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Preface

Mathematics is an essential ingredient in the education of a professional physicist, indeed
in the education of any professional scientist or engineer in the 21st century. Yet when it
comes to the specifics of what is needed, and when and how it should be taught, there is
no broad consensus among educators. The crowded curricula of undergraduates, especially
in North America where broad general education requirements are the rule, leave little room
for formal mathematics beyond the standard introductory courses in calculus, linear algebra,
and differential equations, with perhaps one advanced specialized course in a mathematics
department, or a one-semester survey course in a physics department.

The situation in (post)-graduate education is perhaps more encouraging—there are many
institutes of theoretical physics, in some cases joined with applied mathematics, where modern
courses in mathematical physics are taught. Even in large university physics departments there
is room to teach advanced mathematical physics courses, even if only as electives for students
specializing in theoretical physics. But in small and medium physics departments, the teaching
of mathematical physics often is restricted to a one-semester survey course that can do little
more than cover the gaps in the mathematical preparation of its graduate students, leaving
many important topics to be discussed, if at all, in the standard physics courses in classical
and quantum mechanics, and electromagnetic theory, to the detriment of the physics content
of those courses.

The purpose of the present book is to provide a comprehensive survey of the mathematics
underlying theoretical physics at the level of graduate students entering research, with enough
depth to allow a student to read introductions to the higher level mathematics relevant to
specialized fields such as the statistical physics of lattice models, complex dynamical systems,
or string theory. It is also intended to serve the research scientist or engineer who needs a quick
refresher course in the subject of one or more chapters in the book.

We review the standard theories of ordinary differential equations, linear vector spaces,
functions of a complex variable, partial differential equations and Green functions, and the
special functions that arise from the solutions of the standard partial differential equations of
physics. Beyond that, we introduce at an early stage modern topics in differential geometry
arising from the study of differentiable manifolds, spaces whose points are characterized by
smoothly varying coordinates, emphasizing the properties of these manifolds that are inde-
pendent of a particular choice of coordinates. The geometrical concepts that follow lead to
helpful insights into topics ranging from thermodynamics to classical dynamical systems to
Einstein’s classical theory of gravity (general relativity). The usefulness of these ideas is, in
my opinion, as significant as the clarity added to Maxwell’s equations by the use of vector
notation in place of the original expressions in terms of individual components, for example.

Introduction to Mathematical Physics. Michael T. Vaughn
Copyright c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40627-2



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Page Intentionally Left Blank



XIV Preface

Thus I believe that it is important to introduce students of science to geometrical methods as
early as possible in their education.

The material in Chapters 1–8 can form the basis of a one-semester graduate course on
mathematical methods, omitting some of the mathematical details in the discussion of Hilbert
spaces in Chapters 6 and 7 if necessary. There are many examples interspersed with the main
discussion, and exercises that the student should work out as part of the reading. There are
additional problems at the end of each chapter; these are generally more challenging, but pro-
vide possible homework assignments for a course. The remaining two chapters introduce the
theory of finite groups and Lie groups—topics that are important for the understanding of
systems with symmetry, especially in the realm of condensed matter, atoms, nuclei, and sub-
nuclear physics. But these topics can often be developed as needed in the study of particular
systems, and are thus less essential in a first course. Nevertheless, they have been included in
part because of my own research interests, and in part because group theory can be fun!

Each chapter begins with an overview
that summarizes the topics discussed in the
chapter—the student should read this through
in order to get an idea of what is coming in the
chapter, without being too concerned with the
details that will be developed later. The exam-
ples and exercises are intended to be studied
together with the material as it is presented.
The problems at the end of the chapter are ei-
ther more difficult, or require integration of
more than one local idea. The diagram at the
right provides a flow chart for the chapters of
the book.

1 3

24 9

8 7

6

10

5

Flow chart for chapters of the book.
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course of this work. Ron Aaron, George Alverson, Tom Kephart, and Henry Smith have read
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1 Infinite Sequences and Series

In experimental science and engineering, as well as in everyday life, we deal with integers,
or at most rational numbers. Yet in theoretical analysis, we use real and complex numbers,
as well as far more abstract mathematical constructs, fully expecting that this analysis will
eventually provide useful models of natural phenomena. Hence we proceed through the con-
struction of the real and complex numbers starting from the positive integers1. Understanding
this construction will help the reader appreciate many basic ideas of analysis.

