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Preface

Quantum Paradoxes is a series of studies in quantum theory. Each chapter begins with a
paradox motivating the study, in the rest of the chapter, of a fundamental aspect of the theory.
We hope that this style in physics – progress through paradox – will rub off on readers. The
studies, taken together, set out a new interpretation of quantum theory.

Elements of this interpretation include topological phases (the Aharonov-Bohm effect and
its generalizations), “modular” variables, nonlocal measurements and relativistic causality,
time-symmetric boundary conditions, measurement of the quantum wave, “weak” measure-
ments and “weak” values, and new axioms for quantum theory. A treatment of “quantum
measurements”, starting in Chap. 7, plays an important role in the book. Indeed, measurement
is so important that many of the works cited in the book can be found in the anthology Quantum
Theory and Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton: Princeton U.
Press), 1983; these citations include a note “reprinted in WZ” with page numbers.

For whom is this book written? It is designed for physics students, physicists and philoso-
phers of science with an interest in fundamental aspects of quantum theory. The first two chap-
ters of Quantum Paradoxes do not require prior knowledge of quantum theory, and Chaps. 3–4
introduce basic notions of states, observables and quantum phases, so students can use the
book even during a first course in quantum mechanics. It is not, however, a substitute for such
a course.

Each chapter ends with a problem set. Problems marked with an asterisk (*) are, in general,
less straightforward than others.

It is a pleasure to thank those who have helped us write this book. We are indebted to col-
leagues (including students) who read parts of the book at one stage or another, most especially
Philip Pearle and Fritz Rohrlich, and to Elisabeth Warschawski for much encouragement and
technical support. We thank Shula Volk for opening her ceramics studio to us at odd hours
of the day and night, as reported in Sect. 2.1. We also acknowledge support from the Giladi
Program of the Israeli Ministry of Absorption and from the Ticho Fund.

Yakir Aharonov
Daniel Rohrlich
December 2004
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1 The Uses of Paradox

On November 9, 1919, The New York Times reported solar eclipse observations confirming a
prediction of Einstein’s general theory of relativity: rays of starlight bend near the sun. It also
reported that when Einstein sent his theory to the publishers, “he warned them that there were
not more than twelve persons in the world who would understand it . . . .” Was there a time
when only “twelve wise men” understood the general theory of relativity? “I do not believe
there ever was such a time,” commented Feynman. “There might have been a time when only
one man did, because he was the only guy who caught on, before he wrote his paper. But after
people read the paper a lot of people understood the theory of relativity in some way or other,
certainly more than twelve. On the other hand, I think I can safely say that nobody understands
quantum mechanics.” [1]

What is the problem with quantum mechanics? It is a spectacularly successful theory.
It governs the structure of all matter. Measurements of Planck’s constant are accurate to
better than a part in a million, and still more accurate measurements confirm predictions of
quantum electrodynamics. But along with the spectacular successes of quantum mechanics
come spectacular difficulties of interpretation. “Do not keep saying to yourself, if you can
possibly avoid it, ‘But how can it be like that?”’ Feynman continued, “because you will get
‘down the drain’, into a blind alley from which nobody has yet escaped. Nobody knows how
it can be like that.”

We can stop asking ourselves, “But how can it be like that?” We may indeed despair of
asking a question that Einstein, Schrödinger and Feynman could not answer. But we cannot
stop using quantum mechanics. So the problem is that everybody uses quantum mechanics
and nobody knows how it can be like that. Our relationship with quantum mechanics recalls a
Woody Allen joke:

This guy goes to a psychiatrist and says, “Doc, my brother’s crazy – he thinks he’s a
chicken! And, uh, the doctor says, “Well, why don’t you turn him in?” And the guy
says, “I would, but I need the eggs!”

We say, “Quantum mechanics is crazy – but we need the eggs!”
Such a relationship with quantum mechanics is paradoxical. In this book, we will not be

satisfied to have a paradoxical relationship with quantum mechanics. We will not stop asking,
“How can it be like that?” But we will use paradox repeatedly in order to understand quantum
mechanics better.
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2 1 The Uses of Paradox

1.1 Paradox in Physics

We will use paradox to probe quantum mechanics. Can paradox be useful? The history of
physics shows how useful. As Wheeler [2] put it, “No progress without a paradox!” In this
section, we define and classify physics paradoxes; the next sections present examples of each
class.

A paradox is an argument that starts with apparently acceptable assumptions and leads by
apparently valid deductions to an apparent contradiction. Since logic admits no contradictions,
either the apparently acceptable assumptions are not acceptable, or the apparently valid deduc-
tions are not valid, or the apparent contradiction is not a contradiction. A paradox is useful
because it can show that something is wrong even when everything appears to be right. It does
not show what is wrong. But something is wrong – something we thought we understood –
and a paradox moves us to reexamine the argument until we find out what is wrong.

We can classify physics paradoxes according to what is wrong. There are three broad
classes: “errors”, “gaps” and “contradictions”.

