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This book is the result of a sequence of two courses given in the School of Applied 
and Engineering Physics at Cornell University. The intent of these courses has been 
to cover a number of intermediate and advanced topics in applied mathematics that 
are needed by science and engineering majors. The courses were originally designed 
for junior level undergraduates enrolled in Applied Physics, but over the years they 
have attracted students from the other engineering departments, as well as physics, 
chemistry, astronomy and biophysics students. Course enrollment has also expanded 
to include freshman and sophomores with advanced placement and graduate students 
whose math background has needed some reinforcement. 

While teaching this course, we discovered a gap in the available textbooks we felt 
appropriate for Applied Physics undergraduates. There are many good introductory 
calculus books. One such example is Calculus andAnalytic Geometry by Thomas and 
Finney, which we consider to be a prerequisite for our book. There are also many good 
textbooks covering advanced topics in mathematical physics such as Mathematical 
Methods for Physicists by Arfken. Unfortunately, these advanced books are generally 
aimed at graduate students and do not work well for junior level undergraduates. It 
appeared that there was no intermediate book which could help the typical student 
make the transition between these two levels. Our goal was to create a book to fill 
this need. 

The material we cover includes intermediate topics in linear algebra, tensors, 
curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace 
transforms, differential equations, Dirac delta-functions, and solutions to Laplace’s 
equation. In addition, we introduce the more advanced topics of contravariance and 
covariance in nonorthogonal systems, multi-valued complex functions described with 
branch cuts and Riemann sheets, the method of steepest descent, and group theory. 
These topics are presented in a unique way, with a generous use of illustrations and 
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graphs and an informal writing style, so that students at the junior level can grasp and 
understand them. Throughout the text we attempt to strike a healthy balance between 
mathematical completeness and readability by keeping the number of formal proofs 
and theorems to a minimum. Applications for solving real, physical problems are 
stressed. There are many examples throughout the text and exercises for the students 
at the end of each chapter. 

Unlike many text books that cover these topics, we have used an organization that 
is fundamentally pedagogical. We consider the book to be primarily a teaching tool, 
although we have attempted to also make it acceptable as a reference. Consistent 
with this intent, the chapters are arranged as they have been taught in our two course 
sequence, rather than by topic. Consequently, you will find a chapter on tensors and 
a chapter on complex variables in the first half of the book and two more chapters, 
covering more advanced details of these same topics, in the second half. In our 
first semester course, we cover chapters one through nine, which we consider more 
important for the early part of the undergraduate curriculum. The last six chapters 
are taught in the second semester and cover the more advanced material. 

We would like to thank the many Cornell students who have taken the AEP 
3211322 course sequence for their assistance in finding errors in the text, examples, 
and exercises. E.A.W. would like to thank Ralph Westwig for his research help and 
the loan of many useful books. He is also indebted to his wife Karen and their son 
John for their infinite patience. 

BRUCE R. KUSSE 
ERIK A. WESTWIG 

Ithaca, New York 
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1 
A REVIEW OF VECTOR AND 
MATRIX ALGEBRA USING 
SUBSCRIPTISUMMATION 
CONVENTIONS 

This chapter presents a quick review of vector and matrix algebra. The intent is not 
to cover these topics completely, but rather use them to introduce subscript notation 
and the Einstein summation convention. These tools simplify the often complicated 
manipulations of linear algebra. 

1.1 NOTATION 

Standard, consistent notation is a very important habit to form in mathematics. Good 
notation not only facilitates calculations but, like dimensional analysis, helps to catch 
and correct errors. Thus, we begin by summarizing the notational conventions that 
will be used throughout this book, as listed in Table 1 .l. 

TABLE 1.1. Notational Conventions 

Symbol Quantity 

a A real number 
A complex number 
A vector component 
A matrix or tensor element 

An entire matrix 
A vector 

@, A basis vector 

T A tensor 
L An operator 

- - 

1 



2 A R E W W  OF VECTOR AND MATRIX ALGEBRA 

A three-dimensional vector can be expressed as 

v = VX& + VY&, + VZ&, (1.1) 

where the components (Vx, V,, V,) are called the Cartesian components of and 
(ex. e,, $) are the basis vectors of the coordinate system. This notation can be made 
more efficient by using subscript notation, which replaces the letters (x ,  y, z )  with the 
numbers (1 ,2 ,3 ) .  That is, we define: 

Equation 1.1 becomes 

or more succinctly, 

i= 1,2,3 

Figure 1.1 shows this notational modification on a typical Cartesian coordinate sys- 
tem. 