We start with the positive integers and zero, and introduce negative integers to allow sub-
traction of integers. Then we introduce rational numbers to permit division by integers. From
arithmetic we proceed to analysis, which begins with the concept of convergence of infinite
sequences of (rational) numbers, as defined here by the Cauchy criterion. Then we define
irrational numbers as limits of convergent (Cauchy) sequences of rational numbers.

In order to solve algebraic equations in general, we must introduce complex numbers and
the representation of complex numbers as points in the complex plane. The fundamental
theorem of algebra states that every polynomial has at least one root in the complex plane,
from which it follows that every polynomial of degree n has exactly n roots in the complex
plane when these roots are suitably counted. We leave the proof of this theorem until we study
functions of a complex variable at length in Chapter 4.

Once we understand convergence of infinite sequences, we can deal with infinite series of
the form

∞∑

n=1

xn

and the closely related infinite products of the form

∞∏

n=1

xn

Infinite series are central to the study of solutions, both exact and approximate, to the differ-
ential equations that arise in every branch of physics. Many functions that arise in physics
are defined only through infinite series, and it is important to understand the convergence
properties of these series, both for theoretical analysis and for approximate evaluation of the
functions.

1To paraphrase a remark attributed to Leopold Kronecker: “God created the positive integers; all the rest is human
invention.”
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2 1 Infinite Sequences and Series

We review some of the standard tests (comparison test, ratio test, root test, integral test)
for convergence of infinite series, and give some illustrative examples. We note that absolute
convergence of an infinite series is necessary and sufficient to allow the terms of a series to be
rearranged arbitrarily without changing the sum of the series.

Infinite sequences of functions have more subtle convergence properties. In addition to
pointwise convergence of the sequence of values of the functions taken at a single point,
there is a concept of uniform convergence on an interval of the real axis, or in a region of
the complex plane. Uniform convergence guarantees that properties such as continuity and
differentiability of the functions in the sequence are shared by the limit function. There is also
a concept of weak convergence, defined in terms of the sequences of numbers generated by
integrating each function of the sequence over a region with functions from a class of smooth
functions (test functions). For example, the Dirac δ-function and its derivatives are defined in
terms of weakly convergent sequences of well-behaved functions.

It is a short step from sequences of functions to consider infinite series of functions, espe-
cially power series of the form

∞∑

n=0

anz
n

in which the an are real or complex numbers and z is a complex variable. These series are
central to the theory of functions of a complex variable. We show that a power series converges
absolutely and uniformly inside a circle in the complex plane (the circle of convergence), with
convergence on the circle of convergence an issue that must be decided separately for each
particular series.

Even divergent series can be useful. We show some examples that illustrate the idea of
a semiconvergent, or asymptotic, series. These can be used to determine the asymptotic be-
havior and approximate asymptotic values of a function, even though the series is actually di-
vergent. We give a general description of the properties of such series, and explain Laplace’s
method for finding an asymptotic expansion of a function defined by an integral representation
(Laplace integral) of the form

I(z) =
∫ a

0

f(t)ezh(t) dt

Beyond the sequences and series generated by the mathematical functions that occur in
solutions to differential equations of physics, there are sequences generated by dynamical
systems themselves through the equations of motion of the system. These sequences can
be viewed as iterated maps of the coordinate space of the system into itself; they arise in
classical mechanics, for example, as successive intersections of a particle orbit with a fixed
plane. They also arise naturally in population dynamics as a sequence of population counts at
periodic intervals.

The asymptotic behavior of these sequences exhibits new phenomena beyond the simple
convergence or divergence familiar from previous studies. In particular, there are sequences
that converge, not to a single limit, but to a periodic limit cycle, or that diverge in such a way
that the points in the sequence are dense in some region in a coordinate space.
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An elementary prototype of such a sequence is the logistic map defined by

Tλ : x→ xλ = λx(1 − x)

This map generates a sequence of points {xn} with

xn+1 = λxn(1 − xn)

(0 < λ < 4) starting from a generic point x0 in the interval 0 < x0 < 1. The behavior of
this sequence as a function of the parameter λ as λ increases from 0 to 4 provides a simple
illustration of the phenomena of period doubling and transition to chaos that have been an
important focus of research in the past 30 years or so.