Many paradoxes arise from errors. An error in logic or in our understanding of the laws
of physics easily leads us to an apparent contradiction. Our error may be simple or it may
be subtle, but it is just an error; once we recognize it, we have resolved the paradox. What
distinguishes the first class is that these paradoxes do not arise from any flaw in the theory. In
the special theory of relativity, for example, erroneous assumptions about simultaneity lead us
to paradox. (See Sect. 1.2.) Resolving the paradox, we improve our understanding of special
relativity, but we do not improve the theory. Another example of a paradox arising from an error
is Einstein’s clock-in-the-box paradox. (See Sect. 2.4.) Einstein made an error and arrived at
an apparent contradiction in quantum theory. The resolution of the paradox came as a surprise,
but it did not show quantum theory to be flawed in any way.

Other paradoxes do show a physical theory to be flawed. A gap in physical theory is a flaw.
As an example of a gap, consider Wheeler’s paradox of black hole entropy. According to the
general theory of relativity, nothing can escape a black hole. We, as outside observers, can
measure the electric and gravitational fields of a black hole, and hence its charge and mass (and
angular momentum); but we have no other access to a black hole. So a black hole at rest has
only three properties: charge, mass and angular momentum. Such a simple physical system
can hardly have much entropy. Now suppose a complicated physical system, containing a
lot of entropy, falls into a black hole. What happens to the entropy? Apparently it vanishes.
But vanishing entropy violates the second law of thermodynamics. Wheeler told his student
Bekenstein about this paradox:

The idea that a black hole had no entropy troubled me, but I didn’t see any escape
from this conclusion. In a joking mood one day in my office, I remarked to Jacob
Bekenstein that I always feel like a criminal when I put a cup of hot tea next to a
glass of iced tea and then let the two come to a common temperature, conserving the
world’s energy but increasing the world’s entropy. My crime, I said to Jacob, echoes
down to the end of time, for there is no way to erase or undo it. But let a black hole
swim by and let me drop the hot tea and the cold tea into it. Then is not all evidence
of my crime erased forever? This remark was all that Jacob needed [3].



1.2 Errors 3

Bekenstein [4] proposed that a black hole has entropy proportional to the square of its mass.
If any physical system falls into a black hole, the mass of the black hole increases – and hence
the entropy. He demonstrated that the increase in entropy is at least as great as the entropy of
the infalling system, thus corroborating the second law and resolving Wheeler’s paradox.

Wheeler’s paradox indicated a flaw – but not a fatal flaw – in general relativity and ther-
modynamics. The resolution of the paradox did not invalidate either theory. The apparent
contradiction between the theories arose from a gap in thermodynamics – we didn’t know how
to extend the concept of entropy to black holes – and Bekenstein’s proposal filled the concep-
tual gap. Another paradox in the second class came, in turn, from Bekenstein’s proposal: if
thermodynamics extends to black holes, then black holes must emit as well as absorb heat. But
nothing can escape a black hole! This paradox, too, arose from a conceptual gap, as Hawking
discovered: one consequence of the uncertainty principle is that black holes radiate [5]. Many
such paradoxes appear in this book.

A contradiction in physical theory is a fatal flaw. Paradoxes in the third class are associated
with revolutions in physics, because they indicate that the physical theory behind the paradox
is wrong. Bohr faced such a paradox in 1911. In that year, Rutherford reported experiments
on neutral atoms, showing that the positive charges in atoms – but not the negative charges
(electrons) – are concentrated in nuclei. According to classical theory, such atoms should be
unstable: like all accelerating charges, the electrons should radiate energy, and fall into the
nuclei. Matter should collapse in a split second. So why is matter stable? Bohr realized that
this paradox had no resolution in classical physics. Only a new physical theory – quantum
theory – could resolve it. The only resolution was a revolution.

The paradox arose for Bohr as a contradiction between physical theory and experiment.
Especially useful are paradoxes that arise as contradictions within physical theory. Such a
paradox can show that a physical theory is wrong even when no experiment contradicts it. The
paradox then starts us searching for a new theory. (See Sects. 1.4 and 2.2.)

1.2 Errors

Every student of special relativity encounters the Twin Paradox [6]. Here is a Triplet Paradox.
Dumpy, Grumpy and Jump – identical triplets wearing synchronized wristwatches – once lived
together happily at home. But Grumpy got mad at Dumpy and decided to move to another
city. When he arrived, his watch was still synchronized with his brothers’ watches, because he
travelled very slowly compared to the speed of light. (In this paradox we set the speed of light
to 1000 m/s.)

A month later, Jump decided to visit Grumpy. Dumpy accompanied Jump to the train
station, and Jump took a seat in the train. Then the train accelerated, within a second, to 100
m/s. At the end of this second, Jump’s cabin passed Dumpy on the platform. Jump and Dumpy
glanced at each other through a cabin window and noticed that their watches still showed the
same time (to within a second). Hence Jump did not age appreciably during the acceleration.
For the rest of the trip, the train’s speed and direction were constant. When it arrived, it stopped
within a second.

