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Everything should be made as simple as possible 
but not simpler. 

Albert Einstein 





PREFACE 

Machines and mechanisms continually become more complex and more per- 
fect and, thus, are consistently accompanied by more mathematical model- 
ing and simulation. Sophisticated machines require sophisticated methods, 
which, nevertheless, must relate to  reality. Theories for rigid or elastic multi- 
body systems and FEM/BEM-algorithms are typical examples which have 
considerably influenced progress in mechanical engineering. 

Machines and mechanisms are systems of interconnected bodies in which 
the interconnections are often modeled by applying bilateral constraints. 
Although these models are sometimes correct, they often are not. Noise- 
generating mechanisms, fatigue, and wear in many cases are caused from rel- 
ative motion between two bodies that is usually characterized by impulsive 
and stick-slip phenomena. Because machines are multibody configurations 
with many dependent contacts, adequate theories are required. Moreover, 
many technical systems rely on impulsive and stick-slip processes to  perform 
their intended functions. The same type of theory is needed here as well. In 
this book we consider multibody systems with multiple dependent contacts 
and develop an adequate theory. In spite of the fact that the theory covers a 
huge, and still growing, number of applications, it was not available in a form 
accessible to  engineers. This book tries to  fill this gap. Our intention is not 
to  give another version of multibody system theory, but focus on multibody 
systems with multiple, unilateral, and, often, undecoupled contacts. 

The credit for establishing the mathematical foundation for nonsmooth 
mechanics belongs to  a few European colleagues, especially Professor Moreau 
in Montpellier and Professor Panagiotopoulos in Thessaloniki. Their theories 
are mainly based on convex analysis and on accompanying fields such as linear 
and quadratic programming in optimization theory. 

The Lehrstuhl B fur Mechanik (LBM) in Munich originally began in the 
1980s with a series of practical problems, but then became more involved with 
the mathematical foundations. This book is the result of ten years’ work 
with many dissertations and practical contributions concerning dependent 
contacts in multibody systems. The theory in Part 1 has reached a state 
which allows the treatment of very general problems of nonsmooth dynamics. 
The new ideas with respect to  impacts with friction have been confirmed by 
many experiments, although additional research is necessary to improve the 

vii 
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model. The level of confidence in the theory is very high. The number of 
successful industry applications, presented in Part 2, confirms the relevancy of 
our modeling approach, which turns out to be quite general, including many 
classical methods as special cases. Its significance is increasing so quickly that 
we easily could fill an additional volume with sophisticated applications. 

We have to thank many co-workers, associates, and friends for supporting 
us in writing this book. Dip1.-Ing. Markus Wosle supervised the printing 
and the computer generation of the figures. He also evaluated some of the 
examples and did some proofreading, as did Dip1.-Ing. Jurgen Braun. We are 
particularly indebted to  Professor Ali Nayfeh of Virginia Tech, who invited us 
to  contribute this book to his series on nonlinear dynamics. Many thanks are 
due to  our editors at Wiley for their friendly assistance and cooperation. We 
apologize to those whose work was inadvertently omitted in the literature. 
We welcome all comments and corrections from readers. 

Munchen. im November 1995 Friedrich Pfeiffer 
Christoph Glocker 
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INTRODUCTION 

1.1 Modeling Mechanical Systems 

Modeling mechanical systems such as machines and mechanisms is a matter 
of engineering intuition and of the relevant powers of practical imagination. 
Models of any area of mechanics, and of all physical fundamental subjects, 
necessarily include assumptions, usilally in an approximate form: moreover, 
the realization of models is often accompanied by numerical problems. In 
technical applications models are limited by the data situation. Establishing 
a complete data set for a machine might take more time than creating a 
model. 

The first step in considering models must be a very clear and precise 
elaboration of the goals of the model. Is it for simulating an object, or do 
I want to establish a plant model for control design, a parameter model for 
design improvements possibly in connection with optimization processes, or 
a system model replacing extensive laboratory and field tests? The different 
requirements will result in different model approaches. In any case the chances 
of establishing a good model depend very strongly on a deep understanding 
of the physical-technical processes of the object to  be modeled. A good model 
means a good representation of mechanical properties and therefore a good 
correspondence to practice and its measurements. 

One word on experiments and their modeling character: With the excep- 
tion of direct field tests with complete machines or transportation systems, 
most experiments, even in industry, are models including all the properties 
mentioned. Therefore, measurements are not a dogma, but researchers must 
know what equipment was used, what sensors were employed, how they were 
applied, where they were used, how signal processing was performed, and so 
on. Good measurements are as rare as good theoretical models. But, on 
the other hand, an optimized combination of experiments and theory might 
accelerate considerably progress in research and development with respect to  
a problem. This seems to be noteworthy, although it is not the topic of this 
book. 

