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XI

Preface

This is a textbook on rigid body mechanics written for graduate and advanced
undergraduate students of science and engineering. The primary reason for
writing the book was to give an account of the subject which was firmly
grounded in both the classical and geometrical foundations of the subject.
The book is intended to be accessible to a student who is well prepared in
linear algebra and advanced calculus, who has had an introductory course
in mechanics and who has a certain degree of mathematical maturity. Any
mathematics needed beyond this is included in the text.

Chapter 1 deals with the rotations, the basic operation in rigid body theory.
Rotations are presented in several parameterizations including axis angle, Eu-
ler angle, quaternion, and Cayley–Klein parameters. The rotations form a Lie
group which underlies all of rigid body mechanics.

Chapter 2 studies rigid body motions, angular velocity, and the physical
concepts of angular momentum and kinetic energy. The fundamental idea of
angular velocity is straight from the Lie algebra theory. These concepts are
illustrated with several examples from physics and engineering.

Chapter 3 studies rigid body dynamics in vector, Lagrangian, and Hamil-
tonian formulations. This chapter introduces many geometric concepts as
dynamics occurs on differential manifolds and for rigid body mechanics the
manifold is often a Lie group. The idea of the adjoint action is seen to be basic
to the rigid body equations of motion. This chapter contains many examples
from physics and engineering.

Chapter 4 considers the dynamics of constrained systems. Here Lagrange
multipliers are introduced and several ways of determining or eliminating
them are considered. This topic is rich in geometrical interactions and there
are several examples, some standard and some not.

Chapter 5 considers the integrable problems of free rotation, Lagrange’s top,
and the gyrostat. The Kowalevsky top and Lax equations are also considered.
Geometrical topics include the Poinsot construction, the geometric phase, and
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XII Preface

Liouville tori. Verification and validation are of the utmost importance in the
world of scientific and engineering computing and analytical solutions are
treasured. In addition to the validation service they also play an important
role in developing our intuitive understanding of the subject, not to mention
their intrinsic and historical worth.

The importance of numerical methods in today’s applications of mechan-
ics cannot be overstated. Chapter 6 discusses classical numerical methods
and more recent methods tailored specifically for Lie groups. This chapter
includes a case study of a complicated rigid body motion, the wobblestone,
which is naturally studied with numerical methods.

The final chapter, Chapter 7, applies the previous material to phenomena
ranging in scale from the astronomical to the molecular. The largest scale con-
cerns precession and nutation of the Earth. The Earth is nonspherical – an
oblate spheroid to first approximation – and the axis of the Earth’s rotation is
observed to move on the celestial sphere. Most of this motion is attributed to
the torque exerted on the nonspherical Earth by the Moon and the Sun and
rigid body dynamics explains the effect. Next we study satellite gravity gra-
dient stabilization. If Earth’s satellites are not stabilized by some mechanism,
they will tumble – as do the asteroids – and will not be useful platforms. One
stabilization mechanism uses the gradient in the Earth’s gravitational field
and the basics of this mechanism are explained by rigid body theory. On the
same scale, but down to the Earth, we consider the motion of a multibody, a
mechanical system consisting of interconnected rigid bodies. Rigid body dy-
namics is used to study the motion of a robot arm. At the smallest scale we
examine the techniques of molecular dynamics. Physicists and chemists study
properties of matter by simulating the motions of a large number of interact-
ing molecules. At the most basic level this is a problem in quantum mechan-
ics. However, there are properties which can be calculated by idealizing the
material to be a collection of interacting rigid bodies.

Three appendices are provided on spherical trigonometry, elliptic functions
and Lie groups and Lie algebras. Lie groups and Lie algebras unify the subject.
Appendix C provides background on all the Lie group concepts used in the
text.

Some choices made in the course of writing the book should be mentioned.
The application of mechanics often boils down to making a calculation and
getting the useful number. I have tried to keep calculations foremost in
mind. There are no theorem–proof structures in the book. Rather observations
are made and substantiated by methods which are decidedly computational.
Rarely are equations put in dimensionless form because one can rely on di-
mensional checks to avoid algebra mistakes and misconceived physics. Of
course, when it comes time to compute one is well advised to pay attention to
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the scalings. Various notations are used in the text ranging from “old tensor”
to intrinsic operators independent of coordinates and the concise notations
of [1,23] which facilitate the computations. There is a glossary in Appendix D
of the notations used. Examples are set aside in italic type and end with the
symbol ♦.