Dumpy and Grumpy expected that Jump would be slightly younger than them when he
arrived, and that his watch would lag behind their watches, for Jump had been moving fast
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relative to them. But Jump expected the opposite: Dumpy and Grumpy would be slightly
younger, and their watches would lag behind his. He told himself, “After one second of
acceleration, Dumpy’s watch and mine showed the same time (to within a second); and Dumpy’s
and Grumpy’s watches were still synchronized. Afterwards, the inertial reference frame of
Dumpy and Grumpy moved fast relative to mine; so time passed more slowly for them, and
their watches now lag behind mine.” When he arrived, he discovered that his watch lagged
Grumpy’s by about half a minute! On the one hand, Jump’s expectation should be just as
correct as that of his brothers; there can be no preferred frame in special relativity. On the other
hand, Jump and his brothers cannot all be correct. So special relativity contradicts itself!

The Triplet Paradox belongs to the class of errors in that it does not arise from any flaw or
misconception in the special theory of relativity. It arises, rather, from incorrect intuition. We
can often use paradoxes in this class to improve our intuition.

1.3 Gaps

In 1856, Clausius stated the second law of thermodynamics as follows: heat cannot flow from a
colder body to a hotter body without an accompanying process (i.e. work). Clausius regarded
the second law as exact, and tried to derive it from the laws of mechanics. In 1871 he published
a paper [7] in which he offered a mechanical explanation of the second law. He did not know
that Boltzmann had published much the same explanation five years earlier [8]. Boltzmann
(who, like Clausius, regarded the second law as exact) was quick to claim priority [9]. Yet
Clausius did not wholly concede [10]. Maxwell was amused. “But it is rare sport to see those
learned Germans contending for the priority of the discovery that the 2nd law of θ∆cs is the
Hamiltonische Princip . . . .” he wrote. “The Hamiltonische Princip, the while, soars along in
a region unvexed by statistical considerations . . . .” [11]. Boltzmann and Clausius were both
wrong. The second law has no mechanical explanation; it is statistical.

What made Maxwell so sure that the second law is statistical? In 1859 he had calculated
that the distribution of molecular speeds in any gas, hot or cold, would range from zero to
infinity. (Molecules were still an untested hypothesis at the time.) In 1867 he had considered
the following thought experiment. Gas fills a sealed, insulated box, divided by a diaphragm.
The gas is hot on one side of the diaphragm and cold on the other side; yet there are fast
molecules in the cold gas and slow molecules in the hot gas. “Now conceive a finite being who
knows the paths and velocities of all the molecules by simple inspection but who can do no
work except open and close a hole in the diaphragm by means of a slide without mass.” The
being opens and closes the hole in such a way that fast molecules in the cold gas enter the hot
gas and slow molecules in the hot gas enter the cold gas. Energy gradually flows from the cold
gas to the hot gas. After many molecules have crossed through the hole, “the hot system has
got hotter and the cold colder and yet no work has been done, only the intelligence of a very
observant and neat-fingered being has been employed” [12]. The “neat-fingered being” soon
had a name: “Maxwell’s demon”.

Maxwell’s demon violates the second law of thermodynamics, as formulated by Clausius:
it does no work, yet it causes heat to flow from a cold gas to a hot gas. It does not, however,
violate the laws of mechanics. Hence the second law cannot be a mechanical law. Maxwell’s



1.3 Gaps 5

Figure 1.1: Two opposite “arrows of space”. [With
thanks to Stuart M. Hutchison and Princeton Tiger
Magazine.]

thought experiment was a paradox for Clausius’s formulation; it does not disprove the second
law, but it shows that the second law can only be a statistical law.

Another formulation of the second law states that the entropy of a closed system always
tends to increase to thermal equilibrium. But this formulation, too, leads to a paradox. It
assumes an arrow of time, relative to which entropy tends to increase. But what if there is
no arrow of time? What if the “arrow of time” is no more intrinsic than the “arrow of space”
defined by gravity? (See Fig. 1.1.) Suppose that two sealed, insulated boxes are filled with
gas, e.g. helium in one box and neon in the other, and at time t = 0, neither gas is at thermal
equilibrium. Now on the one hand, if the boxes are perfectly insulated, they could contain two
opposite arrows of time. Assume that the gases have contrary evolutions: the entropy of the
neon increases in time while the entropy of the helium decreases in (the same) time. Such an
assumption is plausible since the laws of mechanics are invariant under time reversal and the
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Figure 1.2: Maxwell’s demon as a trapdoor.

boxes do not interact. On the other hand, suppose the boxes do interact, with an interaction
that is independent of time; assume that the position and momentum of each atom at t = 0
is the same as before. According to the second law, the combined entropy of the two gases
always tends to increase; that is, any perturbation of the helium atoms, however small, will
destroy the precise coordination of their positions and momenta that allows their entropy to
decrease. So in the evolution of the two gases after t = 0, their total entropy increases. But the
same reasoning applies in reverse to the evolution of the gases before t = 0: their total entropy
must decrease until t = 0. Extrapolation forwards from t = 0 implies that the neon (with its
increasing entropy) overwhelms the helium; extrapolation backwards from t = 0 implies that
the helium overwhelms the neon. This paradox shows that the second law contains no arrow
of time. (See also Chap. 10.)

