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Preface

Various aspects of a low-temperature plasma are represented in the form of prob-
lems. Kinetics of this plasma is determined by elementary processes involving
electrons, positive and negative ions, excited atoms, atoms, and molecules in the
ground states. Along with collision processes involving these atomic particles,
radiative processes are of importance for a low-temperature plasma and excited
gas, both elementary radiative processes and transport of radiation through a gas
that includes reabsorption processes. The collective processes, oscillation plasma
properties, and nonlinear plasma processes are represented in the corresponding
problems. Transport of particles in a plasma is of importance for a nonequilib-
rium plasma. A cluster plasma, an aerosol plasma, and other plasma forms with a
dispersive phase are considered in the book. Because all these processes and phe-
nomena are given in a specific form for each plasma, we consider separately two
plasma types, a plasma of the atmosphere together with atmospheric phenomena
due to this plasma and some types of gas-discharge plasma. Appendices contain
information which is useful for the analysis of specific plasma types, and this infor-
mation is represented in the convenient form for the user. The book is intended
for students and professionals in the field of plasma physics, plasma chemistry,
and plasma applications.

Boris M. Smirnov
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1

1
Distributions and Equilibria for Particle Ensembles

1.1
Distributions of Identical Atomic Particles

� Problem 1.1 An ensemble of n weakly interacting identical particles is located in
a close space and does not interact with a surrounding environment. As a result
of interactions, particles can change their state. Find the probability of a certain
distribution of particles by states.

Distributing identical particles over states, if in each state many particles are found,
we account for particles that can change their states, but an average number of
particles in a given state almost conserve, and the better this is fulfilled, the more
the number of particles found in this state on average. Let us distribute n identical
particles over k states assuming that the probability for a test particle to be found in
a given state, as well as the average number of particles in this state, is proportional
to the number of versions which lead to this Gibbs principle.
Let us denote by P(n1 , n2, . . . , ni, . . .) the number of ways to place n1 particles in

the first group of states, n2 particles in the second group of states, ni particles in
the i-th group of states, etc. For determining this probability we use the character
of distributions for the location of a particle in a certain group of states does not
influence the character of distributions for other particles (Boltzmann statistics).
Under these conditions, the probability of locating n1 particles in the first state, n2
particles in the second state, etc. is given by

P(n1 , n2, . . . , ni, . . .) = p(ni)p(n2) · · · p(ni) · · · , (1.1)

where p(ni) is the number of ways to distribute ni particles in the i-th group of
states. Evidently, the number of ways to place n1 particles from the total number
n of particles in the first group of states is

Cn1
n =

n!
(n− n1)!n1 !

.

Correspondingly, the number of ways to place n2 particles from the remaining
n− n1 particles in the second group of states is C

n2
n−n1 . Continuing this operation,
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we determine the probability of the indicated distribution of particles in states,

P(n1 , n2, . . . , ni, . . .) = const
n!

∏
i
ni!

, (1.2)

where
“
const” is a normalization constant. The basis of this formula is the as-

sumption that particles are free, so that the distribution of one particle does not
influence the distribution of others.

� Problem 1.2 Derive the Boltzmann distribution for an ensemble of weakly inter-
acting particles.

The distribution under consideration relates to almost free classical particles when
the number of states in a given state group is large compared to the number of
particles which are found in states of a given group. Then the location of some
particles in states of a given group does not influence the possibility of finding test
particles in these states. Next, this distribution corresponds to conservation of the
total number of particles in all the states,

n = ∑
i
ni, (1.3)

and the total energy E for all the particles,

E = ∑
i

εini, (1.4)

because particle’s energy does not change with an environment. Here εi is the
energy of a particle located in the i-th group of states.
For determining an average ni or the most probable number of particles for a

given i-th group of states, we account for any probable distribution that the variation
of the number of particles in these states from the average value δni = ni − ni is
relatively small. Next, according to formulas (1.3) and (1.4), these variations satisfy
the relation

∑
i

δni = 0 (1.5)

and

∑
i

εiδni = 0. (1.6)

In addition, on the basis of the relation

ln n! = ln
n

∏
m=1

m =≈
n∫
0

ln xdx ,

we have d ln n!/dn = ln n. Using this relation with the expansion of formula (1.2)
over a small parameter δni, we obtain

ln P(n1 , n2, . . . , ni, . . .) = ln P(n1 , n2, . . . , ni, . . .) − ∑
i
ln niδni − ∑

i

δn2i
2ni

. (1.7)
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Since the real distribution is near the maximum, the linear terms with respect to
δni disappear, which corresponds to the relation

∑
i
ln niδni = 0. (1.8)

In order to find the average number of particles in a given group of states, we use
the formal operation of multiplying equation (1.5) by a constant − lnC, equation
(1.6) by the parameter −1/T , and adding these equations to (1.8). The resultant
equation has the form

∑
i

(
ln ni − lnC +

εi
T

)
δni = 0. (1.9)

Since variations δni are random, the expression in the parentheses is zero, which
gives

ni = C exp
(
− εi
T

)
. (1.10)

As a result, we obtain the Boltzmann formula. During its deduction we introduce
two characteristic parameters, C and T . The first one is the normalization constant
that follows from the relation

C∑
i
exp(−εi/T) = n .