William B. Heard

Alexandria, Virginia, U.S.A., 23 August 2005
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1

1
Rotations

This chapter is devoted to rotations in three-dimensional space. Rotations are
fundamental to rigid body dynamics because there is a one-one correspon-
dence between orientations of a rigid body and rotations in three-dimensional
space. The theory of rotations is a classical subject with a rich history and a
variety of modes of expression. We shall begin by expressing the elements of
the theory in terms of vectors and linear operators. Next, quaternions will be
introduced and additional elements of the theory developed with them. This
will lead to some elegant connections between rotations and spherical geom-
etry. This leads, via the stereographic projection and Möbius transformations,
to a description of rotations in terms of complex variables.

1.1
Rotations as Linear Operators

One way to approach rotations is to study their effect on spatial objects. The
language of vectors and matrices provides a natural calculus. This section re-
views some basic algebra of vector spaces and establishes our notation. Then
the angle of rotation and axis of rotation as well as the Euler angles are studied
as ways to parameterize rotation matrices.

1.1.1
Vector Algebra

Let us first establish some notation. Let V be a finite-dimensional vector space
over the real numbers, R. The elements of V, the vectors, will be denoted by
bold, lower case Latin letters, u. A basis of V is a set of vectors {ei} having the
property that every vector has a unique representation as a linear combination
of basis elements. The basis vectors will be indexed with subscripts. Let V∗ be
the dual vector space of V – the space of all linear, real valued functions on V.
The elements of V∗, the covectors, will be denoted by bold, lower case Greek

Rigid Body Mechanics: Mathematics, Physics and Applications. William B. Heard
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2 1 Rotations

letters, υ. For each basis {ei} of V there is a basis {εi} of V∗ defined by

εi(ej) = δij

where δij is the Kronecker delta. If u = uiei, 1 then e and u will denote

e = ( e1 . . . en ) u =




u1

...
un




and the representation of a vector u in the basis e is denoted by

u = eu

The basis e will also be referred to as a frame. Similarly, if υ = υiε
i, then ε and

υ will denote

ε =




ε1

...
εn


 υ =

(
υ1 · · · υn

)

and the representation of covector υ in the basis ε is denoted by

υ = υε

This notation is also found in [1] which is a good source of material on geo-
metrical aspects of mechanics.

The distinction between a vector u = eu and its components u relative to a
basis e is of prime importance. The former is invariant under a change of basis
and the latter, of course, is not. We shall always reserve the bold-face font for
the invariant form and the regular typeface components relative to a basis. A
linear operator A on V takes vector x ∈ V to vector A(x) ∈ V and preserves
the operations of the vector space

A(ax + by) = aA(x) + bA(y), for all a, b ∈ R and x, y ∈ V

Given a linear operator A and a basis {ei} define the matrix representation
A = [Ai

j] (row superscript i and column subscript j) by

A(ej) = Ai
jei

The action of A on any u = ujej is then represented as

Au = Ai
ju

jei

1) The summation convention that repeated indices indicate a sum
over their range is used here and throughout the text.
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The matrix can be regarded as operating on a row of basis vectors from the
right according to

A(u) = uj f j with f j = Ai
jei

This can be expressed in a matrix form as

(
f1 f2 f3

)
=
(

e1 e2 e3
)



A1
1 A1

2 A1
2

A2
1 A2

2 A2
3

A3
1 A3

2 A3
3




or in the shorthand notation
f = eA

Alternatively it can be regarded as operating on a column of components from
the left according to

A(u) = viei with vi = Ai
juj

This can be expressed as




v1

v2

v3


 =




A1
1 A1

2 A1
2

A2
1 A2

2 A2
3

A3
1 A3

2 A3
3






u1

u2

u3




or
v = Au

Given a pair of vectors u, v, a scalar or inner product on V assigns a non-
negative, real number 〈u, v〉 which has the following properties:

if u �= 0 then 〈u, u〉 > 0

〈u, v〉 = 〈v, u〉
〈aiei, bjej〉 = aibj〈ei, ej〉

An inner product may be expressed in the following equivalent ways:

〈u, v〉 = u · v = (uiei) · (vjej) = uiviGij

where the real numbers
Gij = ei · ej

are components of a symmetric, positive definite matrix G called the metric
tensor. The Euclidean inner product is distinguished by Gij = δij. In the Eu-
clidean case

u · v = utv = vtu
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Given an inner product we can define the length or norm of a vector and
the angle between two vectors. The norm of u is

‖u‖ =
√
〈u, u〉

The angle between u and v is

arccos
( 〈u, v〉
‖u‖‖v‖

)

Tensors are important objects in rigid body mechanics and we now set
down the basics of tensor algebra. We start with the algebraic definition of
tensors of rank 2.2 A tensor of rank 2 assigns a real number to a pair of vectors
or covectors and is linear in each argument. A covariant tensor T of rank 2
assigns a real number to pairs of vectors T(u, v) ∈ R. The metric tensor is an
example of a covariant tensor. A contravariant tensor T of rank 2 assigns a real
number to pairs of covectors T(υ, ν) ∈ R. A mixed tensor T of rank 2 assigns
a real number to a vector–covector pair T(u, ν) ∈ R. The components of a ten-
sor are its values on basis vectors. Thus, a covariant tensor A has components
aij = A(ei, ej) and a mixed tensor B has components bi

j = B(ei, εj).
Tensors can be formed from tensor products of vectors and covectors. The

tensor products are denoted with the symbol⊗ and are defined by their action
on their arguments. Thus we define a covariant tensor υ⊗ ν by υ⊗ ν(u, v) =
υ(u)ν(v) and define the mixed tensor u⊗ ν by u⊗ ν(υ, v) = υ(u)ν(v). It is
not the case that every tensor is a tensor product but every tensor is a linear
combination of tensor products of basis vectors. For example,

T(µiε
i, vjej) = µiv

jT(εi, ej)

Addition and scalar multiplication of the tensors can be defined by their
action on vectors

(aT + bS)(u, v) = aT(u, v) + bS(u, v)

In the case of mixed tensors, the result of this construction is a new vector
space V ⊗V∗. When V has dimension n, V ⊗V∗ has dimension n2 . The same
construction can be carried through for pairs of covectors and the resulting
vector space V∗ ⊗ V∗ again has dimension n2.

The subspace
∧2 V∗ of V∗ ⊗ V∗ consists of skew-symmetric covariant ten-

sors, that is, of covariant tensors Ω which satisfy

Ω(u, v) = −Ω(v, u)

2) The development extends to any rank but we will need only rank 2.
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Example 1.1 The tensor T = ν⊗ υ− υ⊗ ν is skew-symmetric because

T(u, v) = ν(u)υ(v)− υ(v)ν(u)

and
T(v, u) = ν(v)υ(u)− υ(u)ν(v) = −T(u, v). ♦

The members of
∧2 V∗ are called 2-forms over V . Covectors, members

of V∗, are also called 1-forms. There is a product, the wedge product, which
produces a 2-form ω ∧ µ from two 1-forms ω and µ. The wedge product is
defined by its action on its arguments

ω ∧ µ(u, v) = ω(u)µ(v)−ω(v)µ(u)

The wedge product is basic to the geometric treatment of Hamiltonian me-
chanics.

Now we follow [1] to establish the connection between rank 2 mixed tensors
and linear operators. If A is a linear operator, let TA be the tensor defined by
the action TA(v, ν) = ν(A(v)). The components of TA are given by

TA
i
j = TA(ej, εi) = εi(A(ej)) = Ai

j

Thus the components of TA are the same as those of A. We will exploit this cor-
respondence, borrowing from the theory of dyadics, to represent linear trans-
formations by

A(ukek) = ei A
i
jε

j(ukek) = ei A
i
ju

kδjk = ei A
i
ju

j (1.1)

Thus the action of the second-rank tensor depends on its object. If applied
to a vector–covector pair it produces a scalar and if applied to a vector it re-
turns another vector. This is reminiscent of the dot and double-dot products
of dyadics [2] which are closely related to second-rank tensors.