1.1 Real and Complex Numbers

1.1.1 Arithmetic

The construction of the real and complex number systems starting from the positive integers
illustrates several of the structures studied extensively by mathematicians. The positive inte-
gers have the property that we can add, or we can multiply, two of them together and get a
third. Each of these operations is commutative:

x ◦ y = y ◦ x (1.1)

and associative:

x ◦ (y ◦ z) = (x ◦ y) ◦ z (1.2)

(here ◦ denotes either addition or multiplication), but only for multiplication is there an identity
element e, with the property that

e ◦ x = x = x ◦ e (1.3)

Of course the identity element for addition is the number zero, but zero is not a positive integer.
Properties (1.2) and (1.3) are enough to characterize the positive integers as a semigroup under
multiplication, denoted by Z∗ or, with the inclusion of zero, a semigroup under addition,
denoted by Z+.

Neither addition nor multiplication has an inverse defined within the positive integers. In
order to define an inverse for addition, it is necessary to include zero and the negative integers.
Zero is defined as the identity for addition, so that

x+ 0 = x = 0 + x (1.4)

and the negative integer −x is defined as the inverse of x under addition,

x+ (−x) = 0 = (−x) + x (1.5)
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With the inclusion of the negative integers, the equation

p+ x = q (1.6)

has a unique integer solution x (≡ q− p) for every pair of integers p, q. Properties (1.2)–(1.5)
characterize the integers as a group Z under addition, with 0 as an identity element. The fact
that addition is commutative makes Z a commutative, or Abelian, group. The combined
operations of addition with zero as identity, and multiplication satisfying Eqs. (1.2) and (1.3)
with 1 as identity, characterize Z as a ring, a commutative ring since multiplication is also
commutative. To proceed further, we need an inverse for multiplication, which leads to the
introduction of fractions of the form p/q (with integers p, q). One important property of frac-
tions is that they can always be reduced to a form in which the integers p, q have no common
factors2. Numbers of this form are rational. With both addition and multiplication having
well-defined inverses (except for division by zero, which is undefined), and the distributive
law

a ∗ (x+ y) = a ∗ x+ a ∗ c = y (1.7)

satisfied, the rational numbers form a field, denoted by Q.

Exercise 1.1. Let p be a prime number. Then
√
p is not rational. �

Note. Here and throughout the book we use the convention that when a proposition is simply
stated, the problem is to prove it, or to give a counterexample that shows it is false.

1.1.2 Algebraic Equations

The rational numbers are adequate for the usual operations of arithmetic, but to solve algebraic
(polynomial) equations, or to carry out the limiting operations of calculus, we need more. For
example, the quadratic equation

x2 − 2 = 0 (1.8)

has no rational solution, yet it makes sense to enlarge the rational number system to include
the roots of this equation. The real algebraic numbers are introduced as the real roots of
polynomials of any degree with integer coefficients. The algebraic numbers also form a field.

Exercise 1.2. Show that the roots of a polynomial with rational coefficients can be ex-
pressed as roots of a polynomial with integer coefficients. �

Complex numbers are introduced in order to solve algebraic equations that would other-
wise have no real roots. For example, the equation

x2 + 1 = 0 (1.9)

has no real solutions; it is “solved” by introducing the imaginary unit i ≡
√
−1 so that the

roots are given by x = ±i. Complex numbers are then introduced as ordered pairs (x, y) ∼
2The study of properties of the positive integers, and their factorization into products of prime numbers, belongs

to a fascinating branch of pure mathematics known as number theory, in which the reducibility of fractions is one of
the elementary results.
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x+ iy, of real numbers; x, y can be restricted to be rational (algebraic) to define the complex
rational (algebraic) numbers.

Complex numbers can be represented as points (x, y) in a plane (the complex plane) in a
natural way, and the magnitude of the complex number x+ iy is defined by

|x+ iy| ≡
√
x2 + y2 (1.10)

In view of the identity

eiθ = cos θ + i sin θ (1.11)

we can also write

x+ iy = reiθ (1.12)

with r = |x + iy| and tan θ = y/x. These relations have an obvious interpretation in terms
of the polar coordinates of the point (x, y). We also define

arg z ≡ θ (1.13)

for z �= 0. The angle arg z is the phase of z. Evidently it can only be defined as mod 2π;
adding any integer multiple of 2π to arg z does not change the complex number z, since

e2πi = 1 (1.14)

Equation (1.14) is one of the most remarkable equations of mathematics.