Although subscript notation can be used in many different types of coordinate 
systems, in this chapter we limit our discussion to Cartesian systems. Cartesian 
basis vectors are orthonormal and position independent. Orthonoml means the 
magnitude of each basis vector is unity, and they are all perpendicular to one another. 
Position independent means the basis vectors do not change their orientations as we 
move around in space. Non-Cartesian coordinate systems are covered in detail in 
Chapter 3. 

Equation 1.4  can be compacted even further by introducing the Einstein summation 
convention, which assumes a summation any time a subscript is repeated in the same 
term. Therefore, 

i=1,2,3 

I I 

I Y I 
2 

Figure 1.1 The Standard Cartesian System 



NOTATION 3 

We refer to this combination of the subscript notation and the summation convention 
as subscripthummation notation. 

Now imagine we want to write the simple vector relationship 

This equation is written in what we call vector notation. Notice how it does not 
depend on a choice of coordinate system. In a particular coordinate system, we can 
write the relationship between these vectors in terms of their components: 

C1 = A1 + B1 

C2 = A2 + B2 

C3 = A3 + B3. 

(1.7) 

With subscript notation, these three equations can be written in a single line, 

where the subscript i stands for any of the three values (1,2,3). As you will see 
in many examples at the end of this chapter, the use of the subscript/summation 
notation can drastically simplify the derivation of many physical and mathematical 
relationships. Results written in subscripthummation notation, however, are tied to 
a particular coordinate system, and are often difficult to interpret. For these reasons, 
we will convert our final results back into vector notation whenever possible. 

A matrix is a two-dimensional array of quantities that may or may not be associated 
with a particular coordinate system. Matrices can be expressed using several different 
types of notation. If we want to discuss a matrix in its entirety, without explicitly 
specifying all its elements, we write it in matrix notation as [MI. If we do need to 
list out the elements of [MI, we can write them as a rectangular array inside a pair of 
brackets: 

(1.9) 

We call this matrix array notation. The individual element in the second row and 
third column of [MI is written as M23. Notice how the row of a given element is 
always listed first, and the column second. Keep in mind, the array is not necessarily 
square. This means that for the matrix in Equation 1.9, r does not have to equal c. 

Multiplication between two matrices is only possible if the number of columns 
in the premultiplier equals the number of rows in the postmultiplier. The result of 
such a multiplication forms another matrix with the same number of rows as the 
premultiplier and the same number of columns as the postmultiplier. For example, 
the product between a 3 X 2 matrix [MI and a 2 X 3 matrix [N] forms the 3 X 3 matrix 
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[PI,  with the elements given by: 

7 

[PI 

The multiplication in Equation 1.10 can be written in the abbreviated matrix notation 
as 

[n / i l " l  = [PI,  (1.11) 

Ml JNJk = PIk, (1.12) 

We can also use subscripthmmation notation to write the same product as 

with the implied sum over the j index keeping track of the summation. Notice j 
is in the second position of the Mtj term and the first position of the N,k term, so 
the summation is over the columns of [MI and the rows of [N] ,  just as it was in 
Equation 1.10. Equation 1.12 is an expression for the iPh element of the matrix [PI. 

Matrix array notation is convenient for doing numerical calculations, especially 
when using a computer. When deriving the relationships between the various quan- 
tities in physics, however, matrix notation is often inadequate because it lacks a 
mechanism for keeping track of the geometry of the coordinate system. For example, 
in a particular coordinate system, the vector v might be written as 

V = le l  + 3e2 + 2C3. (1.13) 

When performing calculations, it is sometimes convenient to use a matrix represen- 
tation of this vector by writing: 

v +  [V]  = [;I. (1.14) 

The problem with this notation is that there is no convenient way to incorporate the 
basis vectors into the matrix. This is why we are careful to use an arrow (-) in 
Equation 1.14 instead of an equal sign (=). In this text, an equal sign between two 
quantities means that they are perfectly equivalent in every way. One quantity may 
be substituted for the other in any expression. For instance, Equation 1.13 implies 
that the quantity 1C1 + 3C2 + 2C3 can replace in any mathematical expression, and 
vice-versa. In contrast, the arrow in Equation 1.14 implies that [Vl can represent v, 
and that calculations can be performed using it, but we must be careful not to directly 
substitute one for the other without specifying the basis vectors associated with the 
components of [ Vl . 

