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XIX

Physics is used to describe the production and behavior of radiation and radioac-
tivity and interactions that determine the energy deposited in media (dose) and
allow its detection and modification (shielding). These uses justify a comprehen-
sive and applied treatise of the major physics concepts of radiation protection, an
approach that was followed in the first offering and is continued here. Omissions
and errors have been remedied to the extent they have been discovered, and new
material has been added on internal radiation dose, the dynamics of radioactivity
released into environmental media, and log-normal statistics. And, as before,
numerous real world examples and problems are provided to demonstrate con-
cepts and hone skills.
A copy of this edition has been awarded, as promised, to the health physics

students at Oregon State University for discovering the wrong exponents on air
attenuation coefficients for photons and improper use of the quality factor for
neutron dosimetry. Other errors and omissions are almost certain to remain
despite the watchful eyes of readers and best efforts of editors and preparers;
therefore, readers are encouraged to continue to be watchful and to report mis-
haps (email: jemartin@umich.edu) for entry on the webpage: www-personal.
umich.edu/~jemartin. Those who do so will, as before, be eligible to receive an
edition of the book.
The book begins with a review (Chapter 1) of the basic structure of the atom as

an energy system, which may be of most use for the generalist or those with mini-
mal science background. The major discoveries in nuclear physics are revisited in
Chapter 2 in an attempt to recapture the insights grasped by those who discovered
the laws of nature that govern radiant energy and atomic structure. Radioactive
transformation of atoms with excess energy is addressed fully in Chapter 3
because of its importance in radiation protection, and the interactions, nuclear fis-
sion, and naturally occurring sources ( including radon) that yield such atoms are
addressed in Chapters 4, 5, and 6, respectively.
Interactions of radiation with matter are covered in Chapter 7 along with the

corollary subjects of radiation exposure and dose and the various parameters that
are needed to calculate them. Shielding, which is closely allied with radiation in-
teractions, is described in Chapter 8 and methods are provided for calculating
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XX

exposure and dose for several common sources and geometries. Basic models and
data resources are provided (Chapter 9) for determining internal radiation dose to
various organs and tissues due to inhalation and ingestion of radionuclides fol-
lowing their dispersion in environmental media, the dynamics of which are de-
tailed in Chapter 10. Chapter 11 describes the special situation of nuclear critical-
ity, including aspects of reactors and critical assemblies such as nuclear weapons,
and radioactive materials produced when such events happen. Chapters 12 and 13
build upon the material developed in Chapters 7 and 8 to develop principles of
radiation detection, the methods and equipment used in its measurement, and
statistics associated with such measurements. Neutrons and x rays represent spe-
cial issues in radiation physics, and these are addressed in Chapters 14 and 15,
respectively.
A course in radiation physics that is based on this book would be expected to

include substantial treatment of the material in Chapters 3 – 5 and Chapters 7
and 8, with selections from the other chapters, all or in part, to develop needed
background and to address specialty areas of interest to instructor and student.
The book is also designed to be a resource document; thus, decay schemes and
associated radiation emissions are included for about 100 of the most common
radionuclides encountered in radiation protection, as are inhalation and ingestion
dose factors, submersion dose factors, and atmospheric dispersion parameters.
Resources are also provided on activation cross sections, fission yields, fission-
product chains, photon absorption coefficients, nuclear masses, and abbreviated
excerpts of the Chart of the Nuclides. These are developed in the detail needed for
radiation physics uses and cross referenced to standard compendiums for
straightforward use when these more in-depth listings need to be consulted. The
data are current from the National Nuclear Data Center at Brookhaven National
Laboratory (nndc@bnl.gov); the Center and its staff are truly a national resource.
The units used in radiation protection have evolved over the hundred years or

so that encompass the basic discoveries and their uses in radiation physics. They
continue to do so with a fairly recent emphasis on Systeme Internationale (SI)
units, a trend that is not entirely accepted because U.S. standards and regulations
for control of radiation and radioactivity have continued to use conventional units.
To the degree possible, this book uses fundamental quantities such as electronic
charge and voltage (eV), transformations, and the numbers of atoms or emitted
particles and radiations to describe nuclear processes, primarily because they are
basic to concepts being described but partially to avoid the need to resolve any con-
flict between SI units and conventional ones. Both sets of units are defined as
they apply to radiation protection, but in general the more fundamental parame-
ters are used.
This endeavor is due in large part to my students whose feedback continually

shaped the teacher and to the many contributions of my research associates, Chul
Lee, Arthur Ray Morton, Suellen Cook, and Ihab Kamel, who compiled and
checked materials and did the expert computer work required. I am particularly
indebted to Chul Lee who has for ten years running contributed expertise, skill,
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and attention to detail with patience, persistence and understanding. My greatest
satisfaction will occur if it helps you, the reader, understand and appreciate the
basic physics of the exciting and rewarding field of radiation protection.