The energetic parameter T is the temperature of the system.

� Problem 1.3 Represent the Boltzmann distribution by taking into account the sta-
tistical weight of a particle.

Dividing the states of a particle ensemble in groups, we as above assume equal
number of states for each group. If these are different, we introduce the statistical
weight of the particle state gI as the number of states per particle. For example, if
this particle is a diatomic molecule, and we characterize its state by the rotational
momentum J, the number of its projections gi = 2J + 1 onto the molecular axis is
the statistical weight of a given state. As is seen, the statistical weight is the number
of states per particle of this particle ensemble.
By taking into account the statistical weight for a given state of a particle, the

Boltzmann distribution (1.10) is transformed to the form

ni = Cgi exp
(
− εi
T

)
. (1.11)

From this we have the following relation between the number densities of particles
in two states when an ensemble consists of the infinite number of particles,

Ni = No
gi
go
exp

(
− εi
T

)
, (1.12)

where No, Ni are the number densities of particles in these states, and go, gi are
the statistical weights of these states.
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� Problem 1.4 Find the distribution of molecules over vibrational states considering
vibrations of the molecule like harmonic oscillators.

In this approximation, the energy of excitation εv of the v-th vibrational state is

εv = h̄ω v ,

where h̄ω is the difference of energies for neighboring vibrational states. On the
basis of the Boltzmann formula (1.12) we obtain the number density of molecules
located in the v-th vibrational state,

Nv = N0 exp
(

− h̄ωv
Tv

)
,

where N0 is the number density of molecules in the ground vibrational state, and
Tv is the vibrational temperature. The total number density of molecules is

N =
∞

∑
v=0

Nv = N0

∞

∑
v
exp

(
− h̄ωv

Tv

)
=

N0

1 − exp
(
− h̄ω

Tv

) , (1.13)

which allows us to express the number density of molecules in a given vibrational
state, Nv, through the total number density N of molecules,

Nv = N exp(− h̄ωv
Tv

)
[
1 − exp(− h̄ω

Tv
)
]
. (1.14)

From this one can find the average vibrational excitation energy εvib

εvib = h̄ωv =
1
N

∞

∑
v=0

v Nv =
h̄ω

exp( h̄ω
Tv

) − 1
. (1.15)

� Problem 1.5 Find the distribution of diatomic molecules over rotational states.

The energy of excitation of a rotational state with a rotational momentum J is

εJ = BJ(J + 1) ,

where B is the rotational constant. The statistical weight of the state with a momen-
tum J, which is the number of momentum projections onto a given axis, equals
gJ = 2J + 1. On the basis of this and the Boltzmann formula (1.12), we obtain the
number density of molecules with a given rotational momentum and vibrational
state,

NvJ = Nv (2J + 1)
B
T

exp
[
−BJ(J + 1)

T

]
, (1.16)

where we assume B � T , as it is usually, and Nv is the total number density of
molecules in a given vibrational state. From this one can also find the average
rotational energy of molecules,

εrot = BJ(J + 1) = T . (1.17)
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In this analysis we account for that typical vibrational energies exceed significantly
typical rotational energies, which allows us to separate vibrational and rotational
degrees of freedom.We also note that we assume a diatomicmolecule to be consist-
ing of other isotopes. Otherwise, because of the molecule symmetry, only certain
values of the rotation momentum can be realized.

� Problem 1.6 Determine the statistical weight for a free particle.

Let us place an ensemble of free particles in a rectangular box with the edge size L,
so that particles are reflected from the box’s walls and cannot penetrate outside wall
boundaries. Each particle is free and moves freely inside the box. Hence the wave
function of a particle moving inside the box in the axis x direction can be composed
of two waves, exp(ipxx/h̄) and exp(−ipxx/h̄), propagated in opposite directions,
where px is the particle momentum. Placing the origin at lower-left corner of the
box cube and requiring the wave function to be zero at cube facets, we obtain from
the first boundary condition ψ(0) = 0 for the particle wave function ψ,

ψ = sin
pxx
h̄

.

