxin production; PDYA, phosphate solubilization; CAS, siderophore production; ACC,
1-aminocyclopropanecarboxylic acid degradation.
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availability, organic matter content and, above all, interactions with other rhizo-
sphere microorganisms. The interaction with the biotic factor is very important
because PGPR must occupy a new niche, adhering to the plant roots, and the
inoculum must compete for available nutrients released, essentially, by the root
exudates, maintaining a minimum population able to exert its biological effect.
Studies of characterization of the soil microbial community activity are conducted

using various techniques, such as thymidine ([H3]) incorporation, radioactive DNA
precursors to assess population growth and leucine (L-[C14]) radioactive protein
precursor to assess themetabolic activity of the population [37,84–86]. Stable isotope
probing (SIP), based on radioactive labeling of different substrates, is considered to
have enormous potential [23]. A further approach to quantifying the activity in the
rhizosphere is by means of SIR [38].

1.4
Screening Strategies of PGPR

The rhizosphere of wild populations of plants is proposed as one of the optimal
sources in which to isolate PGPR. This is because of the high selective pressure a
plant exerts in this zone. The plant selects, among others, beneficial bacteria [4,31].
In the screening of PGPR, the different soil types, plant species, seasons and the
plant�s physiological moment must be considered to ensure the successful isolation
of putative beneficial rhizobacteria.
The first step in obtaining a PGPR is the isolation of rhizospheric bacteria. It is

generally accepted that the rhizosphere is the soil volume close to the roots (soil at
1–3mm from the root and the soil adhering to the root). To collect this soil fraction,
the root is normally shaken vigorously and soil still adhering is collected as the
rhizosphere. Depending on the type of study, the root containing the endophyte
bacteria is included, as some have been described as PGPR. Other researchers refer
to the rhizosphere as the soil adhering to the roots after they have been washed
under running water.
Rhizobacteria extraction starts with the suspension of soil in water, phosphate

buffer or saline solution. Some compounds such as pyrophosphate are effective for
soil disgregation, but can alter cell membranes [87]. Sample dispersion is made with
chemical dispersants such as chelants that exchange monovalent ions (Naþ) for
polyvalent cations (Ca2þ) of clay particles, reducing the electrostatic attraction
between the soil and the bacterial cells. Various researchers have used ionic ex-
change resins derived from iminodiacetic acid, for example, Dowex A1 [88] or
Chelex-100 [89,90]. Other dispersants are Tris buffer or sodium hexametaphosphate
[91]. Detergents are used because the microbial cells present in the treated sample
adhere by extracellular polymers to the soil particles. MacDonald [88] demonstrated
that using detergents (sodium deoxycholate at 0.1%) together with Dowex A1 in-
creased themicrobial extraction from soil to 84%. Thismethod wasmodified later by
Herron and Wellington [89], replacing Dowex with Chelex-100 and combining with
polyethylene glycol (PEG 6000) to dissolve and separate the phases. Other chemical
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solvents used in extraction protocols are Calgon at 0.2% for the extraction of bacteria
from soil in studies of bacterial counts with acridine orange [40,85], citrate buffer
used in studies of membrane phospholipids from soil microbes [92] and Wino-
gradsky solution [54] for microbial diversity studies using molecular techniques
(ARDRA, DGGE or REP-PCR) or phenotypical tests (Biolog).
Chemical extraction methods may be combined with physical methods, and these

can be divided into three categories: shaking,mixing (homogenizing or grinding) and
ultrasonics. Shaking is probably the least efficient method but adequate for sensitive
bacteria or bacteriophages [93]. Techniques based on homogenization could damage
some groups of bacteria, such as Gram-negative bacteria, and extraction would be
selective. A combined method of grinding and chemical dispersants would be
more effective [94]. Ultrasonic treatments are the best among methods used to break
the physical forces between soil particles. In clay soils, pretreatment of the sample
is necessary [95]; however, most sensitive bacteria, such as Gram-negative ones, could
be damaged. This effect can be avoided using less aggressive ultrasonic treatments
[96].
After rhizobacterial isolation, a screening of the putative PGPR is performed

using two different strategies:

(a) Isolation, to select putative bacteria beneficial to the plant using specific culture
media and specific isolation methods. For example, Founoune et al. [97] isolated
Pseudomonas fluorescens from the Acacia rhizosphere as a species described as
PGPR.

(b) After isolation of the maximum number of bacteria to avoid the loss of bacterial
variability, different tests are performed to reduce the various types of bacteria
chosen, so that only the putative beneficial ones remain. The test is performed
in vitro to check biochemical activities that correspond with potential PGPR
traits. Genetic tests may also be performed to remove genetic redundancy, that
is, select different genomes that may have different putative beneficial activities
[31,98,99].

Among the biochemical tests used to find putative PGPR traits, themost common
are the following: (i) test for plant growth regulator production (i.e. auxins, gibber-
ellin and cytokinins); (ii) the ACC (1-aminocyclopropanecarboxylic acid) deaminase
test; this enzyme degrades the ethylene precursor ACC, causing a substantial alter-
ation in ethylene levels in the plant, improving root system growth [100]; (iii)
phosphate solubilization test, phosphate solubilization may improve phosphorous
availability to the plant [101,102]; (iv) siderophore production test, which may im-
prove plant�s iron uptake [103]; (v) test for nitrogen-fixing bacteria to improve the
plant�s nitrogen nutrition [63]; and (vi) test for bacteria capable of producing en-
zymes that can degrade pathogenic fungi cell walls (i.e. chitinase or b-1,3-glucanase)
preventing plant diseases [98].

The most common genetic techniques are PCR-RAPD (randomly amplified
polymorphic DNA, ERIC-PCR, BOX-PCR and REP-PCR. They all compare bacterial
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