James E. Martin, Ph.D., CHP
Associate Professor (emeritus)

of Radiological Health
The University of Michigan
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1
Atoms and Energy

“Nothing in life is to be feared.
It is only to be understood.” M. Curie

Physics underpins radiation protection. It is necessary for describing the origins
of radiation, the types and properties of emitted radiation(s), and the mechanisms
by which radiant energy is deposited in various media. It is standard practice,
which is perhaps unique for radiation protection, to optimize protection as far
below established safe levels as reasonably achievable, and an understanding of
the physics of the various elements is fundamental to its accomplishment.
Four basic forces of nature control the dynamics (i.e., position, energy, work,

etc.) of all matter, including the constituents of atoms – protons, neutrons, and
electrons. These forces, along with their magnitude relative to gravity are:

. gravity, which is an attractive force between masses = G;

. the weak force, which influences radioactive transformation @ 1024G;

. the electromagnetic force, which exists between electric charges @ 1037G;

. the nuclear force, which is strongly attractive between nucleons only @ 1039G.

These forces range over some 40 orders of magnitude; however, two of them large-
ly determine the energy states of particles in the atom (gravitational forces are
insignificant for the masses of atom constituents, and the weak force is a special
force associated with the process of radioactive transformation of unstable atoms):

. the nuclear force between neutrons and protons which is so strong that it
overcomes the electrical repulsion of the protons (which is quite strong at
the small dimensions of the nucleus) and holds the nucleus and its constitu-
ent protons and neutrons together;

. the force of electrical attraction between the positively charged nucleus and
the orbital electrons which not only holds the electrons within the atom, but
influences where they orbit.
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The nuclear force, or strong force, is amazing and a bit strange. It exists only be-
tween protons and neutrons or any combination of them; consequently it exists
only in the nucleus of atoms. The nuclear force is not affected by the charge on
neutrons and protons, nor the distance between them. It is strongly attractive, so
much so that it overcomes the natural repulsion between protons at the very short
distances in the nucleus since it is about 100 times stronger than the electromag-
netic force.

The electromagnetic force, on the other hand, exists between charged particles no
matter where they are (a nucleus can also be thought of as a large charged particle
although it contains several protons, each of which has a unit positive charge).
The electromagnetic force is inversely proportional to the square of the distance, r,
between two particles with a charge of q1 and q2:

Fem ¼
1

4pe0

q1q2
r2
¼ k0

q1q2
r2

where the charges on each particle are expressed in coulombs and the separation
distance r is in meters. The constant k0 is for two charges in a vacuum and has the
value k0 = 8.9876 B 109 N m2/C2. This fundamental relationship is called Cou-
lomb’s law after its developer, and is referred to as the coulomb force. If q1 and q2
are of the same sign (i.e., positive or negative), F will be a repulsive force; if they
are of opposite signs, F will be attractive.

1.1
Structure of Atoms

Atoms contain enormous amounts of energy distributed among the energy states
of the constituent parts. Some of this energy is emitted from the atom if an overall
decrease occurs in the potential energy states of one or more of the constituents,
and similarly absorption of radiant energy by an atom yields an increase in the
potential energy of one or more states .Atom constituents are primarily neutrons,
protons, and electrons, and their number and array establish:

. what the element is and whether its atoms are stable or unstable;

. if unstable, how the atoms will emit energy (we will deal with energy later).

1 Atoms and Energy2



Modern theoryhas shown that protons andneutrons aremadeupofmore fundamen-
tal particles, or quarks, but it is not necessary to go into such depth to understand the
fundamentalmakeup of atoms and how they behave to produce radiant energy.
Atoms are bound systems – they only exist when protons and neutrons are bound
together to form a nucleus and when electrons are bound in orbits around the
nucleus. The particles in atoms are bound into such an array because nature forces
atoms toward the lowest potential energy possible; when they attain it they are stable,
and until they do they have excess energy and are thus unstable, or radioactive.
The proton has a reference mass of about 1.0. It also has a positive electrical

charge of plus 1 (+1).

The electron is much lighter than the proton. Its mass is about 1/1840 of that of
the proton and it has an electrical charge of minus one (–1).

The neutron is almost the same size as the proton, but slightly heavier. It has no
electrical charge.

When these basic building blocks are put together, which is what happened at
the beginning of time, very important things become evident. First, a proton will
attract a free electron to form an atom:

31.1 Structure of Atoms



1 Atoms and Energy

The resulting atom is electrically neutral. That is, each –1 charge on an orbital electron
is matched by a +1 positively charged proton in the nucleus. The total atom (proton
plus an electron) has a diameter of about 10–10 m (or 10–8 cm) and is much bigger
than the central nucleus which has a radius of about 10–15 m or (10–13 cm); thus
the atom is mostly empty space. The radius of the nucleus alone is proportional to
A1/3, where A is the atomic mass number of the atom in question or

r = roA1/3

The constant ro varies according to the element but has an average value of about
1.3 B 10–15 m, or femtometers. The femtometer (10–15 m) is commonly referred to
as a fermi in honor of the great Italian physicist and nuclear navigator, Enrico
Fermi.
A free neutron is electrically neutral and, in contrast to a proton, an atom does

not form; i.e., it is just a free neutron subject to thermal forces of motion.