The second boundary condition ψ(L) = 0 leads to quantization of the particle mo-
mentum

pxL
h̄

= πk ,

where k is an integer. This relation gives the prohibited values of the particle mo-
mentum if it is moving in a rectangular box of size L.
This gives the number of states for a particle with a momentum in the range

from px to px + dpx , which is equal to dg = Ldpx/(2π h̄), where we take into account
two directions of the particle momentum. Introducing a coordinate range to be dx,
we find the number of states for a free particle to be

dg =
dpxdx
2π h̄

. (1.18)

Generalization of this formula to the three-dimensional case leads to the following
number of states for a free particle:

dg =
dpxdx
2π h̄

dpydy
2π h̄

dpzdz
2π h̄

=
dpdr

(2π h̄)3
, (1.19)

where the quantity dpdr is an element of the phase space, and the notation is
used for three-dimensional elements of space dr = dxdydz and momentum dp =
dpxdpydpz. Formula (1.19) gives the statistical weight of the continuous spectrum–
the number of states per element of the phase space.

� Problem 1.7 Find the velocity distribution function for free particles–the Maxwell
distribution.
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We now use the Boltzmann formula (1.11) for the distribution of kinetic energies
of free particles. In the one-dimensional case the kinetic energy of a particle whose
velocity is vx equals εi = mv2x/2, and the statistical weight of states when the particle
velocity ranges from vx to vx + dvx is proportional to dvx . Then formula (1.11) gives
for the number of particles whose velocities are found in the range vx to vx + dvx

f (vx)dvx = C exp
(

−mv2x
2T

)
dvx , (1.20)

where C is the normalization factor. This is the Maxwell distribution for the one-
dimensional case.
Transferring to the three-dimensional case by taking into account the indepen-

dence of different directions of motion, we obtain

f (v)dv = C exp
(

−mv2

2T

)
dv. (1.21)

Here the vector v has components vx , vy, vz, and dv = dvxdvydvz. The kinetic
energy of a particle, mv2/2, is the sum of the particle kinetic energies for all the
directions of motion. Thus, the independence of different directions of particle
motion results in the isotropy of the distribution function.
Let us rewrite the Maxwell distribution for the number density of particles of

a given velocity, normalizing this distribution to the total number density N of
particles. Then formula (1.21) gives

f (v) = N
( m
2πT

)3/2
exp

(
−mv2

2T

)
. (1.22)

It is convenient to rewrite the Maxwell distribution function (1.22) through one-
dimensional distribution functions

f (v) = Nϕ(vx) ϕ(vy) ϕ(vz), (1.23)

where the functions ϕ(vi) are normalized to 1 and has the form

ϕ(vx) =
√

m
2πT

exp
(

−mv2x
2T

) ∞∫
−∞

ϕ(vx)dvx = 1. (1.24)

Figure 1.1 gives this dependence.

� Problem 1.8 On the basis of the Maxwell distribution connect an average kinetic
energy of a free particle with the temperature.

We introduce above the energetic parameter of the Boltzmann distribution func-
tion, T , which is the temperature of a given ensemble of particles and the temper-
ature is expressed in energetic units. Below we find the average kinetic energy for
an ensemble of free particles, and then the temperature of the particle ensemble
will be expressed in terms of the average particle energy.
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Fig. 1.1 The Maxwell distribution function f (vx ) as a function of the
reduced velocity x = vx

√
m/(2T), where vx is the particle velocity in a

given direction, m is the particle mass, T is the temperature.

Indeed, the average kinetic energy of free particles in a direction x is according
to its definition

mv2x
2

=

∞∫
−∞

mv2x
2 exp

(
−mv2x

2T

)
dvx

∞∫
−∞

exp
(
−mv2x

2T

)
dvx

= −
d ln

∞∫
−∞

exp
(
−mv2x

2T

)
dvx

d(−1/T)

= −d ln (aT 1/2)
d(−1/T)

=
T
2
, (1.25)

where the bar means an average over particle velocities, and the constant a does
not depend on the temperature. Thus, the particle kinetic energy per unit degree
of freedom is equal to T/2.
Transferring to the three-dimensional case, we take into account the isotropy of

particle motion, and the total kinetic energy of a particle is given by

mv2

2
=
mv2x
2

+
mv2y
2

+
mv2z
2

=
3 mv2x
2

=
3T
2
. (1.26)

Thus, the average particle kinetic energy in the three-dimensional space ismv2/2 =
3T/2. Formulas (1.25) and (1.26) may be used as the temperature definition.

� Problem 1.9 Find the energy distribution function for free particles.