1.1.3 Infinite Sequences; Irrational Numbers

To complete the construction of the real and complex numbers, we need to look at some
elementary properties of sequences, starting with the formal definitions:

Definition 1.1. A sequence of numbers (real or complex) is an ordered set of numbers in
one-to-one correspondence with the positive integers; write {zn} ≡ {z1, z2, . . .}.

Definition 1.2. The sequence {zn} is bounded if there is some positive number M such that
|zn| < M for all positive integers n.

Definition 1.3. The sequence {xn} of real numbers is increasing (decreasing) if xn+1 > xn
(xn+1 < xn) for every n. The sequence is nondecreasing (nonincreasing) if xn+1 ≥ xn
(xn+1 ≤ xn) for every n. A sequence belonging to one of these classes is monotone (or
monotonic).

Remark. The preceding definition is restricted to real numbers because it is only for real
numbers that we can define a “natural” ordering that is compatible with the standard measure
of the distance between the numbers. �

Definition 1.4. The sequence {zn} is a Cauchy sequence if for every ε > 0 there is a positive
integer N such that |zp − zq| < ε whenever p, q > N .
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Definition 1.5. The sequence {zn} is convergent to the limit z (write {zn} → z) if for every
ε > 0 there is a positive integer N such that |zn − z| < ε whenever n > N .

There is no guarantee that a Cauchy sequence of rational numbers converges to a rational,
or even algebraic, limit. For example, the sequence {xn} defined by

xn ≡
(

1 +
1
n

)n
(1.15)

converges to the limit e = 2.71828 . . ., the base of natural logarithms. It is true, though
nontrivial to prove, that e is not an algebraic number. A real number that is not algebraic is
transcendental. Another famous transcendental number is π, which is related to e through
Eq. (1.14).

If we want to insure that every Cauchy sequence of rational numbers converges to a limit,
we must include the irrational numbers, which can be defined as limits of Cauchy sequences
of rational numbers. As examples of such sequences, imagine the infinite, nonterminating,
nonperiodic decimal expansions of transcendental numbers such as e or π, or algebraic num-
bers such as

√
2. Countless computer cycles have been used in calculating the digits in these

expansions.
The set of real numbers, denoted by R, can now be defined as the set containing rational

numbers together with the limits of Cauchy sequences of rational numbers. The set of complex
numbers, denoted by C, is then introduced as the set of all ordered pairs (x, y) ∼ x+iy of real
numbers. Once we know that every Cauchy sequence of real (or rational) numbers converges
to a real number, it is a simple exercise to show that every Cauchy sequence of complex
numbers converges to a complex number.

Monotonic sequences are especially important, since they appear as partial sums of infinite
series of positive terms. The key property is contained in the

Theorem 1.1. A monotonic sequence {xn} is convergent if and only if it is bounded.

Proof. If the sequence is unbounded, it will diverge to ±∞, which simply means that for
any positive number M , no matter how large, there is an integer N such that xn > M (or
xn < −M if the sequence is monotonic nonincreasing) for any n ≥ N . This is true, since
for any positive number M , there is at least one member xN of the sequence with xN > M
(or xN < −M )—otherwise M would be a bound for the sequence—and hence xn > M (or
xn < −M ) for any n ≥ N in view of the monotonic nature of the sequence.

If the monotonic nondecreasing sequence {xn} is bounded from above, then in order to
have a limit, there must be a bound that is smaller than any other bound (such a bound is the
least upper bound of the sequence). If the sequence has a limit X , thenX is certainly the least
upper bound of the sequence, while if a least upper bound X exists, then it must be the limit
of the sequence. For if there is some ε > 0 such that X − xn > ε for all n, then X − ε will
be an upper bound to the sequence smaller than X .

The existence of a least upper bound is intuitively plausible, but its existence cannot be
proven from the concepts we have introduced so far. There are alternative axiomatic formu-
lations of the real number system that guarantee the existence of the least upper bound; the
convergence of any bounded monotonic nondecreasing sequence is then a consequence as just
explained. The same argument applies to bounded monotonic nonincreasing sequences, which
must then have a greatest lower bound to which the sequence converges.
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1.1.4 Sets of Real and Complex Numbers

We also need some elementary definitions and results about sets of real and complex numbers
that are generalized later to other structures.