Likewise, two or more neutrons are also unaffected by any electrons present.
However, if left alone for a while, a free neutron will undergo transformation
(commonly referred to as decay) into a proton and an electron; therefore, in a free
state, the neutron, though not an atom (no orbiting electrons), behaves like a
radioactive atom by emitting a negatively charged electron.

A neutron can, however, be bound with one or more protons to form a nucleus,
and in this state it does not undergo transformation but will maintain its identity
as a fundamental particle. When this occurs, an electron will join with the pro-
ton–neutron nucleus to form an electrically neutral atom:
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However, it now weighs about twice as much as the other one because of the
added neutron mass. And, if another (a second) neutron is added, a heavier one-
proton atom is formed:

This atom is the same electrically neutral atom (one proton balanced by one
electron) we started with, but it weighs about three times as much due to the two
extra neutrons, and because of the array of the particles in the nucleus it is an
atom with excess energy, i.e., it is radioactive. Each of these one-proton atoms is
an atom of hydrogen because hydrogen is defined as any atom containing one
proton balanced by one electron. Each atom has a different weight because of the
number of neutrons it contains, and these are called isotopes (Greek: “iso” =
same; “tope” = place) of hydrogen to recognize their particular features. These
three isotopes of hydrogen are denoted by the following symbols:

These symbols establish the nomenclature used to identify atoms: the subscript
on the lower left denotes the number of protons in the atom; the superscript on
the upper left refers to the mass number, an integer that is the sum of the number
of protons and neutrons in the nucleus. It is common practice to leave off the sub-
script for the number of protons because the elemental symbol, H, defines the
substance as hydrogen with only one proton. The isotopes of hydrogen are identi-
fied as protium (or hydrogen), deuterium, and tritium; the first two are stable and
exist in nature, but tritium is radioactive and will be converted to an isotope of
helium (He) through radioactive transformation. Almost all elements exist, or can
be produced, with several different mass numbers yielding several isotopes. A par-
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1 Atoms and Energy

ticular substance is often identified by its element and the mass number of the
isotope present, e.g., carbon-14 (14C), hydrogen-3 (3H, or tritium).

1.1.1
Two-proton Atoms

If we try to put two protons together, the repulsive coulomb force between them
at the very short distance required to form a nucleus is so great that it even over-
comes the strongly attractive nuclear force between the protons; thus, an atom
(actually a nucleus) cannot be assembled from just these two particles.

If, however, a neutron is added, it tends to redistribute the forces, and a stable
nucleus can be formed. Two electrons will then join up to balance the two positive
(+) charges of the protons to create a stable, electrically neutral atom of helium.

This atom is defined as helium because it has two protons. It has a mass of
3 (2 protons plus 1 neutron) and is written as helium-3 or 3He. Because neutrons
provide a cozy effect, yet another neutron can be added to obtain 4He.

Although extra mass was added in forming 4He, only two electrons are needed
to balance the two positive charges. This atom is the predominant form of helium
(isotope if you will) on earth, and it is very stable (we will see later that this same
atom, minus the two orbital electrons, is ejected from some radioactive atoms as
an alpha particle, i.e., a charged helium nucleus).
If yet another neutron is stuffed into helium to form helium-5 (5He), the atom

now contains more mass than it can handle and it breaks apart very fast (in 10–21 s
or so); it literally spits the neutron back out. There is just not enough room for the
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third neutron, and by putting it in we create a highly unstable atom. But, as we
observed for hydrogen and as we will see for other atoms, adding an extra neutron
(or proton) to a nucleus only destabilizes it; i.e., it will often stay for quite a while
as an unstable, or radioactive, atom due to the “extra” particle mass, identified by
the “isotope” of a given element.

1.1.2
Three-proton Atoms

Atoms with three protons can be assembled with three neutrons to form lithium-
6 (6Li) or with four neutrons, lithium-7 (7Li), or

Since lithium contains three protons, it must also have three orbital electrons,
but another orbit further away is required for the third electron because the first
orbit can only hold two electrons (there is an important reason for this which is
explained by quantum theory).
If we keep combining protons and neutrons we get heavier and heavier atoms,

but they obey the same general rules. The ratio of neutrons to protons is fairly
high in heavy atoms because the extra neutrons are necessary to distribute the
nuclear force and moderate the repulsive electrostatic force between protons in
such a way that the atoms stay together. The heaviest element in nature is 238U
with 92 protons and 146 neutrons; it is radioactive, but very long-lived. The heavi-
est stable element in nature is 209Bi with 83 protons and 126 neutrons. Lead with
82 protons is much more common in nature than bismuth and for a long time
was thought to be the heaviest of the stable elements; it is also the stable endpoint
of the radioactive transformation of uranium and thorium, two primordial natu-
rally occurring radioactive elements (see Chapter 6).

1.2
Nuclide Chart

This logical pattern of atom building can be plotted in terms of the number of
protons and neutrons in each to create a chart of the nuclides, a portion of which is
shown in Figure 1-1.
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