3 



4 1 INTRODUCTION 

Good models are economical models; they include everything t o  achieve 
the goals, but not more. For an example, the size of multibody models rep- 
resenting vibrational systems depends on the largest frequencies of interest. 
These frequencies also indicate if some bodies must be modeled as elastic 
bodies. Grabbing of the clutch in cars, for instance, usually is observed in a 
frequency range of 6-15 Hz. F'rom this it is sufficient to  represent that process 
by a 3-4 mass configuration and a realistic stick-slip model. Anything more 
would be not economical. 

In this book we establish a unique theory on multibody systems with 
multiple contacts. Mechanically we deal with arrangements of an arbitrary 
number of rigid or elastic bodies which possess, in addition to  their contin- 
uous constraints being represented by steady constraint equations, an arbi- 
trary number of unilateral contacts characterized by noncontinuous constraint 
equations. Multibody systems with impact- and friction-driven processes are 
a typical example. To model systems of that kind we may think about quite 
a number of possibilities. 

First, we might leave the concept of multibody theory and model all bodies 
and all couplings of a machine by a FEM system, which industry really does. 
This results in extremely large models that can be very helpful when correctly 
applied. Computing times will be very large, the correctness of meshsizing is 
not always ensured and the numerical results need interpretation. Existing 
FEM codes cannot deal with unilateral problems correctly. 

As a second variant we may return to  our multibody system approach 
but model all joints, linear and nonlinear couplings, and all contacts in a 
more detailed way, taking into consideration, for example, local deformation 
effects, including local nonlinear behavior. Again we would have large com- 
puting times, and, as in all cases, we must verify our local coupling models 
by experiments. 

In the following we start with a multibody approach including arbitrary 
continuous joints and couplings, the last represented by any type of steady 
force law. With respect to  unilateral contacts we shall consider impacts 
and friction and a combination of both. Classical contact laws are applied 
throughout but with a specific adaptation to multiple-contact situations. As 
we shall see, this leads to  a formulation allowing for an application of a lin- 
ear complementarity algorithm which can be interpreted as a modified form 
of the well-known simplex algorithm. Bringing the equations of motion into 
such a form requires that,  at the very instant of change from static t o  sliding 
or from sliding to  static friction, the coefficients of static and sliding friction 
be equal. This is neither a loss of generality nor a violation of our physical 
understanding of technical processes, for the following reasons. In technical 
applications we apply friction characteristics in the form of a friction force FF 
as a function of relative velocity wrel or as a friction torque dependent on the 
relative angular velocity (Fig. 1.1). Typically, such curves start at zero rela- 
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material 

Figure 1.1: Friction Characteristics (Stribeck curves) 

tive velocity with a negative slope, which, by the way, is the main reason for 
self-excited oscillations in frictional systems. Therefore, at the very instant 
of a change from stiction to sliding, or vice versa, the friction force (torque) 
and, thus, the friction coefficients remain approximately the same, justifying 
the above requirement. It excludes only a jump, which in no way is a good 
approximation to reality. For sliding contacts, of course, any frictional force 
law may be applied. 

1.2 Single-Contact Dynamics 

All classical textbooks on mechanics and most current research concentrate 
on mechanical systems with only one or two degrees of freedom and with 
one impulsive or frictional contact. Books and papers on chaotical properties 
very often use as mechanical examples impact or stick-slip systems. In the 
following we review the basic ideas [5, 27, 35, 43, 49, 53, 591. 

Two bodies will impact if their relative distance becomes zero. This event 
is then a starting point for a process, which usually is assumed to have an 
extremely short duration. Nevertheless, deformation of the two bodies occurs, 
being composed of compression and expansion phases (Fig. 1.2). The forces 
governing this deformation depend on the initial dynamics and kinematics of 
the contacting bodies. The impulsive process ends when the normal force of 
contact vanishes and changes sign. The condition of zero relative distance 
cannot be used as an indicator for the end of an impact. 

In the general case of impact with friction we must also consider a possible 
change from sliding to sticking, or vice versa, which includes frictional aspects 
as treated later. 

In the simple case of only normal velocities we sometimes can idealize 
impacts according to Newton's impact laws, which relate the relative velocity 
after an impact with that before an impact. Such an idealization can only 
be performed if the force budget allows it. In the case of impacts by hard 
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Approach Compression 

Figure 1.2: Details of an Impact 

Expansion 

loaded bodies we must analyze the deformation in detail. Gear hammering 
taking place under heavy loads and gear rattling taking place under no load 
are typical examples. 