- 

- 



VECTOR OPERATIONS 5 

1.2 VECTOR OPERATIONS 

In this section, we investigate several vector operations. We will use all the different 
forms of notation discussed in the previous section in order to illustrate their dif- 
ferences. Initially, we will concentrate on matrix and matrix array notation. As we 
progress, the subscript/summation notation will be used more frequently. 

can be represented using a 
matrix. There are actually two ways to write this matrix. It can be either a (3 X 1) 
column matrix or a (1 X 3) row matrix, whose elements are the components of the 
vector in some Cartesian basis: 

As we discussed earlier, a three-dimensional vector 

- 
V+[V] = [ ;] or v-. [u+ = [ V,  ~2 V, I. (1.15) 

The standard notation [VJt has been used to indicate the transpose of [Vl, indicating 
an interchange of rows and columns. Remember the vector can have an infinite 
number of different matrix array representations, each written with respect to a 
different coordinate basis. 

1.2.1 Vector Rotation 

Consider the simple rotation of a vector in a Cartesian coordinate system. This 
example will be worked out, without any real loss of generality, in two dimensions. 

We start with the vector A, which is oriented at an angle 8 to the 1-axis, as shown 
in Figure 1.2. This vector can be written in terms of its Cartesian components as 

- 
A = A,& + A&, (1.16) 

where 

A~ = A C O S ~  A2 = AsinO. (1.17) 

In these expressions A 3 1x1 = ,/A; + A; is the magnitude of the vector A. The 

vector A' is generated by rotating the vectorx counterclockwise by an angle 4. This 

Figure 1.2 Geometry for Vector Rotation 
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changes the orientation of the vector, but not its magnitude. Therefore, we can write 

A’ = A cos(8 + +)el + A sin(8 + 4)&. (1.18) -- 
A: A: 

The components A: and A; can be rewritten using the trigonometric identities for the 
cosine and sine of summed angles as 

A; = Acos(8 + 4) = Acos8cos4 - AsinOsin4 - * 
(1.19) AI A2 

A; = Asin(8 + 4) = Acos8sin4 +Asin8cos4. + * 

If we represent A and A’ with column matrices, 

- 
A -+ [A] = [::I x’ -+ [A‘] = , 

Equations 1.19 can be put into matrix array form as 

(1.20) 

(1.21) 

In the abbreviated matrix notation. we can write this as 

In this last expression, [R(4)] is called the rotation matrix, and is clearly defined as 

cos+ -sin+ 
(1.23) 

Notice that for Equation 1.22 to be the same as Equation 1.19, and for the matrix 
multiplication to make sense, the matrices [A] and [A’] must be column matrix arrays 
and [R(4)] must premultiply [A]. The result of Equation 1.19 can also be written 
using the row representations for A and A‘. In this case, the transposes of [R], [A] 
and [A’] must be used, and [RIt must postmultiply [AIt: 

[A’It = [AIt [RIt. (1.24) 

Written out using matrix arrays, this expression becomes 

(1.25) 

It is easy to see Equation 1.25 is entirely equivalent to Equation 1.2 1. 
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These same manipulations can be accomplished using subscriptlsummation nota- 
tion. For example, Equation 1.19 can be expressed as 

A; = R .  1J .A J .. (1.26) 

The matrix multiplication in Equation 1.22 sums over the columns of the elements 
of [R] .  This is accomplished in Equation 1.26 by the implied sum over j .  Unlike 
matrix notation, in subscriptlsummation notation the order of A, and Rij is no longer 
important, because 

R.  ‘I  .A J . = A J .R. .  ‘ I ’  (1.27) 

The vector ;I’ can be written using the subscript notation by combining Equa- 
tion l .26 with the basis vectors 

