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Foreword 

The Handbook of Heterogeneous Catalysis was published in 1997. This book is 
part of the Handbook, now published as a monograph. Publisher and Editors felt 
that the Handbook of Heterogeneous Catalysis, which is only available as a full set 
of five volumes covering almost all aspects of heterogeneous catalysis, might not 
always be accessible to individuals interested in narrower areas of this field of 
chemistry. Therefore, the chapters dealing with aspects of preparation of catalysts 
were selected and put together in this monograph. Catalysis is a rapidly growing 
field of both academic and technological interest; this Handbook aims to cover the 
concepts without an encyclopedic survey of the literature, so ~ although the chap- 
ters chosen could not be updated for the present volume ~ we believe that it will 
prove most useful to all readers interested in the chemical and physicochemical 
basis of the preparation of catalysts. 
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1 Introduction 

Nature has developed the most efficient and selective catalysts known today. 
Workers in academia and industry still have a long way to go to reach nature’s 
sophistication in the synthesis of catalysts. For many decades, catalysts were pre- 
pared by an empirical approach based on the experience and knowledge of the 
particular period. Perhaps the best known success story of the development and 
preparation of a technical solid catalyst by empirical methodologies is that of the 
ammonia synthesis catalyst by Alwin Mittasch [l-31. In February 1909 he wrote in 
his laboratory journal: (i) the search for a suitable catalyst necessitates carrying out 
experiments with a certain number of elements together with numerous additives; 
(ii) the catalytic substances must be tested at high pressures and temperatures just as 
in the case of Haber’s experiments; (iii) a very large number of test series will be 
required [3]. For the optimization of the actual promoted iron catalyst which is still 
used today, Mittasch ultimately carried out more than 10,000 tests, the number of 
catalyst formulations exceeding 4,000 [3]. 

Catalyst preparation lacked a reliable scientific basis until recently and perhaps 
still does, although catalytic chemists have slowly moved from alchemy to what is 
now called the science of catalysis. Even in 1940, Raney stated: “It is in the prepa- 
ration of catalysts that the chemist is most likely to revert to type and to employ 
alchemical methods. From all evidence, it seems the work should be approached 
with humility and supplication, and the production of a good catalyst received with 
rejoicing and thanksgiving” [4, 51. 

The catalyst is often, if not always, the heart of a chemical process, and thus, 
synthesis strategies for technical catalysts are proprietory knowledge of catalyst 
producers. Therefore, those strategies are either not accessible or protected by pat- 
ents. This situation, which unfortunately severely hampers the flow of knowledge 
and information, was strikingly formulated by Richardson: “Catalyst preparation is 
the secret of achieving the desired activity, selectivity and life time” [6, 71. 

Recently combinatorial methodologies were introduced into catalyst develop- 
ment [8, 91. In this approach, large libraries of materials are synthesized as potential 
catalysts and examined by microanalysis techniques, and the results are evaluated 
statistically. This methodology permits an efficient material screening in the case of 
multi-parameter problems such as the development of solid catalysts. Combinato- 
rial methodologies may be considered as modern versions of Mittasch’s approach 
toward catalyst development that are faster and more cost-efficient than the tradi- 
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2 Introduction 

tional methodologies. It seems that potential catalyst formulations can be deter- 
mined by the combinatorial approach, while technologically important parameters, 
such as catalyst morphology, texture and forms, mechanical and thermal properties, 
long-time stability, environmental friendliness, regenerability and disposal of spent 
catalysts, etc., will still have to be tested independently. 

One of the major difficulties in rational preparation of solid catalysts is the fact 
that catalytic materials are ‘‘living’’ materials, i.e. the active catalyst is often formed 
from the synthesized precursor material during an induction period under catalytic 
conditions. Hence, in general the goal of catalyst development must be the synthesis 
of a suitable catalyst precursor for the chemical process under consideration. 

A wealth of information has been accumulated in recent years in various research 
areas which are relevant to thc preparation of bulk and supported solid catalysts. Of 
high importance for the synthesis of bulk materials is the controlled synthesis of 
solids including e.g. precipitation and co-precipitation, solid-state reactions, hydro- 
thermal synthesis of zeolites, sol-gel techniques, etc. Great progress has been made 
in interface chemistry, guest-host interactions, grafting and heterogenization tech- 
niques, deposition-precipitation etc., which are extremely important in the synthesis 
of supported catalysts. This increased understanding of relevant areas of research 
can now be used as a basis for rational preparation of solid catalysts, and is docu- 
mented in this monograph. The important parameters of the formation of the final 
catalysts, catalyst forming and strategies for the development of industrial catalysts 
are also covered. 
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2 Developing Industrial Catalysts') 

J. F. LEPAGE 

Once an active species and perhaps its support have been selected, the task is to 
construct from precursors of these active species a catalytic structure whose prop- 
erties and characteristics will meet the demands of an industrial user. One must 
avoid creating a structure that is only a laboratory curiosity which for technical or 
economic reasons can not be manufactured on industrial scale. 