Our task is to rewrite the distribution function (1.22) in the energy space ε = mv2/2,
where we denote it by f (ε). This distribution function is normalized according to
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the condition
∞∫
0

f (ε)ε1/2dε = N, (1.27)

where N is the number density of particles. In these terms the distribution function
(1.22) takes the form

f (ε) =
2 N√
πT3/2

exp
(
− ε

T

)
(1.28)

and is represented in Fig. 1.2.

Fig. 1.2 The Maxwell distribution function f (ε) as a function of the
reduced particle energy (ε is the particle energy).

� Problem 1.10 Show that the distribution function for two free particles can be
expressed through the distribution function of their relative motion and the center-
of-mass motion.

If the particles under consideration belong to two different groups, we have the
product of their distribution functions

f (v1) f (v2)dv1dv2 ,

where v1 , v2 are the velocities of the corresponding particles, f (v1) f (v2) are their
distribution functions, and dv1 , dv2 are the elements in the velocity space. Let us
introduce the relative velocity g of the particles and the velocity V of their center
of mass according to the relations

g = v1 − v2 , V =
m1v1 +m2v2
m1 +m2

,
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where m1 , m2 are the masses of these particles. One can see from these formulas
that

dv1dv2 = dgdV .

Next, the total kinetic energy of the particles is

m1

2
v21 +

m2

2
v22 =

µg2

2
+
M
2
V2 ,

where the reduced mass of the two particles is µ = m1m2/(m1 +m2), and their total
mass is M = m1 +m2. From this we obtain for the Maxwell distribution function
f (v), which is given by formula (1.21),

f (v1) f (v2)dv1dv2 = f (g) f (V )dgdV , (1.29)

and the relative particle motion is characterized by the reduced mass, whereas the
motion of the center of mass is connected with the total particle mass.

1.2
Statistics of Bose–Einstein and Fermi–Dirac

� Problem 1.11 Find the distribution function over states for an ensemble of parti-
cles in the case of the Bose–Einstein statistics if any number of particles can be
located in one state.

The Bose–Einstein statistics relates to an ensemble of identical particles with a
whole spin and permits us to find in the same state two and more particles. We
take for this case the probability (1.11), wi, of the location of a particle in a given
state i reducing this formula to one state of this group

wi = exp
(

µ − εi
T

)
. (1.30)

We introduce here the chemical potential µ, which is determined by the nor-
malization of the distribution function and therefore is expressed through the
normalization constant of formula (1.11) as C = exp(µ/T).
From this we find, for example, that the probability of the location of m particles

in a given state is wm
i , and therefore the average number of particles in this state

is given by

ni =
∞

∑
m=1

mwm
i =

wi

1 − wi
=

1

exp
(

εi−µ
T

)
− 1

. (1.31)

One can derive the Bose–Einstein distribution function (1.31) in the other manner
by placing particles over states, as was used for deduction of the Boltzmann distri-
bution (1.11). Indeed, let us find the probability of placing ni particles in gi states
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when the position of one particle does not depend on the positions of others. To
this end we take ni particles and gi states as elements of the same set and construct
sequences from these elements such that the first place is occupied by a state, and
other elements are arranged in a random order. Then we assume the number of
particles which are found after the corresponding state and before the next ones
which belong to this state, and this is the method of placing particles over states.
Then the number of ways to obtain different distributions of particles over states is
equal to (gi + ni − 1)!, and among them some are identical which can be obtained
by permutation of states or particles. Hence, the total number of ways to distribute
particles over states for the Bose–Einstein statistics is

p(ni) =
(ni + gi − 1)!
ni!(gi − 1)!

. (1.32)

The optimal number of particles ni in a given state corresponds to the maximum of
the function p(ni) or ln p(ni). Hence from the condition that the derivative d ln p(ni)

dni
is zero at ni = ni in the limit gi � 1, ni � 1 we obtain formula (1.31) for the average
number of particles in one state ni/gi.

� Problem 1.12 Find the distribution function over states for an ensemble of parti-
cles in the case of the Fermi–Dirac statistics if only one particle can be located in
one state.

The Fermi–Dirac statistics relates to particles with half-integer spin and does not
permit two particles to be located in the same state. In order to find the distribution
function of particles in this case, we place ni particles over gi states with the same
energy εi (ni � gi). It can be done by p(ni) ways, and the number of such ways is

p(ni) = Cni
gi =

gi!
ni!(gi − ni)!