The second law is almost exact, i.e. the probability of a significant violation is very small.
Maxwell’s demon can violate the second law, yet the probability of a significant violation
is very small. Still, after Maxwell, the demon turned up in new paradoxes. The demon kept
turning up, because it is easier to imagine a demon that can violate the second law significantly,
than to prove that it can’t. For example, in Fig. 1.2 the demon is a trapdoor that apparently
allows only fast molecules of the cold gas to enter the hot gas. In 1914, Smoluchowski
showed that this demon fails to violate the second law significantly because the trapdoor
itself thermalizes, eventually opening and closing in random fluctuations [13]. More recent
paradoxes allow Maxwell’s demon to measure and compute. Their resolution involves an
application of information theory to thermodynamics [14].

All the paradoxes in this section belong to the class of gaps; they show up flaws or gaps in
how we understand the second law, but do not invalidate it. The resolutions of these paradoxes
correct our formulation of the second law and extend the concepts we use to apply it, but do
not contradict the formalism of thermodynamics.
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1.4 Contradictions

Maxwell’s equations imply that a changing electromagnetic field in empty space propagates
as a wave with constant speed c. On the face of it, this implication contradicts Newton’s
mechanics. According to Newton, if we run after a light wave, its speed (relative to us)
decreases. Velocities add as vectors: if the velocity of a light ray with respect to Alice is vA
and the (nonzero) velocity of Alice with respect to Bob is vAB , then the velocity of the ray
with respect to Bob is vA + vAB . The ray cannot have the same speed for Alice and for Bob.
What, then, corresponds to c? Physicists of Maxwell’s time assumed that electromagnetic
waves propagate through a medium, the “aether”, and what corresponds to c is the speed of
the wave relative to the aether.

At first, the aether was a plausible assumption. Even before Maxwell, physicists assumed
that light propagates through an aether. Every wave known to them, from ripples in water
to sound in air, propagated through some medium. Fresnel showed in 1818 that an aether
at absolute rest, unaffected by the earth’s motion through it, would be consistent with the
“aberration effect”, a seasonal shift in the apparent positions of stars in the sky. Over the rest
of nineteenth century, however, the aether became less and less plausible. In 1887, Michelson
and Morley measured the speed of light parallel and perpendicular to the earth’s motion, and
found no difference.1 Hence the aether and the earth must move together. Or else the earth is
at absolute rest – Copernicus was wrong after all!

Aether was a paradox. But since an aether at absolute rest made sense of c (and defined
the “absolute space” that Newton had postulated), most physicists chose tacitly to live with it.
They then had to explain the contradictory experiments.

For Einstein, the paradox was different. He concluded early on (even without the Michel-
son–Morley experiment) that there is no aether. He was then left with the contradiction between
Newton’s mechanics and electromagnetism. At age 16, Einstein formulated the paradox as
follows:

If I pursue a beam of light with the velocity c (velocity of light in a vacuum),
I should observe such a beam of light as an electromagnetic field at rest though
spatially oscillating. There seems to be no such thing, however, neither on the basis
of experience nor according to Maxwell’s equations. From the very beginning it
appeared to me intuitively clear that, judged from the standpoint of such an observer,
everything would have to happen according to the same laws as for an observer who,
relative to the earth, was at rest. For how should the first observer know, or be able
to determine, that he is in a state of fast uniform motion? [15]

Newton proved that his laws of mechanics are the same for all observers in uniform (rectilinear)
motion; and Maxwell [16] realized that – apart from the aether – electromagnetism is the same
for all observers in uniform motion. If there is no aether, then the laws of mechanics and
electromagnetism must be the same for all observers in uniform motion. The paradox was that
in Newton’s mechanics, which relates such observers by Galilean transformations, the speed of
light is not a constant; in Maxwell’s electromagnetism, which relates such observers by Lorentz

1To show that the basement laboratory of Michelson and Morley did not trap aether, Morley and Miller later
repeated the measurements on a hilltop.
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transformations, the speed of light is a constant, as it is in experiment. Years later, Einstein
resolved the paradox by modifying Newton’s mechanics so that Lorentz transformations, rather
than Galilean transformations, relate observers in uniform motion.

Indeed, paradox can be useful but, as this example shows, the paradox has to be the right
paradox. Where other physicists saw a contradiction between physical theory and experiment,
Einstein (and to an extent Poincaré) saw a contradiction within physical theory. What is striking
in this example is how ready Einstein was to discard the aether assumption when it had become
implausible (but still accepted by all other physicists) and to face a fundamental contradiction
in physical theory. He was thus able to identify the right paradox behind the wrong paradox,
and later to resolve it.