The combinations εe and e⊗ ε arise frequently in the manipulation of ten-
sors. The product εe is the identity matrix because




ε1

ε2

ε


 ([e1e2e3

])
= [εi(ej)] = I

The product e⊗ ε is the identity operator because

[
e1e2e3

]
⊗




ε1

ε2

ε


 = ei ⊗ εi

and for any vector v = viei

(ei ⊗ εi)(vkek) = vkeiδik = v
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The above representation leads to a succinct representation of linear opera-
tors

A = eAε

which is shorthand for A = Ai
jei ⊗ εi so that

A(v) = eAε(ev) = eAv

Now consider the effect of a change of basis. Suppose e and ē are bases of V
linearly related by

e = ēB

Then a vector v has the representations

v = ev = ēBv = ēv̄

so that the components in the two bases are related by

v̄ = Bv

The covector relations
I = eε = ēBε = ēε̄

give
ε̄ = Bε

Thus a covector µ has the representations

µ = µε = µB−1ε̄ = µ̄ε̄

so that the components in the two bases are related by

µ = µ̄B

The effect of change of basis on a linear operator follows immediately

A = eAε = ēBAB−1ε̄ = ēĀε̄

or
Ā = BAB−1

Given the linear operators A, B with the matrix representations A, B, the ma-
trix representation of the composite map B ◦A,A followed by B, is the matrix
product BA. The basis vectors transform as

e′ = eBA

and the components transform as

v′ = BAv
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For any n the vector space Rn has the standard basis {ei} where ei is the
column of length n having a single nonzero entry, 1 in row i. The inner product
in the standard basis is

u · v = ut = vu = uivi

where no distinction is made between ui and ui. In R3 there is also a vector
product or cross product

(aiei)× (bjej) = εijkaibjek = (a2b3− a3b2)e1 +(a3b1− a1b3)e2 +(a1b2− a2b1)e3

where εkij is the permutation symbol

εkij =




1 if i j k is an even permutation of 123
−1 if i j k is an odd permutation of 123

0 otherwise

We will have no further need in this chapter to distinguish between subscripts
and superscripts, so subscripts will be used. In this case matrix entries will be
denoted by Aij with row index i and column index j. Superscripts will return
with a vengeance when generalized coordinates are considered.

1.1.2
Rotation Operators on R3

A rotation is a linear transformation, R, that fixes the origin, preserves the
lengths of vectors, and preserves the orientation of bases. That is,

R : V → V : x 
→ R(x)

R(0) = 0

R(x) · R(x) = x · x

R(e1) · (R(e2)×R(e3)) = e1 · (e2 × e3)

The length-preserving property becomes, in a matrix form,

R(x) · R(x) = (xjRijei) · (xl Rklek) = xjxl RijRil = xixi for all {xi} ∈ R3

which implies that
RijRil = δjl or RtR = I

This defines an orthogonal matrix. The orientation preserving condition be-
comes

Rk1εkijRi2Rj3 = 1 or det R = +1

When R and S are orthogonal, then (RS)tRS = StRtRS = I. When R is or-
thogonal R−1 = Rt and (R−1)tR−1 = RRt = I. Therefore RS and R−1 are
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also orthogonal. Clearly I is orthogonal. The product of orthogonal matri-
ces preserves the determinant, that is, if det R = det S = 1 then det RS =
det R det S = 1. If det R = 1 then det R−1 = 1 because det RR−1 = det I = 1.

It follows from these facts that the orthogonal matrices of determinant 1
form a group.3 The group is called SO(3) – the special orthogonal group of or-
der 3. This group has the additional structure of a three-dimensional manifold
and is therefore a Lie group. In the next section we begin to study parame-
terizations, or coordinates, of SO(3). The basics of the Lie group theory are
outlined in Appendix C.

In addition to preserving lengths, orthogonal matrices preserve angles be-
cause they preserve inner products

(Ru)tRv = utRtRv = utv

Members of SO(3) also preserve R3 vector products in the sense that
A(x× y) = Ax × Ay. To prove this, it is enough to show it for e1, e2, e3, the
standard basis of R3. Let A ∈ SO(3) be presented in terms of its orthonormal
columns, A = [c1c2c3] so that Aei = ci. Then

A(ei × ej) = A(εijkek) = εijkAek = εijkck = ci × cj = Aei × Aej

Every member of SO(3) fixes not only the origin but actually an entire line.
This follows from the structure of eigensystems of rotation matrices. The
length preserving property of a rotation requires that eigenvalues have mag-
nitude 1. To show this we must allow for complex eigenvalues and eigenvec-
tors and use the norm ‖x‖2 = (x∗)tx where x∗ is the complex conjugate of x.
Then Rx = λx implies that ‖Rx‖2 = λ∗λ(x∗)tx = |λ|2‖x‖2. In other words
‖Rx‖ = ‖x‖ implies |λ| = ±1. The characteristic polynomial of a rotation
matrix is a cubic and one of its roots must be +1 because det R = 1. Thus,
any eigenvector corresponding to λ = 1 is fixed and real. The set of all such
eigenvectors forms the axis of rotation.