Definition 1.6. For real numbers, we can define an open interval:

(a, b) ≡ {x| a < x < b}

or a closed interval:

[a, b] ≡ {x| a ≤ x ≤ b}

as well as semiopen (or semiclosed) intervals:

(a, b] ≡ {x| a < x ≤ b} and [a, b) ≡ {x| a ≤ x < b}

A neighborhood of the real number x0 is any open interval containing x0. An ε-neighborhood
of x0 is the set of all points x such that

|x− x0| < ε (1.16)

This concept has an obvious extension to complex numbers: An (ε)-neighborhood of the
complex number z0, denoted by Nε(z0), is the set of all points z such that

0 < |z − z0| < ε (1.17)

Note that for complex numbers, we exclude the point z0 from the neighborhood Nε(z0).

Definition 1.7. The set S of real or complex numbers is open if for every x in S, there is a
neighborhood of x lying entirely in S. S is closed if its complement is open. S is bounded if
there is some positive M such that x < M for every x in S (M is then a bound of S).

Definition 1.8. x is a limit point of the set S if every neighborhood of x contains at least one
point of S.

While x itself need not be a member of the set S, this definition implies that every neigh-
borhood of x in fact contains an infinite number of points of S. An alternative definition of a
closed set can be given in terms of limit points, and one of the important results of analysis is
that every bounded infinite set contains at least one limit point.

Exercise 1.3. Show that the set S of real or complex numbers is closed if and only if every
limit point of S is an element of S. �

Exercise 1.4. (Bolzano–Weierstrass theorem) Every bounded infinite set of real or com-
plex numbers contains at least one limit point. �

Definition 1.9. The set S is everywhere dense, or simply dense, in a region R if there is at
least one point of S in any neighborhood of every point in R.

Example 1.1. The set of rational numbers is everywhere dense on the real axis.
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1.2 Convergence of Infinite Series and Products

1.2.1 Convergence and Divergence; Absolute Convergence

If {zk} is a sequence of numbers (real or complex), the formal sum

S ≡
∞∑

k=1

zk (1.18)

is an infinite series, whose partial sums are defined by

sn ≡
n∑

k=1

zk (1.19)

The series
∑

zk is convergent (to the value s) if the sequence {sn} of partial sums converges
to s, otherwise divergent. The series is absolutely convergent if the series

∑
|zk| is con-

vergent; a series that is convergent but not absolutely convergent is conditionally convergent.
Absolute convergence is an important property of a series, since it allows us to rearrange terms
of the series without altering its value, while the sum of a conditionally convergent series can
be changed by reordering it (this is proved later on).

Exercise 1.5. If the series
∑

zk is convergent, then the sequence {zk} → 0. �

Exercise 1.6. If the series
∑

zk is absolutely convergent, then it is convergent. �

To study absolute convergence, we need only consider a series
∑

xk of positive real num-
bers (

∑
|zk| is such a series). The sequence of partial sums of a series of positive real num-

bers is obviously nondecreasing. From the theorem on monotonic sequences in the previous
section then follows

Theorem 1.2. The series
∑

xk of positive real numbers is convergent if and only if the
sequence of its partial sums is bounded.

Example 1.2. Consider the geometric series

S(x) ≡
∞∑

k=0

xk (1.20)

for which the partial sums are given by

sn =
n∑

k=0

xk =
1 − x

1 − xn+1
(1.21)

These partial sums are bounded if 0 ≤ x < 1, in which case

{sn} → 1
1 − x

(1.22)
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The series diverges for x ≥ 1. The corresponding series

S(z) ≡
∞∑

k=0

zk (1.23)

for complex z is then absolutely convergent for |z| < 1, divergent for |z| > 1. The
behavior on the unit circle |z| = 1 in the complex plane must be determined separately
(the series actually diverges everywhere on the circle since the sequence {zk} �→ 0; see
Exercise 1.5).