1.5 Overview of the Book

In this book we have two goals. Our primary goal is a deeper understanding of all funda-
mental aspects of quantum mechanics. The first chapters do not assume prior knowledge
of quantum mechanics. Chapter 2 discusses uncertainty and consistency in quantum theory,
without the formalism, and Chap. 3 introduces the notion of a quantum state, while discussing
the completeness of quantum theory. Chapter 4 introduces the quantum phase and probes its
unique role in the theory with the help of Schrödinger’s equation. Chapters 5 and 6 apply
the phase in unconventional ways and raise unconventional questions about quantum mechan-
ics. Chapters 7–11 present a theory of quantum measurements, a powerful tool for probing
quantum mechanics. Chapters 12–13 explore connections among the Feynman path integral,
Berry’s phase and the Aharonov–Bohm and Aharonov–Casher effects. Quantum mechan-
ics is nonrelativistic throughout Chaps. 1–13, but Chaps. 14–17 discuss relativistic quantum
measurements, measurements of the quantum wave, and “weak” measurements within a new
formalism adapted to relativity. Chapter 18 proposes simple physical axioms for quantum
theory.

Our secondary goal is to encourage physicists to use paradoxes creatively, both in teaching
and in research. We use paradoxes all through the book. Each chapter (except this one) begins
with a paradox that motivates the rest of the chapter. Try to resolve the paradoxes as you read!
Chapter 2 begins with a paradox from the class of contradictions; Chapter 10 begins with a
paradox from the class of errors. Chapters 3–8 and Chaps. 11–18 all begin with paradoxes
from the class of gaps; and it is an open question to which class the paradox in Chap. 9 belongs.

Problems

1.1 If Wheeler’s paradox of Sect. 1.1 had preceded the discovery of quantum mechanics, to
which class of paradoxes would it belong?

1.2 (a) Resolve the Triplet Paradox of Sect. 1.2. What was Jump’s error?
(b) About how long did Jump’s train ride last?
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2 How to Weigh a Quantum

Now we start to use paradoxes to investigate quantum theory and its mathematical formalism,
quantum mechanics. We need the mathematical formalism, but we do not need it yet. We first
take up the question: Is quantum theory consistent? From 1927 to 1930, Bohr and Einstein
debated this question [1]. Both were familiar with the formalism, yet they hardly referred
to it. They did not need to. With thought experiments, Einstein would argue that quantum
theory is inconsistent; and Bohr would refute Einstein’s arguments, one by one. After these
refutations, Einstein conceded that quantum theory is consistent. So we can gain insight into
quantum theory without the mathematical formalism. This chapter takes us to the climax of
the Bohr-Einstein debate.

2.1 Why does the Color of the Light Change?

Let’s visit a potter’s studio. In the studio we see boxes of clay, jars of powdered glaze, spoons,
brushes and rolling pins, and a potter’s wheel; but what stands out is the kiln, sitting on metal
posts, with its thick ceramic walls covered in metal. The huge, hot kiln dominates the studio.
We peep into the hot kiln through a peephole in the door of the kiln. What do we see?

As the kiln’s temperature reaches 1200 ◦C, the potter turns off the heating element. We then
see the glow of matter heated to this temperature. The temperature of the kiln drops slowly,
despite the peephole – roughly a degree per minute. So, to a good approximation, the kiln
remains at thermal equilibrium. At 1200 ◦C (1473 K), the light we see through the peephole
is orange mixed with yellow, and so bright it hurts the eyes. Almost everything in the kiln is
the same color, though objects close to the peephole look darker than the background. In a
few hours, the temperature of the kiln drops to 1000 ◦C (1273 K); the light is orange and less
bright than before. We can see the outlines of some objects in the kiln. In a few more hours
the temperature drops to 800 ◦C (1073 K) and the light is less intense; the color of the light
is a mixture of orange and red. When, a few hours later, the temperature falls below 600 ◦C
(873 K), we see only a dull red glow.

The correlation between temperature and the color of light is familiar and we take it for
granted. We use such expressions as “red hot” and “white hot”. A potter can judge the
temperature of a kiln by the color of its glow. All the same, the correlation is mysterious. We
understand why the intensity of the light changes: light has energy and the energy of the kiln
decreases with the decreasing temperature. But why does the color of the light change?