1.1.3

Rotations Specified by Axis and Angle

First consider plane rotations. Represent vectors as complex numbers (x, y) ↔
x + ıy = ρ exp(ıθ). Then a counterclockwise rotation by angle φ is simply
multiplication by exp(ıφ): z → exp(ıφ)z = ρ exp[ı(θ + φ)]. In rectangular
components

x + ıy = z → z′ = eıθ(x + ıy) = (x cos θ− y sin θ) + ı(x sin θ + y cos θ)

3) A group G is a set equipped with a binary operation such that if
a, b ∈ G then ab ∈ G. There is an identity element e such that ea = a
for every a ∈ G and for every a ∈ G there is an inverse a−1 such that
aa−1 = e.
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This shows that rotations by angle θ about the x, y, z axes are represented by




1 0 0
0 c −s
0 s c







c 0 s
0 1 0
−s 0 c


 and




c −s 0
s c 0
0 0 1




respectively, where c = cos θ, s = sin θ.
These matrices have alternative expressions as operators which emphasize

the role of the axis of rotation and the rotation angle. To state the alternative
forms we first introduce the idea of duality between R3 and so(3), which is the
set of all skew-symmetric 3× 3 matrices, that is matrices which have the prop-
erty that At = −A. In fact so(3) is the Lie algebra of the Lie group SO(3) (see
Appendix C). To each vector v there corresponds a skew-symmetric matrix v̂,

v =




v1
v2
v3


←→




0 −v3 v2
v3 0 −v1
−v2 v1 0


 = v̂

and to each skew-symmetric matrix M there is a vector �M,

M =




0 −u3 u2
u3 0 −u1
−u2 u1 0


←→




u1
u2
u3


 = �M

In the language of Lie algebra v̂ = adv (see Section C.3.2).
Using the canonical basis {e1, e2, e3} = {i, j, k}, this is expressed in terms

of tensor products as




u1
u2
u3


←→ u1 î + u2 ĵ + u3k̂

where

î = k⊗ j− j⊗ k ĵ = i⊗ k− k⊗ i k̂ = j⊗ i− i⊗ j

are the invariant forms of the ̂ operator. Here we have identified R3 and
(R3)∗ via 


u1
u2
u3


←→

(
u1 u2 u3

)

or
u⊗ v ←→ uvt
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With these preliminaries we can write that the rotations about the coordinate
axes are

i⊗ i + c(I − i⊗ i) + ŝi

j⊗ j + c(I − j⊗ j) + ŝj

k⊗ k + c(I − k⊗ k) + sk̂

These expressions can be generalized to an arbitrary axis of rotation deter-
mined by the unit vector n. The form of the expressions suggests that one
might construct a basis containing n and write immediately that

Rn(θ) = n⊗ n + cos θ(I − n⊗ n) + sin θn̂

and we now proceed to justify this. Let P represent the operator relative to the
standard basis which projects a vector onto the axis of rotation (Fig. 1.1)

P = nnt

P has the property that, for any r, Pr is a multiple of n

Pr = nntr = λn λ = ntr

and P is idempotent

P2 = (nnt)(nnt) = n(ntn)nt = nnt = P

I − P then represents the operator which projects a vector onto the plane nor-
mal to n because for any r

nt(I − P)r = ntr− ntnntr = 0

and
(I − P)2 = I − P− P + P2 = I − P

Let N = n̂. Any rotation of r through an angle θ leaves Pr invariant and
rotates (I − P)r by an angle θ in the plane spanned by (I − P)r, n× r. Thus
the rotation is given by r′ = Rn(θ)r with

Rn(θ) = nnt + cos θ
(

I − nnt)+ sin θ N

It is easy to show that the operators P, I− P, N form a closed system defined
by Table 1.1. Here we sketch the proof of one entry as an illustration

N2r = n× (n× r) = (r · n)n− r = (P− I)r

The relations in Table 1.1 can be used to recast the rotation operator entirely
in terms of N,

R = I + sin θN + (1− cos θ)N2 (1.2)


