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Preface

This is the third volume in a series of graduate level texts on statistical mecha-
nics. Volume 1, Equilibrium Statistical Mechanics (ESM), is a first year graduate
text treating the fundamentals of statistical mechanics. Volume 2, Fluctuations,
Order and Defects (FOD), treats ordering, phase transitions, broken symme-
try, long-range spatial correlations and topological defects. This includes the
development of modern renormalization group methods for treating critical
phenomena. The mathematical level of both texts is typically at the level of
mean-field theory.

In this third volume, Nonequilibrium Statistical Mechanics (NESM), I treat
nonequilibrium phenomena. The book is divided into three main sections. The
first, Chapters 1–4, discusses the connection, via linear response theory, bet-
ween experiment and theory in systems near equilibrium. Thus I develop the
interpretation of scattering and transport experiments in terms of equilibrium-
averaged time-correlation functions. The second part of the book, Chapters 5–
8, develops the ideas of linear hydrodynamics and the generalized Langevin
equation approach. This is also known as the memory-function method. The
theory is applied, in detail, to spin diffusion and normal fluids. In these ap-
plications the Green–Kubo equations connecting transport coefficients and
time integrals over current–current time-correlation functions are established.
It is then demonstrated that this memory-function approach is very useful
beyond the hydrodynamic regime. It is shown in Chapter 7 how these ideas
can be used to develop modern kinetic theory. In Chapter 8 the generalized
Langevin equation approach is used to develop the conventional theory of
dynamic critical phenomena and linearized hydrodynamics in systems with
broken continuous symmetry and traveling Nambu–Goldstone modes.

The third part of the book is devoted to nonlinear processes. In Chapter 9
the generalized Langevin approach is used to derive the generalized Fokker–
Planck equation governing the dynamics of the reduced probability distribu-
tion for a set of slow variables. These dynamic equations lead to the nonlinear
Langevin equations that serve as the basis for the theory of dynamic critical
phenomena and the theory of the kinetics of first-order phase transitions.



XII Preface

Analytic methods of treatment of these nonlinear equations are discussed in
Chapters 9–11. In particular the methods of Ma and Mazenko for carrying
out the dynamic renormalization group are introduced in Chapter 10 in the
important cases of the relaxational time-dependent Ginzburg–Landau (TDGL)
model and the case of the isotropic ferromagnet. In Chapter 11 we discuss the
strongly nonequilibrium behavior associated with phase-ordering systems.

This text is compatible with one of the central themes in FOD. In FOD
we developed the idea of coarse-grained effective Hamiltonians governing
the long-distance equilibrium correlations for a variety of systems: magnets,
superfluids, superconductors, liquid crystals, etc. Here I indicate how one
generates a coarse-grained dynamics consistent with these effective Hamil-
tonians.

The methods of attack on the nonlinear models discussed in Chapters 9
and 10 are very useful for treating systems at the lowest order in perturbation
theory. There exist less physical and mathematically more powerful methods
for handling higher order calculations. These methods will be discussed in the
final volume of this series.

I thank my sister Debbie for crucial help and my wife Judy for her support.

Gene Mazenko
Chicago, July 2006
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ESM Equilibrium Statistical Mechanics (Volume 1)
FOD Fluctuations, Order and Defects (Volume 2)
FTMCM Field Theory Methods in Condensed Matter Physics

(Volume 4)
FDT Fluctuation-dissipation theorem
GCE Grand canonical ensemble
LGW Landau–Ginzburg–Wilson
NCOP Nonconserved order parameter
NG Nambu–Goldstone
RG Renormalization group
TDGL Time-dependent Ginzburg–Landau
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1

1
Systems Out of Equilibrium

1.1
Problems of Interest

The field of nonequilibrium statistical mechanics is wide and far- reaching.
Using the broadest interpretation it includes the dynamics of all macroscopic
systems. This definition is far too inclusive for our purposes here, and cer-
tainly beyond what is generally understood. Rather than discussing matters
in abstract generality, let us introduce some examples of nonequilibrium phe-
nomena of interest:

• A very familiar example of time-dependent phenomena is the propaga-
tion of sound through air from the speaker’s mouth to the listener’s ears.
If the intensity of the sound is not too great, then the velocity of sound
and its attenuation are properties of the medium propagating the sound.
This is a very important point since it says that sound has significance in-
dependent of the mouth and ears generating and receiving it. A question
of interest to us is: how can we relate the sound speed and attenuation
to the microscopic properties of the air propagating the sound?