Let us discuss in more detail how it changes. The electromagnetic radiation from a kiln is
a mixture of light frequencies and other frequencies. The total energy in the radiation depends
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on the size of the kiln, but the density of energy in the radiation does not; it depends only on
the temperature of the kiln. Let u(ν, T ) denote the density of energy in radiation of frequency
ν coming from a kiln at absolute temperature T . That is, for small dν, the density of energy
in radiation with frequencies between ν and ν + dν is u(ν, T )dν. In 1860, Kirchhoff proved
that u(ν, T ) is the same for any black body in thermal equilibrium at temperature T . (By
definition, a black body does not reflect radiation; but it emits radiation, so, despite the name,
black bodies can have color. A kiln emits black-body radiation.) But Kirchhoff did not have
sufficient data to determine u(ν, T ). In 1896 Wien proposed a law to fit the data that had
gradually accumulated:

u(ν, T ) = bν3e−aν/T ,

where a and b are empirical constants. Then in 1900, when new data contradicted Wien’s law,
Planck proposed

u(ν, T ) =
8πhν3

c3
1

ehν/kT − 1
, (2.1)

where k is Boltzmann’s constant, c is the speed of light, and h is Planck’s constant. (Planck’s
value for his constant was h = 6.55 × 10−27 erg sec; as of 2004, the accepted value is
h = [6.6260693 ± 0.0000011] × 10−27 erg sec. We note � ≡ h/2π ≈ 1.054572 × 10−27 erg
sec.) Both Wien’s law and Planck’s law imply that the color of the light from a black body
changes with its temperature, because the shape of u(ν, T ) changes with T . And indeed the
color changes, not only at temperatures that a kiln can reach, but also at higher temperatures.
(See Fig. 2.1(a).)

We have defined the energy density u(ν, T ) as a function of the frequency of radiation.
We can just as well define energy density as a function of the wavelength λ of radiation. For
small λ, let uλ(λ, T )dλ be the density of energy in radiation with wavelengths between λ and
λ+ dλ. For any two wavelengths λ1 = c/ν1 and λ2 = c/ν2, we must have

∫ ν2

ν1

u(ν, T )dν =
∫ λ1

λ2

uλ(λ, T )dλ ,

so Eq. (2.1) implies

uλ(λ, T ) =
8πhc
λ5

1
ehc/λkT − 1

.

Figure 2.1(b) shows that the light from a kiln at 1473 K is mainly red, orange, yellow and
green, mixing to a yellowish orange; at 1273 K the light is mainly red, orange and yellow; at
1073 K the light is a mixture of red and orange; and at 873 K the light is dark red. (See also
Prob. 2.1.) But why does the color of the light change?

Can we derive u(ν, T )? Boltzmann and Gibbs had already invented statistical mechanics
when Planck proposed his law. A principle of statistical mechanics, the equipartition theorem,
states that the average kinetic energy of a system with n degrees of freedom at temperature
T is nkT/2. Between 1900 and 1905, Rayleigh, Einstein and Jeans applied the equipartition
theorem to Maxwell’s electromagnetism to obtain

u(ν, T ) =
8πν2

c3
kT . (2.2)
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Figure 2.1: (a) Color of blackbody radiation as a function of temperature T . (b) Planck blackbody
distribution uλ(λ, T ) for temperatures 1473 K, 1273 K, 1073 K and 873 K, showing color of light as a
function of wavelength λ. [We thank Dr. Dan Bruton for the two color spectra in this figure. Because
of differences between light emission (from a computer screen) and reflection (from a printed page), the
colors here differ slightly from those in his web site www.physics.sfasu.edu/astro/color.html.]

Each frequency ν of electromagnetic radiation corresponds to two degrees of freedom (two
independent polarizations) and the density of frequencies is 4πν2/c3. (See Prob. 2.2.) So
Eq. (2.2) is simply kT times1 the density of degrees of freedom, 8πν2/c3. Note that Planck’s
law (unlike Wien’s law) approaches Eq. (2.2) for ν → 0, but both laws contradict Eq. (2.2) for
large ν.

Equation (2.2), in which T appears as an overall factor, implies that only the intensity of
the light from a kiln changes with temperature, not the color. But Eq. (2.2) is wrong: if we
integrate Eq. (2.2) to obtain the overall energy U(T ) in the radiation field,

U(T ) =
∫ ∞

0
u(ν, T )dν ,

1The factor kT includes the average of both kinetic and potential energy. These are equal for electromagnetic
radiation as they are for harmonic oscillators.
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we find that the integral diverges. Since statistical mechanics and electromagnetism together
imply this divergence, statistical mechanics and electromagnetism together contain a contra-
diction. We must modify one or both of these two theories to make them compatible.

So why does the color of the light change? We can guess that it changes to avoid the
divergence. The integral of Eq. (2.1) does not diverge. And Eq. (2.1) – Planck’s law – implies
that the color of the light changes with temperature. (See Prob. 2.3.)

2.2 Quanta

Planck’s own derivation of Eq. (2.1) was “an act of desperation . . . I had to obtain a positive
result, under any circumstance and at whatever cost”, as he put it [2]. Oddly, Planck was not
aware of Eq. (2.2); but he was aware that he could not derive Eq. (2.1) in any reasonable way. To
derive his law, he assumed that matter is composed of harmonic oscillators that exchange energy
with the electromagnetic field. This assumption was reasonable enough. He also assumed that
a harmonic oscillator of frequency ν could not exchange energy in arbitrary amounts, but only
in quanta of energy hν. This assumption was completely unreasonable. According to classical
theory, h should vanish; and as h vanishes, Planck’s law reduces to Eq. (2.2).