As in all other contact dynamical problems, impacts possess complemen- 
tarity properties. For ideal classical inelastic impacts either the relative ve- 
locity is zero and the accompanying normal constraint impulse is not zero, 
or vice versa. The scalar product of relative velocity and normal impulse is 
thus always zero. For the more complicated case of an impact with friction 
we shall find such a complementarity in each phase of the impact (Chapter 
8). Friction in one contact only is characterized by a contact condition of 
vanishing relative distance and by two frictional conditions, either sliding or 
sticking (Fig. 1.3). 

From the contact constraint T D  = 0 we get a normal constraint force F N  
which, according to  Coulomb's laws, is proportional to the friction forces. For 
sliding FTS = - ~ F N  sgn(v,,l), and for stiction FTO = ~ o F N ,  where p and 
po are the coefficient of sliding and static friction, respectively. Stiction is 
indicated by vrel = 0 and by a surplus of the static friction force over the 
constraint force; i.e., p o l F ~ l  - IFTc( 2 0. If this friction saturation becomes 
zero the stiction situation will end and sliding will start again with a nonzero 
relative acceleration urel. Again we find here complementary behavior: Either 
the relative velocity (acceleration) is zero and the friction saturation is not 
zero, or vice versa. The product of relative acceleration and friction saturation 
is always zero. 

1.3 Multiple-Contact Dynamics 

We consider a multibody system with n bodies and f degrees of freedom. 
In addition we have n G  unilateral contacts where impacts and friction may 
occur. Each contact event is indicated by some indicator function - for 
example, the beginning by a relative distance or a relative velocity and the 
end by a relevant constraint force condition. The constraint equation itself 
is always a kinematical relationship. If a constraint is active it generates a 
constraint force; if it is passive no constraint force appears. 
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Figure 1.3: Sliding and Static Friction 

In multibody systems with multiple contacts these contacts may be de- 
coupled by springs or any other force law, or they may not. In the last case 
a change of the contact situation in only one contact results in a modified 
contact situation in the other contacts. If we characterize these situations 
by the combination of all active and passive constraint equations in all exist- 
ing contacts, we get a combinatorial problem of considerable extent by any 
change in the unilateral and coupled contacts. Let us consider this problem 
in more detail. 

Figure 1.4 shows ten masses which may stick or slide on each other. The 
little mass tower is excited by a periodically vibrating table. Gravity forces 
and friction forces act on each massland each mass can move to  the left 
with w-, to  the right with w+, or not move at all. Each type of motion is 
connected with some passive or active constraint situation. Combining all ten 
masses, each of which has three possibilities of motion, results in 31° = 59,049 
possible combinations of constraints. But only one is the correct constraint 
configuration. To find this one configuration is a crucial task of combinatorial 
search or an elegant, way of applying the complementarity idea. We shall focus 
on this way. 

As pointed out all contact dynamical problems possess complementarity 
properties [34, 40, 41, 50, 60, 61, 67, 681. For any unilateral contact the rela- 
tive kinematics is zero and some constraint forces are not zero, or vice versa. 
The scalar product of magnitudes representing relative kinematics and con- 
straint forces is always zero. This property possesses the character of a basic 
law in unilateral dynamics, the application of which makes multiple-contact 
problems solvable. Introducing these considerations into the equations of mo- 
tion and into the active set of constraint equations allows a reduction of these 
equations to  a standard complementarity problem, which is closely related 
to linear programming problems. The basic idea consists of the property 
that the complementary behavior of unilateral contact problems reduces the 
solution space for the constraint magnitudes drastically. Usually a unique 
solution can be found, and the combinatorial problem is solved. 
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a cos(wt) 

Figure 1.4: A Combinatorial Problem 

Changes of the contact situation, and thus the constraint configuration, 
depend on the evolution of the state and, therefore, on the motion itself. They 
generate a discontinuously varying structure of the equations of motion. Such 
systems are often called systems with time-variant structure or with time- 
variant topology. It is a typical property of all mechanical systems with 
impacts and friction in unilateral contacts. 



MULTIBODY 
KINEMATICS 

Kinematics is geometry of motion. Applied to multibody systems it describes 
the linear and angular positions of all bodies within the system and provides 
methods for calculating their velocities and accelerations. It also takes into 
account the directions of unconstrained and constrained motion which might 
occur when bodies are linked together by certain joints. 