, ni ≤ gi. (1.33)

The optimal number of distributions follows from the condition

d ln p(ni)
dni

= ln
ni

gi − ni
= 0, (1.34)

where we consider the limiting case gi � 1, ni � 1. Introducing the optimal num-
ber of particles in one state

ni =
ni
gi
,

we obtain the average number of particles in one state for the Fermi–Dirac distri-
bution

ni =
1

exp
(

εi−µ
T

)
+ 1

. (1.35)



1.2 Statistics of Bose–Einstein and Fermi–Dirac 11

� Problem 1.13 Find the condition for the transition from the Bose–Einstein and
Fermi–Dirac distributions to the Boltzmann distribution.

In the case of the Boltzmann distribution the probability of finding particles’ loca-
tion in each state is small. This holds true if

ε − µ � T . (1.36)

Using this criterion in formulas (1.32) and (1.35) for the Bose–Einstein and Fermi-
Dirac distributions, we transfer them to the Boltzmann distribution

ni = exp
(

µ − εi
T

)
. (1.37)

This coincides with the Boltzmann distribution (1.10).

� Problem 1.14 Obtain the electron distribution over momenta in a dense electron
gas at low temperature (a degenerate electron gas).

The distribution for a dense cold electron gas is governed by the Pauli principle
according to which two electrons cannot be located in one state. We determine
below the distribution of electrons over momenta p at zero temperature when
formula (1.35) in a space of electron momenta takes the form

f (p) = fo η(p− pF) .

This formula means that all electron states are occupied until p ≤ pF, where pF
is the Fermi momentum. Correspondingly, the maximum electron energy, Fermi
energy εF, is equal to

εF =
p2F
2me

.

This electron distribution corresponds to the location of electrons inside a ball that
is restricted by the Fermi sphere. One can connect the parameters pF and εF of
this distribution with the electron density Ne. Indeed, the number of electrons in
an element of the phase space is given by

n = 2
∫

p≤pF

dpdr
(2π h̄)3

,

where the factor 2 accounts for two directions of the electron spin, and dp and dr
are elements of the electron momentum and volume. Taking the electron number
density as Ne = n/

∫
dr, we obtain the relation between the electron number density

and the maximum electron momentum and maximum electron energy,

pF = (3π2 h̄3Ne)1/3, εF =
p2F
2me

=
(3π2Ne)2/3 h̄2

2me
. (1.38)

Note that the chemical potential of electrons in the Fermi–Dirac formula (1.35) for
this distribution is

µ = εF .
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� Problem 1.15 Determine the total energy per unit volume of a degenerate electron
gas at low temperatures.

At zero temperature the total energy per unit volume of a degenerate electron gas
is equal to

Eo =

εF∫
0

ε · 2dp
(2π h̄)3

=
2
√
2

5π2
m3/2
e ε

5/2
F

h̄3
. (1.39)

At low temperatures the distribution of a degenerate electron gas is determined by
the Fermi–Dirac formula (1.35) and is characterized by a small parameter

η =
T
εF
. (1.40)

We find below the next term of formula (1.39) for the expansion of the total electron
energy over the small parameter above.
We consider a general formula for the electron energy per unit volume that at

low temperatures has the form

E =
∞∫
0

ε · 2dp
(2π h̄)3

1

exp
(

ε−µ
T

)
+ 1

, (1.41)

where we use formula (1.35) for the electron distribution with the chemical poten-
tial µ = εF, which corresponds to zero temperature, and the energy of an individual
electron is ε = p2/(2me). Note that under the condition T � εF = µ the integral

E − Eo =
m3/2
e

√
2

π2 h̄3


 ∞∫

0

ε3/2dε
1

exp
(

ε−µ
T

)
+ 1

−
εF∫
0

ε3/2dε


 (1.42)

converges near ε = εF. Introducing a new variable x = (ε − µ)/T , we transform this
expression to the form

E − Eo =

m3/2
e

√
2T5/2

π2 h̄3


 ∞∫

0

(
x +

µ

T

)3/2
dx

1
1 + exp x

−
0∫

−µ/T

(
x +

µ

T

)3/2
dx

exp x
1 + exp x


 .

Changing the variable in the second integral x → −x and the lower limit of inte-
gration −µ/T by −∞, we obtain the expansion over a small parameter T/εF,

E − Eo =
m3/2
e

√
2T5/2

π2 h̄3

∞∫
0

dx
1 + exp x

[( µ

T
+ x

)3/2 −
( µ

T
− x

)3/2]

=
3m3/2

e
√
2T2

√
µ

π2 h̄3

∞∫
0

xdx
1 + exp x

=
m3/2
e T2

√
µ√

2h̄3
,
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and the expansion of the total electron energy over a small parameter η = T
εF
takes

the form

E = Eo

(
1 +

5π2

4
T2

ε2F

)
. (1.43)

In particular, this gives the heat capacity of a degenerate electron gas per unit
volume,

C =
dE
dT

=
5π2

2
T
ε2F
Eo =

m3/2
e T

√
2εF

h̄3
. (1.44)

1.3
Distribution of Particle Density in External Fields

� Problem 1.16 Derive the barometric formula for the distribution of particles in
the gravitation field of the Earth.