Five years later, Einstein extended Planck’s assumption. He assumed that electromagnetic
radiation itself consists of quanta; radiation of frequency ν consists of quanta of energyE with

E = hν . (2.3)

Einstein applied Eq. (2.3) to the photoelectric effect. Metals exposed to ultraviolet light emit
electrons. The energy of the emitted electrons depends on the frequency, but not on the in-
tensity, of the light. Einstein predicted a linear relation between the light frequency and the
energy of the electrons, with a slope, independent of the type of metal, equal to Planck’s con-
stant. Experiments verified these predictions by 1916. Yet almost no one accepted Einstein’s
hypothesis of light quanta [3]. Light is a wave; how could light quanta produce interference?

Then in 1923, Compton showed that light, scattering off electrons at rest, imparts momen-
tum in an amount that depends on the wavelength of the light, but not on its intensity. He found
a clear relationship between θ, the angle through which the light scattered, and the change in
its wavelength:

λf − λi =
h

mc
(1 − cos θ) ,

where λf and λi are the final and initial wavelengths of the light, respectively, and m is the
mass of the electron. The Compton effect strongly suggests that light quanta – photons – of
wavelength λ carry momentum h/λ as well as energy hν, for then the relationship follows from
conservation of energy and momentum. (See Prob. 2.4.) In the same year, de Broglie proposed
that if light waves could behave like particles, then particles could behave like waves. Four
years later, Davisson and Germer observed electron diffraction and confirmed de Broglie’s
relation between the momentum p and the wavelength λ of a particle:

p = h/λ . (2.4)
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Quanta had arrived.
Section 1.4 notes that relativity theory resolves a paradox: electromagnetism and New-

ton’s mechanics are incompatible. The theory of relativity resolves this paradox by modifying
Newton’s mechanics. In retrospect, we see that quantum theory, too, resolves a paradox. Sta-
tistical mechanics and electromagnetism are incompatible; together, they imply the Rayleigh–
Einstein–Jeans law, Eq. (2.2), and an infinite energy densityU(T ) for electromagnetic radiation.
This is a paradox of the third class, the class of contradictions. (See Chap. 1.) Quantum theory
resolves the paradox by modifying electromagnetism: electromagnetic radiation of frequency
ν cannot carry energy in arbitrary amounts, but only in quanta of energy hν. Together, statisti-
cal mechanics and the modified electromagnetism imply the Planck law, Eq. (2.1), and a finite
U(T ). (See Prob. 2.5.)

2.3 Uncertainty Relations

Quanta behave like waves and like particles. Are they waves or particles? Whatever they are,
quanta confront us with a paradox each time we make a measurement. If quanta behave like
waves, how can we measure their position? If they behave like particles, how can we measure
their wavelength? We can live with the paradox, but it implies fundamental limits to what we
measure. Here we derive these limits informally; for a formal derivation, see Prob. 3.10 and
Sects. 5.3 and 7.3.

Consider a measurement with a microscope. A light microscope can resolve features of
small objects, up to a limit. The limit depends on the wavelength of the light. The smallest
separation ∆x that a lens can resolve in its object plane (the x-axis in Fig. 2.2) is approximately

∆x ≈ λ/2 sin θ ,

where λ is the wavelength of the light and θ is half the angle subtended by the lens at the
object. (See Prob. 2.6.) So if we want to determine the position of a small object with an
accuracy ∆x, we need light of wavelength λ ≤ 2(∆x) sin θ. In both classical and quantum
physics, we have light of such short wavelengths. But in quantum physics, short wavelengths
correspond to quanta carrying high momenta, as Eq. (2.4) shows. A high momentum photon
scatters off the measured object and alters its momentum. Suppose we illuminate the object
from the side with light of wavelength λ = 2(∆x) sin θ. The light consists of photons of
momentum pγ = h/λ = h/2(∆x) sin θ in the x-direction. When a photon scatters off the
object we do not know in which direction it scatters, only that it reaches the lens (if it is at all
relevant to the measurement); thus all that we know about its final momentum in the x-direction
is that it lies between −pγ sin θ and pγ sin θ, i.e. between −h/2∆x and h/2∆x. The photon
alters the momentum of the object by this uncertain amount, hence the measurement of the
object’s position along the x-axis leaves us uncertain about its momentum in the x-direction;
the uncertainty ∆px in its momentum is at least ∆px ≥ h/∆x. In particular, we cannot rely
on a prior measurement of momentum for predicting the future position of the object. This is
the meaning of the Heisenberg uncertainty relation [4]:

∆x∆px ≥ h . (2.5)
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Figure 2.2: Two points O and O′ with separation
∆x; their respective images, each the maximum of a
diffraction pattern, are I and I ′.