This expression demonstrates a “notational bookkeeping” property of the subscript 
notation. Summing over a subscript removes its dependence from anexpression, much 
like integrating over a variable. For this reason, the process of subscript summation 
is often called contracting over an index. There are two sums on the right-hand side 
(RHS) of Equation 1.28, one over the i and another over j .  After contraction over 
both subscripts, the are no subscripts remaining on the RHS. This is consistent with 
the fact that there are no subscripts on the left-hand side (LHS). The only notation 
on the LHS is the “overbar” on h‘, indicating a vector, which also exists on the RHS 
in the form of a “hat” on the basis vector @ i .  This sort of notational analysis can be 
applied to all equations. The notation on the LHS of an equals sign must always agree 
with the notation on the RHS. This fact can be used to check equations for accuracy. 
For example, 

&’ f RijAj, (1.29) 

because a subscript i remains on the RHS after contracting over j ,  while there are no 
subscripts at all on the LHS. In addition, the notation indicates the LHS is a vector 
quantity, while the RHS is not. 

1.2.2 Vector Products 

We now consider the dot and cross products of two vectors using subscriptlsummation 
notation. These products occur frequently in physics calculations, at every level. The 
dot product is usually first encountered when calculating the work W done by a force 
F in the line integral 
- 

W = 1 d F - F .  (1.30) 
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In this equation, d? is a differential displacement vector. The cross product can be 
used to find the force on a particle of charge q moving with velocity t in an externally 
applied magnetic field B: 

F = q(V x B). 

The Dot Product The dot or inner product of two vectors, 
defined by 

(1.31) 

and B, is a scalar 

- 
A . B = IKl I@ cos 0, (1.32) 

where 0 is the angle between the two vectors, as shown in Figure 1.3. If we take the 
dot product of a vector with itself, we get the magnitude squared of that vector: 

- 
A .  h = &I2. (1.33) 

In subscripthmmation notation, Equation 1.32 is written as 
- -  
A . B = A . C . . B . C .  1 1  J J '  (1.34) 

Notice we are using two different subscripts to form and B. This is necessary to 
keep the summations independent in the manipulations that follow. The notational 
bookkeeping is working here, because there are no subscripts on the LHS, and none 
left on the RHS after contraction over both i and j. Only the basis vectors are involved 
in the dot product, so Equation 1.34 can be rewritten as 

- -  
A .  B = AiBj(Ci * @ j ) .  (1.35) 

Because we are restricting our attention to Cartesian systems where the basis vectors 
are orthonormal, we have 

The Kronecker delta, 

8 . .  Ee 

'J {A 
2 rl" 

(1.36) 

(1.37) 

Figure 13 The Dot Product 
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facilitates calculations that involve dot products. Using it, we can write Ci  . @; = a,;, 
and Equation 1.35 becomes 

- -  
A ' B = AiBj6ij. (1.38) 

Equation 1.38 can be expanded by explicitly doing the independent sums over both i 
and j 

A . B = A I B 1 6 1 1  +AlB2612 +A1B3613 +A2B1&1 + . . . .  (1.39) 

Since the Kronecker delta is zero unless its subscripts are equal, Equation 1.39 reduces 
to only thee terms, 

- -  
A .  B = AlBl + AzB2 + A3B3 AiBi. (1.40) 

As one becomes more familiar with the subscript/summation notation and the 
Kronecker delta, these last steps here are done automatically with the RHS of the 
brain. Anytime a Kronecker delta exists in a term, with one of its subscripts repeated 
somewhere else in the same term, the Kronecker delta can be removed, and every 
instance of the repeated subscript changed to the other subscript of the Kronecker 
symbol. For example, 

A . 6 . .  1 ' J  = A .  J -  (1.41) 

In Equation 1.38 the Kronecker delta can be grouped with the B; factor, and contracted 
over j to give 

Ai(B;&j) = AiBi. (1.42) 

Just as well, we could group it with the Ai factor, and sum over i to give an equivalent 
result: 

Bj(Ai6i;) = Bj A; .  (1.43) 

This is true for more complicated expressions as well. For example, 

Mij(Ak6ik) = MijAi 

or (1.44) 

Bi T;k(C, a;,,,) = Bi TjkC j .  