Let us use the Boltzmann formula (1.12) and use the particle potential energyU in
an external field as the particle energy εi in this formula. For particles located in
the gravitational field of the Earth we have U = mgh, where m is the particle mass,
g is the free fall acceleration and h is the altitude above the Earth surface. Hence
the Boltzmann formula (1.12) takes the form

N(h) = N(0) exp
(

−mgh
T

)
, (1.45)

where N(z) is the molecule number density at an altitude z. This is the barometric
formula.
From this formula it follows that a typical altitude where the number density

of particles varies noticeably is ∼ (mg)−1 . In particular, for air molecule we have
mg = 0.11 km−1 , which tells us that a significant drop of the atmospheric pressure
proceeds at altitudes of several kilometers.

� Problem 1.17 Find the relation between the drift velocity of particles in a gas in a
weak external field and the diffusion coefficient of particles in a gas.

If a weak external field acts on particles located in a gas, it causes a flux j of these
particles that is proportional to the number density N of these particles and a force
F that acts on an individual particle. So, we have

j = Nw = NbF, (1.46)

wherew is the drift velocity of a particle, which is the definition of the mobility b for
a neutral particle. For a charged particle in a gas the following mobility definition
is used:

w = KE, (1.47)
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where E is the electric field strength and K is the mobility of a charged particle in
a gas.
If the distribution of admixture particles in a gas is nonuniform, the diffusion

flux jdif arises,

jdif = −D∇N , (1.48)

which tends to remove the gradient. Here D is the diffusion coefficient for test par-
ticles in a gas. When a gas is located in an external field that acts on its particles,
a nonuniform distribution of particles occurs. But since it is a stationary distribu-
tion, the flux due to the external field is compensated by the diffusion flux, and we
have

j = NbF −D∇N = 0 .

Since the test particles are found in thermodynamic equilibriumwith the gas, the
distribution for the number density of the test particles is given by the Boltzmann
formula N = No exp(−U/T), whereU is the potential due to the external field, and
T is the temperature of the gas. Using it in the above equation and accounting for
the force acting on the test particle is F = −∇U, we find from the last equation

b =
D
T
. (1.49)

This expression is known as the Einstein relation. It is valid for small fields that do
not disturb the thermodynamic equilibrium between the test and gaseous particles.
For the mobility of a charged particle K in a gas this gives

K =
eD
T

. (1.50)

� Problem 1.18 Find the character of distributions of positively charged particles
located in a weakly ionized gas.

The electric potential of a particle of charge e in vacuum is

ϕ =
e
r
. (1.51)

However, if this particle is surrounded by charge particles of a quasineutral plasma,
this field is screened since negatively charged particles are attracted to a test particle
and positively charged particles are repulsed from it. In order to ascertain the result
of this interaction, we analyze the Poisson equation for the field of a positively
charged test particle that has the form

∆ϕ = 4πe(Ne − Ni) ,

where we consider a plasma to be consisted of electrons and ions of a charge e, and
their number densities are denoted as Ne and Ni, respectively. The distributions of
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electrons and ions near a test particle are determined by the Boltzmann formula
(1.12) and are given by

N− = No exp
( eϕ
T

)
, N+ = No exp

(
− eϕ

T

)
, (1.52)

where No is the average number density of electrons and ions in the plasma (its
average charge equals zero), and T is the temperature of electrons and ions. Sub-
stituting this in the Poisson equation, reduce it to the form

∆ϕ = 8πeNo sinh
( eϕ
T

)
. (1.53)

This equation is valid at distances from a test particle where electrons and ions
are located, i. e., at distances larger than N−1/3

o , while at small distances from a
test particle, where the pressure of electrons and ions is negligible on average, the
right-hand side of the Poisson equation is zero, and the electric potential of a test
particle is given by formula (1.51).
Because of the problem symmetry, the particle electric potential is spherically

symmetric on average, which gives at large distances where eϕ � T

1
r
d2

dr2
(rϕ) =

8πNoe2

T
ϕ. (1.54)

We consider the case when the solution of this equation is substituted into (1.51)
at small distances r from a test particle. Then this solution has the form

ϕ =
e
r
exp

(
− r
rD

)
, rD =

√
T

8πNoe2
. (1.55)

The value rD is the Debye–Hückel radius that characterizes the character of screen-
ing of electric fields in the plasma. The solution obtained is valid if the Debye–
Hückel radius for this plasma is large compared to an average distance between
the charged particles of the plasma, N−1/3

o , which corresponds to the criterion

e2N 1/3
o

T
� 1. (1.56)