Equation (2.5) is revolutionary. Consider, for example, an atom of hydrogen. Its radius is
roughly the Bohr radius a0 = 0.53 Å (that is, 5.3 ×10−9 cm); its ionization energy is 13.6
electron volts (eV). Suppose we measure the position of the electron to better than the Bohr
radius, i.e. ∆x < 5.3 × 10−9 cm. According to Eq. (2.5), our position measurement entails
uncertainty in the electron’s momentum of at least

∆p > h/∆x ≈ 1.25 × 10−18g cm/sec .

We might estimate the kinetic energy of the electron after the position measurement to be

(∆p/2)2/2m ≈ (6 × 10−19g cm/sec)2/2 × (9.1 × 10−28g)
(2.6)

≈ 2 × 10−10erg ≈ 130eV ,

where m≈ 9.1 × 10−28 g is the mass of the electron. This kinetic energy is greater than
the ionization energy, so the attempt to locate the electron within the atom ionizes the atom!
Actually, we have overestimated the kinetic energy,2 but any attempt to localize the electron
to a well defined orbit within the hydrogen atom will indeed ionize the atom.

We obtained Eq. (2.5) from an experiment with a microscope, but Eq. (2.5) holds for any
measurement of position and momentum. We always find that conditions for a precise mea-
surement of x conflict with conditions for a precise measurement of p. The conflict illustrates

2A good estimate of the kinetic energy is (�/∆x)2/2m ≈ 14 eV.
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Figure 2.3: Two-slit interference experiment. Elec-
trons enter from the left in the direction of the arrow.
Magnification shows dots making up the interference
pattern.

Bohr’s principle of complementarity: measurements of canonically conjugate variables (such
as x and p) impose conflicting conditions. The more an experiment fulfills the conditions for
measuring one variable, the less it fulfills the conditions for measuring the conjugate variable.
When we quantify the complementarity between the measurements, we obtain Eq. (2.5) (and
analogous uncertainty relations for other pairs of conjugate variables).

Complementarity allows us to live with paradox, but the paradox remains. Particles and
waves are complementary pictures of quanta. Each picture contains a part of the truth; but
there is no picture uniting the wave and particle pictures. Indeed, they contradict each other.
Consider a beam of electrons impinging on three screens. (See Fig. 2.3.) The first screen has
only one slit. The second screen has two slits, separated by a distance d. The distance between
the two screens is much larger than d, so waves passing through the first screen and arriving
at the two slits of the second screen have effectively parallel wave vectors. The waves passing
through the two slits interfere, producing a pattern of alternating light and dark bands on the
third screen, a distance L from the second. The spacing between adjacent dark bands is D.
This is the familiar phenomenon of wave interference, with

D ≈ λL/d , (2.7)

if the wavelength is λ. What is new is that the electrons are not simply waves. They also
behave like particles. If the beam intensity drops until only one electron passes through the
apparatus at a time, the pattern of light and dark bands still appears. The light and dark bands
emerge from marks that appear one by one on the screen, even when the time interval between
successive marks is longer than the time of flight of an electron through the apparatus [5].

2.4 The Clock-in-the-Box Paradox

The double-slit experiment figured in the Bohr-Einstein debate on whether quantum theory
is consistent. Einstein saw in it a paradox. Suppose we prepare the middle screen with no
transverse momentum, and measure its transverse momentum after an electron passes through
it. (See Fig. 2.4(a).) By measuring the recoil of the screen after the electron passes, we can
infer through which slit it passed. Let us denote the electron’s final transverse momentum by
p
(L)
⊥ if the electron passes through the left slit and by p(R)

⊥ if it passes through the right slit.
(See Fig. 2.4(b).) If the electron passes through the left slit and arrives at point P , the middle
screen must acquire momentum −p(L)

⊥ to conserve momentum; if it passes through the right
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Figure 2.4: (a) The two-slit interference
experiment of Fig. 2.2 adapted for mea-
suring the transverse momentum of the
middle screen. (b) The second and third
screens seen from above, with interfer-
ing electron paths and corresponding mo-
menta.

slit on its way to P , the middle screen acquires momentum −p(R)
⊥ . Thus we can determine

through which slit the particle passed by measuring the final momentum of the middle screen.
How can there be an interference pattern? This is a paradox of the first class, an error. Bohr
resolved the paradox by applying the uncertainty relations consistently. If we measure the
momentum ps of the screen with an accuracy ∆ps, then any simultaneous measurement of the
position xs of the screen entails an uncertainty ∆xs such that

∆xs ≥ h/∆ps . (2.8)

How well do we need to measure ps? We want to detect whether a particle that arrives at P
came via the left slit or the right one. In order to determine through which slit the electron
passes, we must measure ps to accuracy ∆ps better than p(R)

⊥ − p
(L)
⊥ = |p(R) − p(L)|. From

similarity of triangles, p(R)
⊥ − p

(L1)
⊥ divided by the electron’s longitudinal momentum p‖ is

equal to d/L. The longitudinal momentum p‖, according to de Broglie, is h/λ (assuming p‖
large compared to the transverse momentum). Thus

∆ps <
d

L
(h/λ) . (2.9)