2.1 Properties and Characteristics of Industrial Catalysts 

In addition to the fundamental properties that come from the very definition of a 
catalyst, i.e., activity, selectivity, and stability, industrial applications require that a 
catalyst be regenerable, reproducible, mechanically and thermally stable, original, 
economical, and possess suitable morphological characteristics. 

2.1.1 Activity 

A high activity will be reflected either in high productivity from relatively small re- 
actors and catalyst volumes or in mild operating conditions, particularly tempera- 
ture, that enhance selectivity and stability if the thermodynamics is more favorable. 

2.1.2 Selectivity 

High selectivity produces high yields of a desired product while suppressing un- 
desirable competitive and consecutive reactions. This means that the texture of 
the catalyst (in particular pore volume and pore distribution) should be improved 
toward reducing limitations by internal diffusion, which in the case of consecutive 
reactions rapidly reduces selectivity. 

Reprinted with permission from J. F. Le Page. Applied Heterogeneous Catalysis ~ Design, Man- 
ufacture, Use of Solid Catalysts, Editions Technip. Paris, 1987. 
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4 2 Developing Industrial Catalysts 

2.1.3 Stability 

A catalyst with good stability will change only very slowly over the course of time 
under conditions of use and regeneration. Indeed, it is only in theory that a catalyst 
remains unaltered during reaction. Actual practice is far from this ideal. Some of 
the things that lead to a progressive loss of activity or selectivity or mechanical 
strength are as follows: 

Coke forms on some catalysts through the intervention of parasitic reactions of 
hydrogenolysis, polymerization, cyclization, and hydrogen transfer. 
Reactants, products or poisons may attack active agents or the support. 
Volatile agents, such as chlorine, may be lost during reactions such as 
reforming. 
The crystals of a deposited metal may become enlarged or regrouped. A change 
in the crystalline structure of the support can cause a loss of mechanical 
strength. 
Progressive adsorption of trace poisons in the feed or products may reduce 
activity. It has been pointed out that industrial feedstocks are rarely pure 
products, but mixtures containing portions of impurities that must sometimes 
be eliminated beforehand so that the catalyst can be used. 

2.1.4 Morphology 

The external morphological characteristics of a catalyst, i.e. its form and grain size, 
must be suited to the corresponding process. For moving or boiling bed reactors the 
spherical form is recommended for reducing problems of attrition and abrasion. In 
a fluid bed, a spherical powder is preferred for limiting attrition, and its grains 
should have well determined size distributions for obtaining good fluidization. In a 
fixed bed, beads, rings, pellets, extrudates, or flakes can be used; but their form and 
dimensions will have an influence on the pressure drop through the bed. Thus for a 
given equivalent diameter, catalysts can be classified according to the relative pres- 
sure drops they cause, as follows: 

Rings < beads < pellets < extrudates < crushed 

This pressure drop must be high enough to ensure an even distribution of the 
reaction fluid across the catalytic bed, but it must not be so high as to cause an 
increase in the cost of compressing and recycling any gases. 

Let us point out again that the grain density and especially the filling density are 
properties that greatly preoccupy the user; and these depend on the morphology in 
terms of pore volume. The catalyst is bought by weight with the purpose of filling a 
given reactor, and the cost of the catalyst charge will depend on its filling density. 
Finally, with respect to morphology, we point out that catalysts in the form of 
beads lend themselves better to handling, filling and emptying reactors, as well 
as any sieving that may appear necessary for eliminating fines after a number of 
regenerations. 
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2.1.5 Mechanical Strength 

The mechanical strength of a catalyst is demonstrated by its resistance to crushing, 
which enables the catalyst to pass undamaged through all the strains, both foreseen 
and accidental, that occur within the catalyst bed. Mechanical strength is also 
demonstrated by the resistance of the grains to attrition through rubbing, which 
produces fines and can cause an increase in the pressure drop in a catalytic bed. In 
the case of powdered catalysts destined for fluid or boiling beds, a resistance to 
abrasion on the walls or to erosion by the fluids is also required. 