If this criterion holds true, many electrons and ions take part in the shielding
process that corresponds to the physical nature of this phenomenon. A plasma
that satisfies to the criterion (1.56) is the ideal plasma. In this plasma a typical en-
ergy of the interaction of charged particles or the interaction energy of two charged
particles at an average distance between charged particles, e2N 1/3

o , is small com-
pared to a typical thermal energy of particles (∼ T). This criterion tells that the
main part of time charged particles of the plasma is free. The same criterion is
fulfilled for neutral atomic particles of a gas.
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� Problem 1.19 Obtain the expression for the Debye–Hückel radius rD if the electron
Te and ion Ti temperatures are different.

In this case formula (1.52) for number densities of electrons and ions has the form

N− = No exp
(
eϕ
Te

)
, N+ = No exp

(
− eϕ
Ti

)
.

Repeating the steps of the previous problem, we finally obtain formula (1.55) for
the potential of a positively charged test particle, but the expression for the Debye–
Hückel radius now takes the form

rD =

√√√√(
1
Te
+ 1

Ti

)−1

4πNoe2
. (1.57)

� Problem 1.20 A dense plasma propagates in a buffer gas and conserves its qua-
sineutrality, i. e., electrons as more mobile particles come off the ions and create
in this way a field that breaks electrons and accelerates ions. As a result, electrons
and ions propagate in a buffer gas together and a plasma almost conserves its
quasineutrality. Find the diffusion coefficient for this plasma in a buffer gas.

One more general plasma property relates to the character of its propagation in
a neutral gas. Electrons as light particles move faster in a gas than ions, which
violates the plasma quasineutrality, and electric fields are generated. Only these
fields make the plasma almost quasineutral. As a result, the plasma propagates in
a buffer gas as a whole, and we consider below such a process.
In the regime under consideration, when electrons and ions propagate in a buffer

gas and the mean free paths of electrons and ions in the gas are relatively small,
we have the following expressions for the electron flux je and the ion flux ji,

je = −De∇Ne −KeENe ; ji = −Di∇Ni +KiENi .

Here Ne, Ni are the number densities of electrons and ions, respectively, De, Di

are their diffusion coefficients, and Ke, Ki are their mobilities. Because the electric
field acts on electrons and ions in opposite directions, the field enters into the flux
expressions with different signs. The electric field strength E satisfies the Poisson
equation

div E = 4πe(Ni − Ne) .

In the case of propagation of a dense plasma, the plasma converges to quasineu-
trality during evolution, i. e., the charge difference is small ∆N = |Ni − Ne| � Ne,
which gives Ne ≈ Ni ≈ N. Hence the plasma motion is self-consistent, and we
have je ≈ ji. Next, because of the higher mobility of electrons, the electron flux
is zero je = 0 on the scale of electron quantities. This means De∇Ne � ji and
eEKeNe � ji, so that in terms of the magnitudes of electron parameters we have
je = 0. This gives for the electric field strength that arises due to plasma motion as
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a single whole,

E = − De

eKe

∇N
N

.

From this we have for the flux of charged particles

j = ji = −
(
Di +De

Ki
Ke

)
∇N = −Da∇N .

In this way we define Da, the coefficient of ambipolar diffusion. Thus the plasma
evolution has a diffusive character with a self-consistent diffusion coefficient. In
particular, when electrons and ions are found in thermodynamic equilibrium that
allows us to define the electron Te and ion Ti temperatures for each subsystem on
the basis of the Einstein relation (1.50), we have for the diffusion coefficient of a
collective plasma motion

Da = Di

(
1 +

Te
Ti

)
. (1.58)

One can see that in the regime under consideration a plasma propagates in a buffer
gas with the speed of the ions rather than that of the electrons.
In this regime of plasma motion, the plasma remains almost quasineutral, so

the relation ∆N = |Ni − Ne| � N holds true. Then the Poisson equation gives
∆N ∼ E/(4πeL), where L is a typical plasma dimension. The above equation for
the electric field strength that follows from je = 0 together with the Einstein relation
(1.50) gives E ∼ T/(e2L), where for simplicity we assume the electron and ion
temperatures to be equal. From this we have ∆N ∼ Nr2D/L

2. Thus the criterion of
the regime of ambipolar diffusion corresponds to the plasma criterion L � rD.

� Problem 1.21 Find the distribution function over the potential energies for ions
in a quasineutral ideal plasma.