This flexibility is one of the things that makes calculations performed with sub- 
scripthmmation notation easier than working with matrix notation. 

We should point out that the Kronecker delta can also be viewed as a matrix or 
matrix array. In thee dimensions, this representation becomes 

6,j + [I]  = 0 1 0 . (1.45) 

This matrix can be used to write Equation 1.38 in matrix notation. Notice the con- 
traction over the index i sums over the rows of the [ 13 matrix, while the contraction 

[: :] 
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over j sums over the columns. Thus, Equation 1.38 in matrix notation is 

1 0 0  

0 0 1  
x .B-+[A] t [ l ] [B]  = [A1 A2 A31 [0 1 01 [ii] 

= [AIt[B]. (1.46) 

The Cross Product The cross or vector product between two vectors 
a third vector c, which is written 

andB forms 

- 
C = A X B .  ( 1.47) 

The magnitude of the vector e is 

where 8 is the angle between the two vectors, as shown in Figure 1.4. The direction 
of c depends on the “handedness” of the coordinate system. By convention, the 
three-dimensional coordinate system in physics are usually “right-handed.’’ Extend 
the fingers of your right hand straight, aligned along the basis vector 61. Now, curl 
your fingers toward &he basis vector $2. If your thumb now points along 6 3 ,  the 
coordinate system is right-handed. When the coordinate system is arranged this way, 
the direction of the cross product follows a similar rule. To determine the direction of 
C in Equation 1.47, point your fingers along A, and curl them to point along B. Your 
thumb is now pointing in the direction of e. This definition is usually called the right- 
hand mle. Notice, the direction of is always perpendicular to the plane formed 
by A and B. If, for some reason, we are using a left-handed coordinate system, 
the definition for the cross product changes, and we must instead use a left-hand 
rule. Because the definition of a cross product changes slightly when we move to 

- 

I 
I , 

\ 
\ 

\ 
\ 
, \ 

\ 

‘. ‘ 
Figure 1.4 The Cross Product 

- 1  
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systems of different handedness, the cross product is not exactly a vector, but rather a 
pseudovector. We will discuss this distinction in more detail at the end of Chapter 4. 
For now, we will limit our discussion to right-handed coordinate systems, and treat 
the cross product as an ordinary vector. 

Another way to express the cross product is by using an unconventional determi- 
nant of a matrix, some of whose elements are basis vectors: 

Expanding the determinant of quation 1.49 gives 

( 1.49) 

This last expression can also be written using subscript/summation notation, with 
the introduction of the Levi-Civita symbol G j k :  

where Eijk  is defined as 

+ 1 for ( i ,  j, k) = even permutations of (1,2,3) 

if two or more of the subscripts are equal 
1 for ( i ,  j, k) = odd permutations of (1,2,3) . (1.52) 

An odd permutation of (1,2,3) is any rearrangement of the three numbers that can be 
accomplished with an odd number of pair interchanges. Thus, the odd permutations 
of (1,2,3) are (2,1,3), (1,3,2), and (3,2,1). Similarly, the even permutations of 
(1,2,3) are (1,2,3), (2,3, l), and (3,1,2). Because the subscripts i ,  j ,  and k can each 
independently take the values (1,2,3), one way to visualize the Levi-Civita symbol 
is as the 3 X 3 X 3 array shown in Figure 1.5. 

Figurr 1.5 The 3 X 3 X 3 Levi-Civita Array 
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The cross product, written using subscriptlsummation notation in Equation 1.51, 
and the dot product, written in the form of Equation 1.38 are very useful for manual 
calculations, as you will see in the following examples. 

1.2.3 calculations Using Subscript/summation Notation 

We now give two examples to demonstrate the use of subscript/summation notation. 
The first example shows that a vector’s magnitude is unaffected by rotations. The 
primary function of this example is to show how a derivation performed entirely 
with matrix notation can also be done using subscript notation. The second derives a 
common vector identity. This example shows how the subscript notation is a powerful 
tool for deriving complicated vector relationships. 

Example 1.1 Refer back to the rotation picture of Figure 1.2, and consider the prod- 
ucts A - A and A - A , first using matrix notation and then using subscriptlsummation 
notation. Because A’ is generated by a simple rotation of A we know these two dot 
products, which represent the magnitude squared of the vectors, should be equal. 