• Next, consider a thermally insulated bar of some homogeneous material
at a temperature T0. (See Fig. 1.1). We bring one end of this bar into
contact at time t0 with a heat bath at a temperature T1 > T0. For times t >

Fig. 1.1 Thermal conductivity experiment. See text for discussion.
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a) b)
Fig. 1.2 Configurations for a set of paramagnetic spins. a Zero external
magnetic field. b Subject to an external magnetic field along the
direction shown.

t0 heat will flow toward the cold end of the bar and eventually the bar
will equilibrate at the new temperature T1. We know from elementary
courses in partial differential equations that this heat flow process is
governed by Fourier’s law [1] , which tells us that the heat current J
is proportional to the gradient of the temperature:

J = −λ�∇T (1)

with the thermal conductivity λ being the proportionality constant. Com-
bining this constitutive relation with the continuity equation reflecting
conservation of energy leads to a description (see Problem 1.1) in terms
of the heat equation. The thermal conductivity is a property of the type
of bar used in the experiment. A key question for us is: How does one
determine the thermal conductivity for a material? From a theoretical
point of view this requires a careful analysis establishing Fourier’s law.

• A paramagnet is a magnetic system with no net magnetization in zero
applied external field. In Fig. 1.2a we represent the paramagnet as a set
of moments (or spins) �μ(R) localized on a periodic lattice at sites R. At
high enough temperatures, in zero externally applied magnetic field,
the system is in a disordered state where the average magnetization
vanishes,

〈M〉 =

〈
∑
R

�μ(R)

〉
= 0 , (2)
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due to symmetry. Each magnetic moment is equally likely to point in any
direction. If one applies an external magnetic field B to a paramagnet the
magnetic moments, on average, line up along the field:

M ≈ B . (3)

As shown in Fig. 1.2b, the spins deviate in detail from the up orientati-
on along B because of thermal fluctuations (for nonzero temperatures).
When we turn off B at time t0, the spins relax to the original disordered
equilibrium state, where 〈M〉 = 0, via thermal agitation. How can we
quantitatively describe this relaxation process? As we discuss in Chap-
ter 5, this process is analogous to heat diffusion.

• Suppose we fill a bowl with water and put it in a freezer. Clearly, over
time, the water freezes. How do we describe the time evolution of this
process? What does this process depend upon? In this case we have
a dynamic process that connects thermodynamic states across a phase
(liquid–solid) boundary.

The common elements in these situations is that we have externally distur-
bed the system by:

1. Mechanically pushing the air out of ones mouth;

2. Putting heat into a bar;

3. Turning off a magnetic field;

4. Drawing heat out of a system.

For the most part in this text we will focus on situations, such as examples
1–3, which can be understood in terms of the intrinsic dynamical properties
of the condensed-matter system probed and do not depend in an essential
way on how the system is probed. Such processes are part of a very important
class of experiments that do not strongly disturb the thermodynamic state of
the system. Thus, when one talks in a room one does not expect to change
the temperature and pressure in the room. We expect the sound velocity and
attenuation to depend on the well-defined thermodynamic state of the room.

In cases 1–3 we have applied an external force that has shifted the system
from thermal equilibrium. If we remove the applied external force the system
will return to the original equilibrium state. These intrinsic properties, which
are connected to the return to equilibrium, turn out to be independent of the
probe causing the nonequilibrium disturbance. Thus the speed of sound and
its attenuation in air, the thermal conductivity of a bar and the paramagnetic
relaxation rates are all properties of the underlying many-body systems.

We need to distinguish weak, linear or intrinsic response of a system from
strong or nonlinear response of a system. Linear response, as we shall discuss
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Fig. 1.3 Schematic of the type of dynamic processes studied in terms
of movement on a generic phase diagram.

in detail, corresponds to those situations where a system remains near thermal
equilibrium during the time-dependent process. In strongly nonlinear proces-
ses one applies strong forces to a system that fundamentally change the state
of the system. The freezing of the bowl of water falls into this second category.
Other nonlinear processes include:

• Nucleation where we rapidly flip the applied magnetic field such that a
system becomes metastable. The system wants to follow but has a barrier
to climb.

• Spinodal decomposition, where we quench the temperature of a fluid
across a phase boundary into an unstable portion of the phase diagram.

• Material deposition where one builds [2] up a film layer by layer.

• Turbulence where we continuously drive a fluid by stirring.

In these examples an understanding of the dynamics depends critically on
how, how hard and when we hit a system.