2.1.6 Thermal Characteristics 

For certain catalysts thermal conductivity and specific heat require consideration. 
High thermal conductivity of the catalytic mass leads to reduced temperature gra- 
dients within the grain, as well as in the catalytic bed, for endothermic or exother- 
mic reactions, by improving heat transfer. For other catalysts, the specific heat 
assumes more importance; a high specific heat permits a catalytic cracking catalyst 
to carry a large thermal load from the combustion of coke back to the endothermic 
cracking reaction, where it is usefully consumed. By contrast, catalysts in catalytic 
mufflers are more efficient when they are quickly carried to a high temperature by 
the combustion gases, and a low specific heat can be advantageous. 

2.1.7 Regenerability 

As we have pointed out in relation to stability, it is only in theory that the catalyst is 
found intact at the end of the reaction. All catalysts age; and when their activities or 
their selectivities have become insufficient, they must be regenerated through a 
treatment that will return part or all of their catalytic properties. The most common 
treatment is burning off of carbon, but scrubbing with suitable gases is also fre- 
quently done to desorb certain reversible poisons; hydrogenolysis of hydrocarbon 
compounds may be done when the catalyst permits it, as well as an injection of 
chemical compounds. When the treatment does not include burning off carbon 
deposits, it is often called rejuvenation. 

The shorter the cycle of operating time between two regenerations, the more im- 
portant the regeneration. It becomes apparent that it is not enough for the catalyst 
to recover its activity and selectivity, it must also preserve its mechanical strength 
during successive regenerations or rejuvenations. 

2.1.8 Reproducibility 

Reproducibility characterizes the preparation of a catalyst as much as the catalyst 
itself; it is of concern to industrial users who want to be assured of the quality of 
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successive charges of catalyst; and it also preoccupies the various engineers respon- 
sible for developing the catalyst from the laboratory on to industrial manufacture. 
Indeed, the preparation of a catalyst generally takes place in several rather complex 
stages dependent on a large number of variables difficult to control simultaneously. 
The result is that it is indispensable to rapidly verify that the reproducibility of the 
preparation is feasible, as well as to keep in mind that the formula developed in the 
laboratory should be capable of extrapolation to pilot scale and to industrial scale 
under acceptable economic conditions. 

2.1.9 Originality 

It is also important that the catalyst and the process in which it will be used can be 
exploited legally through licenses. This is only possible either if the catalyst is orig- 
inal, which is rare, or if it belongs to the public domain, which is more frequent. In 
the first case, it can be protected by fundamental patents; in the second case, the 
possible patents can apply only to improvements. The greater the originality, the 
higher the potential royalties associated with the catalyst or with the process for 
which it is the controlling part. 

2.1.10 cost 

Even when a catalyst possesses all the properties and characteristics just enum- 
erated, there remains one last requirement: it must withstand comparison with 
competitive catalysts or processes with equivalent functions from the point of view 
of cost; or at least its cost should not place too heavy a burden on the economics of 
the process for which it will be used. 

2.2 The Ideal Catalyst and the Optimum Catalyst 

All of the above properties and characteristics are not independent; when one 
among them is changed with a view to improvement, the others are also modified, 
and not necessarily in the direction of an overall improvement. As a result, indus- 
trial catalysts are never ideal. Fortunately, however, the ideal is not altogether in- 
dispensable. Certain properties, such as activity and reproducibility, are always 
necessary, but selectivity, for example, has hardly any meaning in reactions like 
ammonia synthesis; and the same holds true for thermal conductivity in an iso- 
thermal reaction. Stability is always of interest but becomes less important in pro- 
cesses that include continuous catalyst regeneration, when it is regenerability that 
must be optimized. Furthermore, originality can be of secondary importance for 
certain manufacturing situations such as those relevant to national defense. 

The goal, therefore, is not an ideal catalyst but the optimum, which may be 
defined by economic feasibility studies concerning not only the catalyst but also the 
rest of the process. And when the catalytic process is established and the catalyst in 
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question must compete as a replacement, the replacement catalyst’s cost and 
method of manufacture predominate in arriving at the optimum formula. 

Depending on the use and the economic competition, therefore, the optimization 
studies establish an hierarchy among the properties and characteristics of a catalyst; 
and knowledge of this hierarchy helps to better orient the efforts of the research 
team responsible for creating and developing the catalyst and its process. Even 
when the hierarchy is not fixed at the start, it can evolve in the course of developing 
the catalyst, sometimes even after industrialization. 

2.2.1 Catalyst Development 

A real-life solid catalyst is something entirely different to its user, its manufacturer, 
or its creator. 

The user considers the catalyst within the framework of its function of promoting 
a chemical reaction, and its properties. 