-/ -/ _ _  

Using matrices: 
- 
A - A -+ [AIt[A] 

A’. A’ -+ [A’It[A’]. 

(1.53) 

( 1.54) 

But [A’] and [Allt can be expressed in terms of [A] and [AIf as 

M’I = [N4)I[Al [A’]+ = [Alt[R(4)lt, (1.55) 

where R(+) is the rotation matrix defined in Equation 1.23. If these two equations 
are substituted into Equation 1.54, we have 

A’ ’ A’ + [Alt[R(4)lt[R(~,)I[Al. (1.56) 

The product between the two rotation matrices can be performed, 

and Equation 1.56 becomes 

-/ -/ 
A - A  -i [A]’[l][A] = [AIt[A] -+A*A. 

Our final conclusion is that 

(1.58) 

(1.59) 

To arrive at this result using matrices, care had to be taken to be sure that the matrix 
operations were in the proper order and that the row, column, and transpose matrices 
were all used correctly. 
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Now let’s repeat this derivation using the subscriptlsummation notation. Equa- 
tion l .40 allows us to write 

_ -  
A .  A = AiAi (1.60) 

(1.61) A . A  = A:A:. 

Notice how we have been careful to use different subscripts for the two sums in 
Equations 1.60 and 1.61. This ensures the sums will remain independent as they 
are manipulated in the following steps. The primed components can be expressed in 
terms of the unprimed components as 

-1 -1  

A,! = R . . A  ‘I I ., (1.62) 

where Rij is the i j th component of the rotation matrix R [ 4 ] .  Inserting this expression 
into Equation 1.61 gives 

(1.63) A * A  = R,A,R,,A,, 

where again, we have been careful to use the two different subscripts u and v .  This 
equation has three implicit sums, over the subscripts r ,  u, and u. 

In subscript notation, unlike matrix notation, the ordering of the terms is not 
important, so we rearrange Equation 1.63 to read 

--I --I 

(1.64) A * A  = A,A,R,R,,. 

Next concentrate on the sum over r ,  which only involves the [R]  matrix elements, 
in the product R,R,,. What exactly does this product mean? Let’s compare it to an 
operation we discussed earlier. In Equation 1.12, we pointed out the subscripted ex- 
pression MijNjk represented the regular matrix product [ M ] [ N ] ,  because the summed 
subscript j is in the second position of the [MI matrix and the first position of the 
[ N ]  matrix. The expression R,R,,, however, has a contraction over the first index of 
both matrices. In order to make sense of this product, we write the first instance of 
[R]  using the transpose: 

--I --I 

RruRru + [Rlt [Rl- (1.65) 

Consequently, from Equation 1.57, 

R,R,, = &,. (1.66) 

Substituting this result into Equation 1.64 gives 

(1.67) 

Admittedly, this example is too easy. It does not demonstrate any significant 
advantage of using the subscriptlsummation notation over matrices. It does, how- 
ever, highlight the equivalence of the two approaches. In our next example, the 
subscriptlsummation notation will prove to be almost indispensable. 
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~~~ ~~ 

Example 1.2 The subscript/summation notation allows the derivation of vector 
identities that seem almost impossible using any other approach. The example worked 
out here is the derivation of an identity for the double cross product between three 
vectors, X (B X 0. This one example essentially demonstrates all the common 
operations that occur in these types of manipulations. Other examples are suggested 
in the problems listed at the end of this chapter. 

The expression A X (B X c) is written in vector notation and is valid in any 
coordinate system. To derive our identity, we will convert this expression into sub- 
script/summation notation in a Cartesian coordinate system. In the end, however, we 
will return our answer to vector notation to obtain a result that does not depend upon 
any coordinate system. In this example, we will need to use the subscripted form for 
a vector 

- v = Vi&, (1.68) 

for a dot product between two vectors 
_ _  
A * B = AiBi, (1.69) 

and for a cross product 

To begin, let 
- 
D = B X C ,  (1.71) 

which, written using the Levi-Civita symbol, is 

= BiCj&€ijk. (1.72) 

Substituting Equation 1.71 into the expressionx X ( B X  c), and using the Levi-Civita 
expression again, gives 