In organizing dynamical processes we can think of two classes of processes.
The first set, which will be the primary concern in this text, are processes that
connect points on the equilibrium phase diagram. The second set of proces-
ses involves driven systems that are sustained in intrinsically nonequilibri-
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um states. The first set of processes can be roughly summarized as shown in
Fig. 1.3 where five basic situations are shown:

1. intrinsic fluctuations in equilibrium;

2. linear response (perturbations that change the state of the system infini-
tesimally;

3. nonlinear hydrodynamics – substantial jumps in the phase diagram wi-
thin a thermodynamic phase;

4. critical dynamics – dynamic processes near the critical point.

5. kinetics of first-order phase transitions – jumps across phase boundaries.

It is shown in Chapter 2 that processes in categories 1 and 2 are related by
the fluctuation-dissipation theorem. Nonlinear hydrodynamics is developed
and explored in Chapters 9, 10 and 11. Critical dynamics is treated in Chap-
ters 8, 9, and 10. Finally the kinetics of first-order phase transitions is treated
in Chapter 11.

In the second set of processes, like turbulence and interfacial growth [2],
systems are maintained in states well out of equilibrium. In a Rayleigh–Benard
experiment [3] (Fig. 1.4) where we maintain a temperature gradient across a
sample, we can generate states with rolls, defects, chaos and turbulence, which
are not associated with any equilibrium state. These more complicated sets of
problems, such as driven steady-state nonequilibrium problems [4], will not
be treated here.

Fig. 1.4 Schematic of the Rayleigh–Benard experiment. A fluid sample
is between two plates held at different temperatures T2 > T1. As
the temperature difference increases a sequence of nonequilibrium
behaviors occurs, including convection, rolls and turbulence.
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1.2
Brownian Motion

1.2.1
Fluctuations in Equilibrium

Before we begin to look at the formal structure of the theory for systems evol-
ving near equilibrium, it is useful to look at the historically important problem
of Brownian motion [5]. It will turn out that many intuitive notions about the
dynamics of large systems that evolve out of this analysis are supported by
the full microscopic development. Indeed this discussion suggests a general
approach to such problems.

Consider Fig. 1.5, showing the process of Brownian motion as taken from
the work of Jean Perrin [6] near the turn of the previous century. Brownian
motion corresponds to the irregular motion of large particles suspended in
fluids. The general character of this motion was established by Robert Brown
[7] in 1828. He showed that a wide variety of organic and inorganic particles
showed the same type of behavior. The first quantitative theory of Brownian
motion was due to Einstein [8] in 1905. Einstein understood that one needed
an underlying atomic bath to provide the necessary fluctuations to account
for the erratic motion of the large suspended particle. He realized that many
random collisions, which produce no net effect on average, give rise to the
observed random walk behavior [9].

Fig. 1.5 Brownian motion path from cover of Ref. [6].
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Let us consider a very large particle, with mass M and velocity V(t) at time
t, which is embedded in a fluid of relatively small particles. For simplicity
let us work in one dimension. Assume the particle has velocity V0 at time
t0. We are interested in the velocity of the particle for times t > t0. In the
simplest theory the basic assumption is that the force on the large particle can
be decomposed into two parts. The first part is a frictional force F1 opposing
the persistent velocity V of the particle and is proportional to the velocity of
the large particle:

F1 = −MγV , (4)

where γ is the friction constant [10]. The second contribution to the force,
representing the random buffeting the particle suffers from the small particles,
is given by:

F2 = Mη , (5)

where η is called the noise. Newton’s law then takes the form:

MV̇ = −MγV + Mη . (6)

This is in the form of the simplest Langevin equation [11]:

V̇ = −γV + η . (7)

Next we need to solve this equation. The first step is to write:

V(t) = e−γtφ(t) . (8)

Taking the time derivative of this equation gives:

V̇ = −γV + e−γtφ̇ . (9)

Substituting this result back into the Langevin equation we obtain:

e−γtφ̇(t) = η(t) . (10)

Clearly we can integrate this equation using the initial value for V(t) to obtain:

φ(t) = eγt0V0 +
∫ t

t0

dτeγτη(τ) (11)

or in terms of the velocity:

V(t) = e−γ(t−t0)V0 +
∫ t

t0

dτe−γ(t−τ)η(τ) . (12)
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The physical interpretation seems clear. The velocity of the particle loses me-
mory of the initial value V0 exponentially with time. V(t) is determined by the
sequence of bumps with the noise for t � t0.