In considering a quasineutral ideal plasma, we assume that neutral atomic particles
(atoms or molecules) whose number density exceeds that of electrons and ions
provide the stability of this plasma. But because they do not influence the electric
properties of such a plasma, they will not be considered below.
An electric potential of this plasma is determined by charged particles, and ac-

cording to formula (1.55) the average potential energy for a test ion with other
electrons and ions is equal to

U = eϕ =
∞∫
0

e2

r
exp

(
− r
rD

) [
No exp

(
− eϕ

T

)
− No exp

( eϕ
T

)]
4πr2dr

=
e2

4rD
, eϕ � T . (1.59)

As is seen, for an ideal plasma that submits to the criterion (1.56) the average
potential energy of ions or electrons is small compared to its thermal kinetic energy

U � T .
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In addition, this average potential energy is identical for positively charged ions
and electrons.
In the same manner we have for the mean square of the potential energy for an

ion or electron

U2 =
∞∫
0

e4

r2
exp

(
− 2r
rD

) [
No exp

(
− eϕ

T

)
+ No exp

( eϕ
T

)]
4πr2dr

= 4πNoe4rD =
T
2
e2

rD
, eϕ � T . (1.60)

One can see that this value is small compared to the square of the thermal energy,

U2

T2
∼ e2

rDT
� 1 ,

for an ideal plasma, but is large compared to the square of the average potential
energy,

U2(
U

)2 = 16πNor3D � 1 .

The last relation allows us to neglect the divergence of the average ion potential
energy from zero, and the distribution function over ion potential energies has the
form of the Gauss distribution

f (U)dU =
1√

2π∆U2
exp

[
− U2

2∆U2

]
,

where ∆U =
√
U2/2 is the fluctuation of the ion potential energy.

Substituting in this formula the average square of the ion potential energy (1.60),
we find the distribution over ion potential energies,

f (U)dU =
1√

2π∆U2
exp

(
− U2

2∆U2

)
=

dU

2πe2
√
2NorD

exp
(

− U2

8πNoe4

)
. (1.61)

This value f (U)dU is the probability that the potential energy for a test ion and an
electron located inside a plasma ranges from U up to U + dU.

1.4
Laws of Black Body Radiation

� Problem 1.22 Determine the distribution of thermal photons over frequencies.

Let us consider thermal or black body radiation that is characterized by a tempera-
ture T . Such a radiation is located inside a vessel with the wall temperature T , and
an equilibrium for photons of different frequencies there results from absorption
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and radiation of the walls. The number of photons is not fixed, and the relative
probability that n photons of an energy h̄ω are found in a given state according
to the Boltzmann formula (1.11) is equal to exp(−nh̄ω/T). This gives the average
number of photons nω in this state,

nω =
∑
n
n exp(− h̄ωn

T )

∑
n
exp(− h̄ωn

T )
=

1
exp(h̄ω/T) − 1

. (1.62)

This is the Planck formula. As is seen, it corresponds to the Bose–Einstein distribu-
tion (1.31) with zero chemical potential. Thus, black body radiation as an ensemble
of photons is characterized by zero chemical potential.

� Problem 1.23 Determine the spectral density of black body radiation, i. e., the
energy of this radiation per unit time, unit volume, and unit frequency.

On the basis of the definition of the spectral density of radiation, the radiation
energy per unit time and unit volume with a range of frequencies from ω up to
ω + dω is ΩUωdω. On the other hand, on the basis of the statistical weight of
continuous spectrum (1.19), one can represent this value as 2h̄ωnωΩdk/(2π)3,
where k is the photon wave number, dk/(2π)3 is the number of states per unit
volume and for a given element of the wave numbers, the factor 2 accounts for two
polarizations of an electromagnetic wave, and nω is the number of photons located
in one state. We take into account that the electromagnetic wave is the transversal
one, i. e., its electric field strength E is directed perpendicular to the propagation
direction that is determined by the vector k. On the basis of the dispersion relation
for photons ω = ck between the photon frequency ω and its wave number k (c is
the light velocity), we obtain the Planck radiation formula

Uω =
h̄ω3

π2c3
nω. (1.63)

On the basis of formula (1.62) one can rewrite formula (1.63) in the form

Uω =
h̄ω3

π2c3 [exp(h̄ω/T) − 1]
. (1.64)

Let us consider the limiting case of this formula. In the case of small frequencies
h̄ω � T this formula is converted into the Rayleigh–Jeans formula

Uω =
ω2T
π2c3

, h̄ω � T . (1.65)

Because this formula corresponds to the classical limit, it does not contain the
Planck constant.
In the other limiting case of high frequencies h̄ω � T , the above formula is

transformed to the Wien formula

Uω =
h̄ω3

π2c3
exp

(
− h̄ω

T

)
. (1.66)