A x  (Bx C) = A x  D =  A ~ D ~ ~ + ~ E , . , ~ .  (1.73) 

The sth component of D is obtained by dot multiplying both sides of Equation 1.72 
by ii, as follows: 

Substituting the result of Equation 1.74 into Equation 1.73 gives 

(1.74) 

(1.75) 



EXERCISES 15 

which we rearrange slightly to read 
- 
A X (B X C) = A r B i C j C t E r s t E i j s .  (1.76) 

To proceed, some properties of the Levi-Civita symbol need to be developed. First, 
because of the definition of the Levi-Civita symbol given in Equations 1.52, it is clear 
that reversing any two of its subscripts just changes its sign, i.e., 

E . .  = - E .  1kJ . = E .  Jk1. . (1.77) 

The second property involves the product of two Levi-Civita symbols that have a 
common last subscript: 

ZJk 

EijkEmnk = 8 i m 8 j n  - 8 i n 8 j m .  (1.78) 

With a considerable amount of effort, it can be shown that the RHS of Equation 1.78 
has all the properties described by the product of the two Levi-Civita symbols on 
the LHS, each governed by Equations 1.52. A proof of this identity is given in 
Appendix A. 

With Equations 1.77 and 1.78 we can return to Equation 1.76, which can now be 
rewritten 

- 

A X (B X C) = A r B , C j & , ( 8 , j & i  - & a t j ) .  (1.79) 

After removing the Kronecker deltas, we obtain 
- 
A X (B X C) = A j B i C j C i  - A i B i C j C j .  (1 30) 

At this point, you can really see the usefulness of the subscript/summation notation. 
The factors in the two terms on the F2HS of Equation 1.80 can now be rearranged, 
grouped according to the summations, and returned to vector notation in just two 
lines! The procedure is: 

(1.81) 

(1.82) 

Equation 1.81 is valid only in Cartesian systems. But because Equation 1.82 is in 
vector notation, it is valid in any coordinate system. 

K X (B X C) = ( A j C j ) ( B i C i )  - ( A i B i ) ( C j e j >  

= (K  * C)B - (K- B)C 

In the exercises that follow, you will derive several other vector identities. These 
will illustrate the power of the subscript/summation notation and help you become 
more familiar with its use. 

EXERCISES FOR CHAPTER 1 

1. Consider the two matrices: 
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With matrix notation, a product between these two matrices can be expressed as 
[kfI[Nl. Using subscript/summation notation, this same product is expressed as 

(a) With the elements of the [MJ and [N] matrices given above, evaluate the 
matrix products [MJ[Nl, [N[MJ and [MI[kfl ,  leaving the results in matrix 
array notation. 

(b) Express the matrix products of part (a) using the subscriptlsummation nota- 
tion. 

(c) Convert the following expressions, which are written in subscriptlsummation 
notation, to matrix notation: 

Mi j N j k .  

i. MjkNij. 

ii. MijNkj. 

fi. M . .N.  
J l  Jk* 

iV. MijNjk $. Tki. 

V. MjiNkj -k T i k .  

2. Consider the square 3 X 3 matrix [MI whose elements Mij are generated by the 
expression 

M . .  11 = i j 2  

and a vector v whose components in some basis are given by 

vk = k 

forc, j = 1,2,3, 

fork = 1,2,3. 

(a) Using a matrix representation for -+ [u, determine the components of 

(b) Determine the components of the vector that result from a premultiplication 
the vector that result from a premultiplication of [u by [MI. 

of [MI by [Ut. 
3. Thematrix 

1 ,Rl = [ cos8 sin8 
-s in8 cos8 

represents a rotation. Show that the matrices [RI2 = [R][R] and [RI3 = [RlER][Rl 
are matrices that correspond to rotations of 28 and 38 respectively. 

4. Let [D] be a 2 X 2 square matrix and [V]  a 2 X 1 row matrix. Determine the 
conditions imposed on [D] by the requirement that 

[D" = [VI+[Dl 

for any [ V ] .  

5. The trace of a matrix is the sum of all its diagonal elements. Using the sub- 
scriptlsummation notation to represent the elements of the matrices [TI and 
lM1, 