Remark. We will see that the function S(z) defined by the series (1.23) for |z| < 1 can
be defined to be 1/(1 − z) for complex z �= 1, even outside the region of convergence of the
series, using the properties of S(z) as a function of the complex variable z. This is an example
of a procedure known as analytic continuation, to be explained in Chapter 4. �

Example 1.3. The Riemann ζ-function is defined by

ζ(s) ≡
∞∑

n=1

1
ns

(1.24)

The series for ζ(s) with s = σ + iτ is absolutely convergent if and only if the series for
ζ(σ) is convergent. Denote the partial sums of the latter series by

sN (σ) =
N∑

n=1

1
nσ

(1.25)

Then for σ ≤ 1 and N ≥ 2m (m integer), we have

sN (σ) ≥ sN (1) ≥ s2m(1) > s2m−1 (1) +
1
2
> · · · > m

2
(1.26)

Hence the sequence {sN (σ)} is unbounded and the series diverges. Note that for s = 1,
Eq. (1.24) is the harmonic series, which is shown to diverge in elementary calculus
courses. On the other hand, for σ > 1 and N ≤ 2m with m integer, we have

sN (σ) < s2m(σ) < s2m−1 (σ) +
(

1
2

)(m−1) (σ−1)

< · · ·
(1.27)

<
m−1∑

k=0

(
1
2

)k(σ−1)

<
1

1 − 2(1−σ)

Thus the sequence {sN (σ)} is bounded and hence converges, so that the series (1.24) for
ζ(s) is absolutely convergent for σ = Re s > 1. Again, we will see in Chapter 4 that
ζ(s) can be defined for complex s beyond the range of convergence of the series (1.24) by
analytic continuation.
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1.2.2 Tests for Convergence of an Infinite Series of Positive Terms

There are several standard tests for convergence of a series of positive terms:
Comparison test. Let

∑
xk and

∑
yk be two series of positive numbers, and suppose that

for some integer N > 0 we have yk ≤ xk for all k > N . Then
(i) if

∑
xk is convergent,

∑
yk is also convergent, and

(ii) if
∑
yk is divergent,

∑
xk is also divergent.

This is fairly obvious, but to give a formal proof, let {sn} and {tn} denote the sequences of
partial sums of

∑
xk and

∑
yk, respectively. If yk ≤ xk for all k > N , then

tn − tN ≤ sn − sN

for all n > N . Thus if {sn} is bounded, then {tn} is bounded, and if {tn} is unbounded, then
{sn} is unbounded.

Remark. The comparison test has been used implicitly in the discussion of the ζ-function to
show the absolute convergence of the series 1.24 for σ = Re s > 1. �

Ratio test. Let
∑
xk be a series of positive numbers, and let rk ≡ xk+1/xk be the ratios

of successive terms. Then
(i) if only a finite number of rk > a for some a with 0 < a < 1, then the series converges,

and
(ii) if only a finite number of rk < 1, then the series diverges.

In case (i), only a finite number of the rk are larger than a, so there is some positive M such
that xk < Mak for all k, and the series converges by comparison with the geometric series.
In case (ii), the series diverges since the individual terms of the series do not tend to zero.

Remark. The ratio test works if the largest limit point of the sequence {rk} is either greater
than 1 or smaller than 1. If the largest limit point is exactly equal to 1, then the ratio test
does not answer the question of convergence, as seen by the example of the ζ-function series
(1.24). �

Root test. Let
∑
xk be a series of positive numbers, and let 	k ≡ k

√
xk. Then

(i) if only a finite number of 	k > a for some positive a < 1, then the series converges,
and

(ii) if infinitely many 	k > 1, the series diverges.
As with the ratio test, we can construct a comparison with the geometric series. In case (i),
only a finite number of roots 	k are bigger than a, so there is some positive M such that
xk < Mak for all k, and the series converges by comparison with the geometric series. In
case (ii), the series diverges since the individual terms of the series do not tend to zero.

Remark. The root test, like the ratio test, works if the largest limit point of the sequence
{	k} is either greater than 1 or smaller than 1, but fails to decide convergence if the largest
limit point is exactly equal to 1. �

Integral test. Let f(t) be a continuous, positive, and nonincreasing function for t ≥ 1, and
let xk ≡ f(k) (k = 1, 2, . . .). Then

∑
xk converges if and only if the integral

I ≡
∫ ∞

1

f(t) dt <∞ (1.28)
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also converges. To show this, note that

∫ k+1

k

f(t) dt ≤ xk ≤
∫ k

k−1

f(t) dt (1.29)

which is easy to see by drawing a graph. The partial sums sn of the series then satisfy

∫ n+1

1

f(t) dt ≤ sn =
n∑

k=1

xk ≤ x1 +
∫ n

1

f(t) dt (1.30)

and are bounded if and only if the integral (1.28) converges.