The engineer responsible for manufacturing the catalyst considers it from a dif- 
ferent point of view, although still recognizing the needs of the user. For this engi- 
neer, the catalyst is primarily a chemical product characterized by its composition 
and its method of preparation, from the nature of its precursor salts of the active 
agents, through the conditions of various unit operations used for constructing the 
catalytic solid. All these operations, precipitation, ripening, filtration, washing, 
forming, drying, impregnation, calcination and activation, need to be meticulously 
controlled so that at the end of the manufacturing process the catalyst fits the range 
of specifications guaranteed to the user. 

Finally, although the physical chemist who designs a solid catalyst will be inter- 
ested in the two preceding points of view, he or she will concentrate on defining it in 
intrinsic physicochemical terms, such as its texture (pore distribution, specific sur- 
face of the overall solid, surface of the deposited active agents, structural density 
and grain density), its crystallographic characteristics (X-ray or electron diffraction 
examination to precisely determine the presence of a definite compound, a solid 
solution, or an alloy), its electronic properties (energy levels of the electrons, valence 
state of certain elements, or the d character for other elements or metallic alloys), 
and especially its surface properties either isolated or preferably in its reaction 
atmosphere (the thermodynamic characteristics of chemisorption, the chemical and 
electronic modifications of the catalytic surface, state of surface oxidation or re- 
duction, acidity or basicity, and nature of the bonds in the adsorbed phase). 

These various aspects of the catalyst are related through cause and effect. The 
properties sought in the industrial catalyst by the user flow from its intrinsic physico- 
chemical characteristics; and both industrial properties and physicochemical prop- 
erties closely depend on the method of preparation. Therefore, it is essential that the 
research team and the engineers in charge of developing a catalyst and its corre- 
sponding process be trained for and given the tools for following the development 
of the catalyst through all its various aspects, economic and legal ones included. 
Considering this complexity, the approach to an optimum catalyst can only be an 
experimental procedure advancing step-by-step through trial and error. 
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2.2.2 Devising the First Catalytic Formulas 

An initial hierarchy of required qualities arises out of the detailed analysis of the 
chemical transformation plus the data from exploratory tests to select the catalytic 
species. This hierarchy depends on general laws of kinetics and chemical engineer- 
ing, as well as observations of industrial operations that are more or less analogous. 
The steps of its articulation are as follows: 

Starting with the selected active species in the laboratory, one prepares a family of 
catalysts that are related through variations in the manufacturing process, such as 
sequence of the unit operations, of which certain ones are considered a priori 
critical by reason of their influence on the catalyst properties. The catalysts of this 
initial family are not chosen at random, but on the basis of general knowledge of 
inorganic chemistry and chemistry of the solid, plus the know-how acquired from 
analogous catalysts that seem closest to the fixed objective. 
Subsequently one prepares a list of physicochemical characteristics to be deter- 
mined for the various catalysts of the family. These characteristics will be those 
most likely to produce meaningful results from correlations with mechanical and 
catalytic properties or with the conditions of preparation. 

The catalysts of this initial family are then submitted to experiments whose results 
should permit: 

(a) A good estimation of the predicted performances, the preferred conditions of 
preparation, and the physicochemical characteristics. 

(b) An identification of critical properties for the catalyst (i.e., those properties 
most difficult to obtain), as well as the key unit operations (i.e., those essential 
to the performance of the catalyst), and the physicochemical characteristics on 
which the performance of the catalyst depends. 

Next, a second series of tests is carried out for the purpose of clarifying points 
shown to be most important at the end of the first series of tests, both in the prep- 
aration of the catalysts and in determination of the performance and physico- 
chemical characteristics. 

At the end of this second series, and possibly a third, the results should be good 
enough for the following three partial objectives: 

(a) To establish some correlations between the properties of the catalyst, the in- 
trinsic characteristics of the solid, and the conditions of preparation, as illus- 
trated in Fig. 1. These correlations will provide a basis for perfecting the cata- 
lyst, and they can be ultimately used for defining the control tests during 
industrial manufacture. 

(b) To make an initial selection of some acceptable catalysts to be studied more 
thoroughly. 

(c) To start using one of the acceptable catalysts for a practical study of the prob- 
lems of the chemical reaction process. It would be indeed illogical to delay 
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Figure 1. The different aspects of catalysis and their interrelations (adopted from ref [I]) .  

studying the problems of the overall process for formulation of the optimum 
catalyst, since according to the economic criteria the idea of an optimum cata- 
lyst has meaning only within the framework of the total problems posed by the 
unit. Thus it is necessary to begin the study of these problems on a catalyst that 
is judged acceptable, in order to deduce those elements that will orient opti- 
mization of the industrial catalyst. 