2.1 Geometry and Definitions 

Multibody kinematics requires a precise and unique definition of coordinate 
frames and the transformations between them [ll, 751. In the following we 
shall use the inertial base I, the body-fixed base B or B; and some arbitrary 
reference frame R or Ri for convenience (Fig. 2.1). We say that a vector 
v E V is a component of vector space V .  It can be represented in any of the 
mentioned coordinate frames. 

Figure 2.1: Coordinate Frames 

9 
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Figure 2.2: Transformation Triangle 

For such a representation we apply the convention 

K B ( w )  := BW E I R 3 ,  
K I ( w )  := I W  E IR3 , 
K R ( w )  := RV E IR3 , 

which says that the components of the vector v are written in the coordinate 
frames B ,  1, R, respectively. Furthermore, we define the composition 

KI = AIB KB 3 (2.2) 

which has to  be applied to  any of such transformations in an adequate form 
(Fig. 2.2) [83]. Figure 2.2 nicely gives a direct geometrical interpretation of 
A B I A I B  = E resulting from eq. (2.2) and KB = A B I  o K I .  We may derive 
this important result following another route. 

Figure 2.3 shows two reference frames B and R and an arbitrary vector v 
with given coordinates with respect to  frame R, RW = (RU, ,  R W ~ ,  R W , ) ~ .  In 
order to get its coordinates BV = ( B U , ,  g w Y ,  B W , ) ~  we only have to  write it 
as a linear combination of the basis vectors of R, but using frame B instead. 
Hence, 

which expresses the well-known fact that the transformation matrix A B R  
from R to  B is composed of the unit basis vectors of frame R written down 
in frame B. From eq. (2.3) we get immediately 

The evaluation of the transformation matrices A I B  or A B I  follows well-known 
standard methods of rigid body kinematics. To rotate a coordinate frame B 
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Figure 2.3: Transformation of Vectors 

into a frame R we may use Euler or Kardan angles or any other set of angles 
which is convenient for our problem (Fig. 2.4). 

Every mapping can be composed of elementary rotations around some 
known axes. In the example of Kardan angles the three elementary rotations 
are given by 

0 s i na  cosa 

cosp 0 s inp  

- sinp 0 cosp 
A p = (  0 1 0); 

cosy - siny 0 

From this the complete transformation from B to  R is simply 

where the transformation sequence 

consisting of only elementary rotations has been used. The frames B1 and B1 
are intermediate systems which result from the first two elementary rotations. 
In the case of Euler angles the evaluation is similar and leads, with respect 
to  Fig. 2.4, to  an overall transformation matrix ARB = A7($)Aa(8)A7(p) .  
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Figure 2.4: Euler and Kardan Angles [55 ]  

From the equality ARB = A,ApA, and the structure of the elementary 
rotations we immediately get det(ARB) = 1, which is a general character- 
istic feature of any rotational mapping. For practical calculations these are 
helpful formulas, where in many cases the structure of existing machines and 
mechanisms allows a simple connection of the components by one degree of 
freedom only and thus by only one elementary rotation. 

An important process in considering multibody kinematics consists of the 
evaluation of many successive coordinate frames (Fig. 2.1), which has been 
used in the composition of the transformation matrix ARB.  
With respect to  Fig. 2.5 we get, for example, 

IV = A I B .  B V ,  

RV = A R B .  B V ,  
I V  = A I R .  RV = A I R A R B B V .  

Comparing the first and last equations results in the important relationship 

AIB = A I R .  A R B,  (2.6) 

which says that the transformation matrix from B to I can be composed by 
the transformation matrix from B to  R and by the one from R to  I .  

A,, 

Figure 2.5: Successive Coordinate Frames 
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2.2 Time Derivations 

One tedious task in multibody kinematics is the evaluation of the above trans- 
formations. The other tedious task consists of determining all velocities and 
accelerations in any of the chosen coordinate frames, mostly in the inertial 
and body-fixed frames. Therefore, a crucial factor in establishing multibody 
kinematics is time derivatives with respect to  moving coordinate systems. 

Let us start again with some vector T E V as a component of a vector 
space V. Applying strictly the definitions of eq. (2.1), we remember that 
KB(T) := B ( T )  means that the components of the time derivative r are given 
in frame B. In contrast, ( B T ) .  denotes the time derivatives of the components 
of a vector T given in frame B which we abbreviate ~ i '  := (BT) . .  This is a nec- 
essary formal definition with respect to  the reference for the (+)-components. 
Realizing a time derivation needs some additional considerations. We know 
from basic mechanics that a vector given in an inertial coordinate frame can 
be derived with respect to  time directly. An inertial system is the only one 
where mapping and time differentiation can be interchanged. Taken in our 
form 

KI(i.) := I ( + )  = ( I T ) .  = I + .  (2.7) 