Remark. If the integral (1.28) converges, it provides a (very) rough estimate of the value of
the infinite series, since

∫ ∞

N+1

f(t) dt ≤ s− sN =
∞∑

k=N+1

xk ≤
∫ ∞

N

f(t) dt (1.31)

1.2.3 Alternating Series and Rearrangements

In addition to a series of positive terms, we consider an alternating series of the form

S ≡
∞∑

k=0

(−1)kxk (1.32)

with xk > 0 for all k. Here there is a simple criterion (due to Leibnitz) for convergence: if
the sequence {xk} is nonincreasing, then the series S converges if and only if {xk} → 0, and
if S converges, its value lies between any two successive partial sums. This follows from the
observation that for any n the partial sums sn of the series (1.32) satisfy

s2n+1 < s2n+3 < · · · < s2n+2 < s2n (1.33)

Example 1.4. The alternating harmonic series

A ≡ 1 − 1
2

+
1
3
− 1

4
+ · · · =

∞∑

k=0

(−1)k

k + 1
(1.34)

is convergent according to this criterion, even though it is not absolutely convergent (the
series of absolute values is the harmonic series we have just seen to be divergent). In fact,
evaluating the logarithmic series (Eq. (1.69) below) for z = 1 shows that A = ln 2.

Is there any significance of the ordering of terms in an infinite series? The short answer
is that terms can be rearranged at will in an absolutely convergent series without changing the
value of the sum, while changing the order of terms in a conditionally convergent series can
change its value, or even make it diverge.
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Definition 1.10. If {n1, n2, . . .} is a permutation of {1, 2, . . .}, then the sequence {ζk} is a
rearrangement of {zk} if

ζk = znk
(1.35)

for every k. Then also the series
∑
ζk is a rearrangement of

∑
zk.

Example 1.5. The alternating harmonic series (1.34) can be rearranged in the form

A′ =
(

1 +
1
3
− 1

2

)
+
(

1
5

+
1
7
− 1

4

)
+ · · · (1.36)

which is still a convergent series, but its value is not the same as that of A (see below).

Theorem 1.3. If the series
∑
zk is absolutely convergent, and

∑
ζk is a rearrangement of∑

zk, then
∑
ζk is absolutely convergent.

Proof. Let {sn} and {σn} denote the sequences of partial sums of
∑

zk and
∑

ζk, re-
spectively. If ε > 0, choose N such that |sn − sm| < ε for all n,m > N , and let
Q ≡ max{n1, . . . , nN}. Then |σn − σm| < ε for all n,m > Q.

On the other hand, if a series in not absolutely convergent, then its value can be changed
(almost at will) by rearrangement of its terms. For example, the alternating series in its original
form (1.34) can be expressed as

A =
∞∑

n=0

(
1

2n+ 1
− 1

2n+ 2

)
=

∞∑

n=0

1
(2n+ 1)(2n+ 2)

(1.37)

This is an absolutely convergent series of positive terms whose value is ln 2 = 0.693 . . ., as
already noted. On the other hand, the rearranged series (1.36) can be expressed as

A′ =
∞∑

n=0

(
1

4n+ 1
+

1
4n+ 3

− 1
2n+ 2

)
=

∞∑

n=0

8n+ 5
2(n+ 1)(4n+ 1)(4n+ 3)

(1.38)

which is another absolutely convergent series of positive terms. Including just the first term of
this series shows that

A′ >
5
6
> ln 2 = A (1.39)

In fact, any series that is not absolutely convergent can be rearranged into a divergent series.

Theorem 1.4. If the series
∑
xk of real terms is conditionally convergent, then there is a

divergent rearrangement of
∑
xk.

Proof. Let {ξ1, ξ2, . . .} be the sequence of positive terms in {xk}, and {−η1,−η2, . . .} be the
sequence of negative terms. Then at least one of the series

∑
ξk ,

∑
ηk is divergent (otherwise

the series would be absolutely convergent). Suppose
∑
ξk is divergent. Then we can choose

a sequence n1, n2, . . . such that

nm+1−1∑

k=nm

ξk > 1 + ηm (1.40)
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(m = 1, 2, . . .), and the rearranged series

S′ ≡
n2−1∑

k=n1

ξk − η1 +
n3−1∑

k=n2

ξk − η2 + · · · (1.41)

is divergent.