To go further we must make some simple assumptions about the properties
of the noise. We will assume that the noise is a random variable described by
its statistical properties. The first assumption is that the noise produces no net
force:

〈η(t1)〉 = 0 . (13)

Next we need to specify the variance 〈η(t1)η(t2)〉. Physically we expect that
the kicks due to the small particles will be of very short-time duration and
noise at different times will be uncorrelated. Thus it is reasonable to assume
that we have white noise:

〈η(t1)η(t2)〉 = Aδ(t1 − t2) , (14)

where we will need to consider the proper choice for the value of the constant
A. The other important consideration is causality. The velocity of the large
particle can not depend on the noise at some later time:

〈η(t1)V(t2)〉 = 0 if t1 > t2 . (15)

We can now investigate the statistical properties of the velocity. The average
velocity is given by:

〈V(t)〉 = e−γ(t−t0)〈V0〉 +
∫ t

t0

dτe−γ(t−τ)〈η(τ)〉 . (16)

Since the average of the noise is zero, the average of the velocity is propor-
tional to the average over the initial conditions. If the initial directions of
the velocity of the pollen are randomly distributed (as in the case where the
system – particle plus fluid – is in thermal equilibrium, then 〈V0〉 = 0 and the
average velocity is zero:

〈V(t)〉 = 0 . (17)

Thus if the system is in equilibrium we expect no net motion for a collection of
Brownian particles. If the pollen molecules are introduced with a net average
velocity, the system will lose memory of this as time evolves.

We turn next to the velocity autocorrelation function defined by the average:

ψ(t, t′) = 〈V(t)V(t′)〉 . (18)

If we multiply the solution for V(t), given by Eq. (12), by that for V(t′) and
average we see that the cross terms vanish since:

〈η(t)V0〉 = 0 for t > t0 (19)
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and we have:

ψ(t, t′) =
∫ t

t0

dτ
∫ t′

t0

dτ′e−γ(t−τ)e−γ(t′−τ′)〈η(τ)η(τ′)〉

+e−γ(t+t′−2t0)〈V2
0 〉 . (20)

Using the statistical properties of the noise, Eq. (14), gives:

ψ(t, t′) =
∫ t

t0

dτ
∫ t′

t0

dτ′e−γ(t−τ)e−γ(t′−τ′)Aδ(τ − τ′)

+e−γ(t+t′−2t0)ψ(t0, t0) . (21)

It is left as a problem (Problem 1.2) to show that after performing the τ and τ′

integrations one obtains the result:

ψ(t, t′) =
A
2γ

e−γ|t−t′| +
[

ψ(t0, t0) −
A
2γ

]
e−γ(t+t′−2t0) . (22)

Notice that the initial condition is properly maintained.
Suppose the system is initially in equilibrium at temperature T0. This allows

us to determine the value of:

ψ(t0, t0) = 〈V2
0 〉 . (23)

This is because in equilibrium we can assume that the velocity of the particle
satisfies Maxwell–Boltzmann statistics:

P[V0] ≈ e−β0
M
2 V2

0 , (24)

where β−1
0 = kBT0, where kB is the Boltzmann constant. One can then evaluate

the average velocity squared as:

〈V2
0 〉 =

∫
dV0 V2

0 e−β0
M
2 V2

0∫
dV0 e−β0

M
2 V2

0
. (25)

It is easy enough to evaluate these Gaussian integrals and obtain:

〈V2
0 〉 =

kT0

M
, (26)

which is just a form of the equipartition theorem:

M
2
〈V2

0 〉 =
kT0

2
. (27)

Let us put this back into our expression for the velocity correlation function
and concentrate on the case of equal times t = t′ where we have:

ψ(t, t) =
A
2γ

+
[

kT0

M
− A

2γ

]
e−

2γ
M (t−t0) . (28)
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If the system is in equilibrium, then there is nothing special about the time t0.
Unless we disturb the system from equilibrium it is in equilibrium at all times
t and we expect ψ(t, t) to be time independent and equal to kT0

M . For this to be
true we require:

kT0

M
− A

2γ
= 0 , (29)

which allows us to determine:

A = 2γ
kBT0

M
. (30)

This means that we have determined that the autocorrelation for the noise is
given by:

〈η(t)η(t′)〉 = 2
kBT0

M
γδ(t − t′) . (31)

Thus the level of the noise increases with temperature as expected. Note also
that the noise is related to the friction coefficient. In this particular problem,
because we know that the velocity has a Gaussian (Maxwell–Boltzmann) dis-
tribution, we can infer (see Problem 1.9) that the noise must also have a Gaus-
sian distribution.