Consequently, and wherever we want to  perform time derivation, we have to  
go back to an inertial form and transform the result to  the desired frame. 
Let us apply this idea to the time derivative of some vector with respect to a 
moving reference B: 

Multiplying the last equation from the left by ABI results in 

We then derive the important formula of all relative kinematics (sometimes 
called the Coriolis-equation) 

B ( T )  = BT + ~ 3 1 ~ .  B Y .  (2.9) 

In words: The time derivative of T represented in the coordinates of the 
moving frame B is equal to  the time derivative of the r-components as given 
in B and the vector product of the angular velocity between B and I (written 
in B )  and the vector BT with its components in B. We now have t o  explain 
the last term of eq. (2.9). 

We first show that ABIAIB = ~ 3 1 ~ .  For this purpose we consider the 
rotation of a body with respect to  I (Fig. 2.6), where B is a body-fixed frame. 
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Frame I 

X 

Figure 2.6: Rotation of a Body B 

Thus, the angular velocity f-2 of the body is the same as the angular velocity 
between the frames B and I ,  W I B .  Next we connect the origin of frame B 
and an arbitrary point of the rigid body by a vector T .  Then we can derive 
in one step [83] 

(2.10) 

(2.11) 

where gj. = 0 in the body-fixed frame. A comparison of eqs. (2.10) and (2.11) 
yields 

B b i B  = A B I A I B ,  (2.12) 

which is the first term of eq. (2.8). Transforming this expression into the 
I-frame and noting the transformation necessities of a tensor give 

I b I B  = A I B ( A B I & B ) A B I  = &BAEU. 

The skew-symmetry of b follows from eq. (2.4) with R 
entiate with respect t o  time to get 

(2.13) 

I ,  which we differ- 

A I B A B I  + A I B A B I  = 0. 
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We can then write (eq. 2.4) 

(2.14) 

. T  
because we may easily prove that A,, = (AgI )*  = (AIB)' = AIB.  Thus 
the tensor 3 is skew-symmetric and possesses the principal form 

(2.15) 

from which we derive the correspondence 

3 . r  = w  x r .  (2.16) 

With the above properties we can easily derive a well-known formula with 
respect to  Fig. 2.3 and the unit vectors used in eq. (2.3). Multiplying eq. 
(2.13) from the right by AIB gives 

AIB = I ~ ~ B A I B  with A I B  = ( Ie : ,  I e f ,  1.:) . (2.17) 

Differentiating every component results in 

B Ief  = I w I B  x Iei , 

which expresses the physical fact that the time derivative of a unit vector can 
only result in a change in its direction but not in a change in its magnitude. 

2.3 Velocities and Accelerations 

With the preceding chapters we have a sound basis for the evaluation of 
velocities and accelerations in various coordinate frames. 

A typical situation of relative kinematics is shown in Fig. 2.7. We fre- 
quently apply a number of reference points (e.g., P, R,  0) and various coor- 
dinate systems (e.g., I , C , B ) ,  where C might be some frame convenient for 
the problem under consideration. Point 0 has velocity vo, and point P has 
velocity vup. The body is exhibited to  some angular velocity 0 which we 
define later in detail. Our convenience reference C might have an angular 
velocity WIC between C and I .  Point R is fixed in the inertial frame. As seen 
from the point R and according to  eq. (2.9), the absolute velocity of point P 
represented in the moving frame C can be written as 

C U P  = C ( + R P )  = C+RP + C W I C  x C r R P .  (2.18) 



16 2 MULTIBODY KINEMATICS 

Figure 2.7: A Typical Configuration of Relative Kinematics 

With the geometrical relationship TRP = TRO +TOP (Fig. 2.7) we obtain the 
well-known relation 

The physical interpretation is straightforward and easy. 
In many cases, though, our moving coordinate frame will be some body- 

fixed system B. If, for example, in eq. (2.19) we replace point 0 by a new 
body-fixed point P and the old point P by a second body-fixed point Q (Fig. 
2.8), we obtain 

BVQ = B V P  + B T P Q  + B W I B  x BTPQ 
(2.20) 

with B V P  = B T R P  + BWIB x B T R P .  

In frame B we have B T P Q  = 0, which is the rigid body definition. Therefore, 

BVQ = B V P  + B a  x B T P Q  (2.21) 

where B V P  is given by the second equation in (2.20). Equation (2.21) can be 
easily written down in a body-fixed frame and then, if needed, transformed 
in any base C: 

ACB BVQ = ACB B V P  + (A CB B ~ A B C ) ( A C B  B T P Q )  , 
C V Q  = CUP +c h C T ~ Q  (2.22) 