Remark. It follows as well that a conditionally convergent series
∑
zk of complex terms

must have a divergent rearrangement. For if zk = xk + iyk, then either
∑
xk or

∑
yk is

conditionally convergent, and hence has a divergent rearrangement. �

1.2.4 Infinite Products

Closely related to infinite series are infinite products of the form
∞∏

m=1

(1 + zm) (1.42)

({zm} is a sequence of complex numbers), with partial products

pn ≡
n∏

m=1

(1 + zk) (1.43)

The product
∏

(1+zm) is convergent (to the value p) if the sequence {pn} of partial products
converges to p �= 0, convergent to zero if a finite number of factors are 0, divergent to zero if
{pn} → 0 with no vanishing pn, and divergent if {pn} is divergent. The product is absolutely
convergent if

∏
(1 + |zm|) is convergent; a product that is convergent but not absolutely

convergent is conditionally convergent.
The absolute convergence of a product is simply related to the absolute convergence of a

related series: if {xm} is a sequence of positive real numbers, then the product
∏

(1 + xm)
is convergent if and only if the series

∑
xm is convergent. This follows directly from the

observation
n∑

m=1

xm <

n∏

m=1

(1 + xm) < exp

(
n∑

m=1

xm

)
(1.44)

Also, the product
∏

(1−xm) is convergent if and only if the series
∑
xm is convergent (show

this).

Example 1.6. Consider the infinite product

P ≡
∞∏

m=2

(
m3 − 1
m3 + 1

)
<

∞∏

m=2

(
1 − 1

m3

)
(1.45)

The product is (absolutely) convergent, since the series
∞∑

m=1

1
m3

= ζ(3)

is convergent. Evaluation of the product is left as a problem.
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1.3 Sequences and Series of Functions

1.3.1 Pointwise Convergence and Uniform Convergence of Sequences of
Functions

Questions of convergence of sequences and series of functions in some domain of variables
can be answered at each point by the methods of the preceding section. However, the issues of
continuity and differentiability of the limit function require more care, since the limiting pro-
cedures involved approaching a point in the domain need not be interchangeable with passing
to the limit of the sequence or series (convergence of an infinite series of functions is defined
in the usual way in terms of the convergence of the sequence of partial sums of the series).
Thus we introduce

Definition 1.11. The sequence {fn(z)} of functions of the variable z (real or complex) is
(pointwise) convergent to the function f(z) in the region R:

{fn(z)} → f(z) in S

if the sequence {fn(z0)} → f(z0) at every point z0 in R.

Definition 1.12. {fn(z)} is uniformly convergent to f(z) in the closed, bounded R:

{fn(z)} ⇒ f(z) in S

if for every ε > 0 there is a positive integer N such that |fn(z) − f(z)| < ε for every n > N
and every point z in R.

Remark. Note the use of different arrow symbols (→ and ⇒) to denote strong and uniform
convergence, as well as the symbol (⇀) introduced below to denote weak convergence. �

Example 1.7. Consider the sequence {xn}. Evidently {xn} → 0 for 0 ≤ x < 1. Also,
the sequence {xn} ⇒ 0 on any closed interval 0 ≤ x ≤ 1 − δ (0 < δ < 1), since for any
such x, we have |xn| < ε for all n > N if N is chosen so that |1 − δ|N < ε. However,
we cannot say that the sequence is uniformly convergent on the open interval 0 < x < 1,
since if 0 < ε < 1 and n is any positive integer, we can find some x in (0, 1) such that
xn > ε. The point here is that to discuss uniform convergence, we need to consider a
region that is closed and bounded, with no limit point at which the series is divergent.

It is one of the standard theorems of advanced calculus that properties of continuity of the
elements of a uniformly convergent sequence are shared by the limit of the sequence. Thus if
{fn(z)} ⇒ f(z) in the region R, and if each of the fn(z) is continuous in the closed bounded
region R, then the limit function f(z) is also continuous in R. Differentiability requires a
separate check that the sequence of derivative functions {f ′n(z)} is convergent, since it may
not be. If the sequence of derivatives actually is uniformly convergent, then it converges to the
derivative of the limit function f(z).

Example 1.8. Consider the function f(z) defined by the series

f(z) ≡
∞∑

n=1

1
n2

sinn2πz (1.46)