At this stage it is time for a few practical remarks: 

(a) Although the study of catalytic properties can sometimes be made on model 
molecules for the initial preparation, i t  is generally preferable to operate with 
industrially representative feedstocks, and under industrially representative 
conditions, as early as possible. 

(b) For the initial catalysts, one sometimes omits the study of stability, a property 
that essentially demands a great deal of time for evaluation. Generally, stability 
is studied only with formulas that are already acceptable and often after having 
developed a test for accelerated aging. 

(c) For a catalyst to be regarded as acceptable, a study of its manufacturing process 
should have been started and advanced to the pilot scale for judging its pro- 
duction feasibility. Indeed, from this point on, experimenting becomes costly, 
and it is necessary to make sure that the catalyst is not just a laboratory curi- 
osity. 

(d) As soon as the first results from the study of the process are obtained with the 
initial acceptable formula, an economic analysis and possibly a legal review 
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should be undertaken for judging more accurately the industrial viability of the 
proposed process. If the results that one can expect from these reviews deviate 
too far from commercial requirements, the research project should be aban- 
doned. If the proposed process is shown to be economically viable, one con- 
tinues on to the optimization of the catalyst, taking into account the problems 
to be encountered in the course of its use in the proposed process. 

2.2.3 Optimization of a Typical Catalytic Formula 

This optimization is achieved by exploiting to the utmost the correlations estab- 
lished during definition of the initial catalytic formulas. It should not only take into 
account the problems raised by the study of use but also the need for a simple and 
economical preparation that can be expanded to industrial scale. Therefore, the 
problems of extrapolating to industrial scale the various unit operations perfected in 
the laboratory have to be resolved in the pilot plant. This study consists of 

(a) Pilot preparation of a certain number of samples whose performances must be 
tested. Examination of the results makes it possible to specify the operating 
conditions for each stage of the future industrial operation. 

(b) Forecasting a price for the industrial catalyst. 
(c) Establishing a manufacturing process using existing equipment as far as 

(d) Production of enough catalyst by the manufacturing process for the catalyst to 
possible. 

be representative of industrial production. 

One must remember that a catalyst optimized in this way represents only a 
transitory optimum; experience has shown that hardly is any catalyst industrialized 
before it is subject to improvements, either for correcting deficiencies revealed 
through the industrial experience or for improving a competitive position. Some- 
times it happens that a change occurs in the very nature of the catalytic agent; and 
at that point it is a veritable matter of catalyst renovation, involving a procedure 
identical to that which has just been described for the genesis of the initial formula. 

Perfecting an industrial catalyst is thus the culmination of a long and complicated 
process that requires a knowledge as broad as possible of the methods relative to the 
preparation of catalysts, to the study of catalytic and mechanical properties, and to 
the determination of the physicochemical characteristics. 
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3 Bulk Catalysts and Supports 

3.1 Fused Catalysts 

R. SCHLOGL 

3.1.1 Introduction 

A small number of heterogeneous catalysts is prepared by fusion of various pre- 
cursors. The obvious group of compounds are metal alloy catalysts which are 
applied in unsupported form like noble metal gauze for the ammonia oxidation to 
nitric oxide. Melting of the elements in the appropriate composition is the only way 
to produce bulk amounts of a chemical mixture of the constituent atoms. The process 
is well-described by thermodynamics and a large database of phase diagrams and 
detailed structural studies is available. Metallurgy provides the technologies for 
preparation and characterization of the products [l]. This enables the synthesis of a 
large number of bulk alloys with well-defined properties. An interesting develop- 
ment in the use of such bulk-phase metallic alloy catalysts is the application of bulk 
metallic glasses in the form of ribbons with macroscopic dimensions [2-51. In this 
class of materials the atomic dispersion in the liquid alloy is preserved in the solid 
state as a single phase, although the material may be metastable in its composition. 
This allows the preparation of unique alloy compositions which are inaccessible by 
equilibrium synthesis. The solidification process by rapid cooling (cooling rates 
above lo4 Ks-’) creates “glassy” materials with well-defined short range order but 
without long range order. The difference in free energy between compositional 
equilibration and crystallization, stored in the metallic glass, can be used to trans- 
form the material in an initial activation step from a glassy state into a nano- 
crystalline agglomerate with a large internal surface interface between crystallites. 
This still metastable state is the active phase in catalysis and the final transforma- 
tion into the stable solid phase mix with equilibrium composition terminates the life 
of such a catalyst. 

In oxide materials [2] which are fused for catalytic applications, two additional 
factors contribute to the unique features of this preparation route. Many oxides in 
their liquid states are thermodynamically unstable with respect to the oxygen partial 
pressure present in ambient air, i.e. they decompose into lower-valent oxides and 
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