Inserting this result for A into Eq. (22) for the velocity autocorrelation func-
tion we now obtain, for an arbitrary initial condition,

ψ(t, t′) =
kT0

M
e−γ|t−t′| +

[
ψ(t0, t0) −

kT0

M

]
e−γ(t+t′−2t0) . (32)

The assumption here is that the background fluid is at some temperature T0
and we can insert a set of Brownian particles at some time t0 with a velocity
correlation ψ(t0, t0) without disturbing the equilibrium of the fluid in any
significant way. Then, as time evolves and t and t′ become large, the system
loses memory of the initial condition and:

ψ(t, t′) =
kT0

M
χV(t − t′) , (33)

where the normalized equilibrium-averaged velocity autocorrelation function
is given by:

χV(t − t′) = e−γ|t−t′| . (34)

This is interpretated as the velocity decorrelating with itself exponentially
with time. There is little correlation between the velocity at time t and that
at t′ if the times are well separated. Note that our result is symmetric in t ↔ t′,
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as we require. Note also that it depends only on the time difference, which
reflects the time-translational invariance of the system in equilibrium.

Since the velocity of the large particle is related to its position by:

V(t) =
dx(t)

dt
, (35)

we can also investigate the root-mean-square displacement of the particle per-
forming Brownian motion. Thus we need to integrate:

d
dt

d
dt′

〈x(t)x(t′)〉 =
kT0

M
e−γ|t−t′| . (36)

These integrations are tedious (see Problem 1.6) and lead to the final result:

〈(x(t)− x(t0))(x(t′) − x(t0))〉 =
kT0

M

∫ t

t0

dτ
∫ t′

t0

dτ′e−γ|τ−τ′ | (37)

=
kT0

Mγ

[
t + t′ − |t − t′| − 2t0 +

1
γ

[
e−γ(t−t0) + e−γ(t′−t0) − 1 − e−γ|t−t′|

]]
.(38)

This is of particular interest for equal times where:

〈[x(t)− x(t0)]2〉 = 2
kT0

Mγ

[
t − t0 −

1
γ

(
1 − e−γ(t−t0)

)]
. (39)

For long times we see that the averaged squared displacement is linear with
time. If we have free particle or ballistic motion (see Problem 1.4), the displa-
cement of the particle is linear in time. The random forcing of the noise causes
the average displacement to go as the square root of time.

It is worth stopping to connect up this development to the behavior of
density fluctuations for large particles moving in a fluid background. If n(x, t)
is the density of the Brownian particles, then because the number of Brownian
particles is conserved, we have the continuity equation:

∂n
∂t

= − ∂J
∂x

, (40)

where J is the particle current. Since the Brownian particles share momentum
with the background fluid, the current J is not, as in a simple fluid, itself
conserved. Instead, for macroscopic processes, J satisfies Fick’s law [12]:

J = −D
∂n
∂x

, (41)

where D is the diffusion coefficient. Clearly Fick’s law is similar to Fourier’s
law, but for particle transport rather than heat transport. We discuss such
constitutive relations in detail in Chapter 5. Putting Eq. (41) back into Eq. (40)
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one finds that on the longest length and time scales the density, n(x, t), satisfies
the diffusion equation:

∂n
∂t

= D
∂2n
∂x2 . (42)

It is shown in Problem 1.7, for initial conditions where the density fluctuation
is well localized in space, near x(t0), so that we can define:

〈[x(t)− x(t0)]2〉 =
1
N

∫
dx x2n(x, t) (43)

and:

N =
∫

dx n(x, t) , (44)

then:

〈[x(t)− x(t0)]2〉 = 2Dt (45)

for long times. Comparing with Eq. (39) we find that the diffusion constant is
related to the friction coefficient by:

D =
kBT0

Mγ
. (46)

It was well known at the time of Einstein’s work [13], starting from the equati-
ons of hydrodynamics, that the drag on a sphere of radius a in a flowing liquid
with viscosity ν is given by the Stoke’s law result:

Mγ = 6πνa . (47)

If we put this back into the equation for the diffusion coefficient we obtain the
Stokes–Einstein relation [13]:

D =
kBT
6πνa

. (48)

If we know the viscosity and temperature of the liquid and measure the diffu-
sion coefficient D through an observation of the Brownian motion, then we
can determine a. If a is known, then this offers a method for determining
Avogadro?s number: NA = R/kB where R is the gas constant. Solving Eq.
(48) for Boltzmann’s constant and using Eq. (45) we find:

NA =
R
kB

=
t

〈(δx)2〉
RT

3πaν
. (49)

Perrin found, for example for gamboge grains, that a ≈ 0.5 μm and NA ≈
80 × 1022.
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1.2.2
Response to Applied Forces

Suppose now that we apply an external force, F(t), to our particle. Clearly our
equation of motion, Eq. (6), is then modified to read:

MV̇(t) = −MγV(t) + Mη(t) + F(t) . (50)

Now the average velocity of the particle is nonzero since the average of the ex-
ternal force is nonzero. Since the average over the noise is assumed to remain
zero (suppose the background particles are neutral while the large particles
are charged) we have, on averaging the equation of motion:

M〈V̇(t)〉 = −Mγ〈V(t)〉+ F(t) . (51)

We assume that the force is weak, such that γ can be assumed to be indepen-
dent of F. We can solve Eq. (51) again using an integrating factor, to obtain:

〈V(t)〉 = e−γ(t−t0)〈V(t0)〉+
1
M

∫ t

t0

dτe−γ(t−τ)F(τ) . (52)

For t � t0 the average loses memory of the initial condition and:

M〈V(t)〉 =
∫ t

t0

dτe−γ(t−τ)F(τ) . (53)

Notice that the response to the force can be written as a product of terms:

M〈V(t)〉 =
∫ t

t0

dτχV(t − τ)F(τ) . (54)

It can be written as a product of an internal equilibrium response of the system
times a term that tells how hard we are forcing the system.

The conclusions we can draw from this simple example have a surprisingly
large range of validity.

• Friction coefficients like γ, which are intrinsic properties of the system,
govern the evolution of almost all nonequilibrium systems near equili-
brium.

• Thermal noise like η is essential to keep the system in thermal equilibri-
um. Indeed for a given γ we require:

〈η(t)η(t′)〉 = 2γ
kBT0

M
δ(t − t′) . (55)

So there is a connection between the friction coefficient and the statistics
of the noise. Clearly the noise amplitude squared is proportional to the
temperature.
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• The response of the system to an external force can be written as a pro-
duct of a part that depends on how the system is driven and a part that
depends only on the fluctuations of the system in equilibrium.

One of the major unanswered questions in this formulation is: how do we
determine γ? A strategy, which turns out to be general, is to relate the kinetic
coefficient back to the velocity correlation function, which is microscopically
defined. Notice that we have the integral:

∫ ∞

0
dt χV(t) =

∫ ∞

0
dt e−γt =

1
γ

= D
M

kT0
. (56)

This can be rewritten in the form:

D =
kT0

M

∫ ∞

0
dt χV(t) =

∫ ∞

0
dt ψ(t, 0). (57)

Thus if we can evaluate the velocity–time correlation function we can deter-
mine D.

You may find it odd that we start with a discussion of such an apparently
complex situation as pollen performing a random walk in a dense liquid. His-
torically, nonequilibrium statistical mechanics was built on the Boltzmann pa-
radigm [14] where there are N spherical particles in an isolated enclosed box,
allowed to evolve in time according to Newton’s laws. Out of this dynamical
process comes the mixing and irreversible behavior from which we can extract
all of the dynamical properties of the system: viscosities, thermal conductivi-
ties and speeds of sound. This situation appears cleaner and more appealing
to a physicist than the Langevin paradigm [15] , where the system of interest is
embedded in a bath of other particles. The appeal of the Boltzmann paradigm
is somewhat illusory once one takes it seriously, since it leads to the difficult
questions posed by ergodic theory [16] and whether certain isolated systems
decay to equilibrium. We will assume that irreversibility is a physical reality.
A system will remain [17] out of equilibrium only if we act to keep the system
out of equilibrium. While the Langevin paradigm appears less universal, we
shall see that this is also something of an illusion. In the Langevin description
there is the unknown parameter γ. However, if we can connect this parameter
back to the equilibrium fluctuations as in Eq. (56), then we have a complete
picture. To do this we must develop a microscopic theory including the back-
ground fluid degrees of freedom to determine χV(t) as a function of time.
Then we can extract 1/γ as an integral over a very short time period. The
Langevin equation then controls the behavior on the longer time scales of
particle diffusion.

The notion of a set of rapid degrees of freedom driving the evolution of
slower degrees of freedom is a vital and robust idea. The separation of time
scales in the case of Brownian motion comes about because of the larger mass


