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Preface 

This text gives an account of the principal properties of a tenuous gas, hot enough for some 
of the molecules to shed electrons and become ionized. In general a macroscopic volume of 
such a gas consists of a mixture of free electrons and the ions and neutrals of several molecular 
species and is called aplasma. If the temperature is high enough, e.g. N 10 000 K at a pressure 
of 1 Pascal, a hydrogen plasma will be fully ionized, which is the case of most interest in this 
book. If there is also a magnetic field present, the ions and electrons will gyrate about the field 
lines, producing an anisotropic medium with some very interesting properties. Because of the 
orbiting motions, it is more difficult for the plasma to flow across the magnetic field lines than 
along them and with very strong fields both the plasma and its energy are said to be ‘confined’ 
by the field, although some leakage across the field lines does occur. 

Examples of naturally occurring magnetoplasmas are found in the Sun’s corona, the solar 
wind and comet’s tails; laboratory examples include the plasma created in the fusion research 
machines known as tokamaks and in the application of what is termed ‘plasma processing’ to 
the manufacture of semiconductor devices. Although molten metal is not a plasma, it is a con- 
ductor of electricity and therefore subject to magnetic forces; its behaviour is described by the 
equations of magnetohydrodynamics (MHD), which are a limiting case of the magnetoplasma 
equations. Electric currents are used in industry to heat metals to the liquid state, when these 
metals can be stirred, levitated and pumped with magnetic fields. New applications of plasma 
physics arise from time to time; however, in a short book such as this there is space for little 
more than the basic principles of the subject. 

One of the attractions of plasma physics is the range of subjects required for its understand- 
ing; these include fluid mechanics, electricity and magnetism, kinetic theory and thermody- 
namics, although for this text relatively little experience in these topics is assumed. There are 
many equations, so some effort has been made to cross-reference them at each stage of devel- 
oping the theory. To help the reader with mathematical points, I have included ‘mathematical 
notes’ at appropriate stages in the chapters, and I have also have added some appendices cover- 
ing standard analyses. With a subject like plasma theory, subscripts are essential to distinguish 
between the properties of the several fluid components, so to avoid doubling up on subscripts, 
I have followed the common practice of employing the dyadic notation for tensors and where 
the vector and tensor analysis is complicated, I have filled in the steps involved. 

Many texts on plasma theory begin with a description of the collisionless motion of in- 
dividual charged particles known as particle orbit theory. Particles at a given time t and at a 
point r in physical space are then grouped according to their velocity w and a ‘kinetic’ equa- 
tion describing the evolution of the number density of particles at a point P = P(r, w, t) in 
phase-space is found. It is at this stage that particle collisions enter the model via a collision 
operator @, which removes particles from P or introduces particles into P by collisional scat- 
tering. Finally, integrals of the kinetic equation over velocity space yield the fluid or MHD 
equations. However, these moments representing the conservation of mass, momentum and 
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energy, are independent of @, the term containing which vanishes in each integration. Hence 
C could in fact be zero. The standard account thus precedes from a microscopic descrip- 
tion to what purports to be a collisional macroscopic model, without collisions playing any 
role at all. Terms corresponding to pressure and temperature appear in the moment equations 
and yet these properties are essentially continuum concepts that require the existence of local 
thermodynamic equilibrium, a state for which particle collisions are essential. 

To avoid the confusion and occasional errors that the standard approach has introduced 
into plasma theory, in this text the subject is developed in the reverse order from that described 
above, that is we start with collision-dominated classical fluid mechanics in Chapter 1, adding 
the effects of electromagnetic fields in Chapter 2. At this stage we only need sufficient knowl- 
edge of particle orbit theory to determine the length and time scales below which a fluid or 
continuum description is not valid. 

Chapter 3 presents the theory of small amplitude plasma waves and shock waves, and 
finishes with a brief introduction to magneto-ionic theory, required in studying the reflection 
and scattering of radio waves in the ionosphere. Stability of plasmas is treated in Chapter 4, 
covering the usual macroscopic instabilities of ideal plasmas, and also an important instability 
that depends on the electrical resistivity. Finally we remove collisions entirely from the model 
and introduce the Vlasov theory of plasma waves, applying it to Landau damping and the 
ion-acoustic instability, which has important applications in solar physics. Chapter 5 ,  which 
is concerned with transport in magnetoplasmas, starts from the Fokker-Planck equation and 
gives an account of the theory of electron-ion collision intervals and several other relaxation 
times of important in the transport of particle energy and momentum. 

The final chapter collects a miscellany of important topics, including second-order trans- 
port theory, thermal instabilities, particle orbit theory, magnetic mirrors, partially ionized plas- 
mas and a brief introduction to some important applications of plasma physics. By second- 
order transport is meant, for example, the transport of heat in the presence of strong fluid 
shear, when the heat flux vector depends not only on the temperature gradient as in Fourier’s 
law, but also on the rate of strain of the fluid. This proves to be very important in the presence 
of magnetic fields and leads to the thermal instabilities next described in the chapter. Particle 
orbits in the presence of magnetic field gradients is a particularly important phenomenon in 
near-collisionless plasmas, with applications to transport in tokamaks. Partially ionized plas- 
mas add the complexity of a third fluid comprised of the neutral particles, to the model, so 
a brief introduction to Saha’s equation for the dependence of the degree of ionization on the 
temperature and pressure is included. The final section briefly describes a few important ap- 
plications of the theory - fusion research, solar physics, metallurgy, MHD direct generation 
of electricity and dusty plasmas. 

The treatment ispitched at a level suitable for graduate students in mathematics, engineer- 
ing and physics who need an introductory account of plasma physics. It is recommend that 
the reader should aim to get a clear physical picture of the mechanisms at each stage before 
checking through the analysis. Most of the exercises are straightforward extensions of the 
theory and therefore worthy of attention. 

L. C. Woods 

Oxford, 1st August, 2003 
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Lists of physical constants, plasma parameters and frequently used symbols 

In SI units, the constants required in plasma theory are: 

I Physical Quantity 

Electron mass 
Proton mass 
Electron charge 
Boltzmann constant 
Permittivity (Free Space) 
Permeability (Free Space) 
Speed of light (Vacuum) 
Protordelectron mass ratio 
Temperature at 1 eV 
Planck constant 
Stefan-Boltzmann constant 
Gas constant 

The important plasma parameters are: 

Parameter 
~ ~~~~ 

Resistivity 
Cyclotron frequency (electrons) 
Thermal speed 
Larmor radius 
Coulomb logarithm 
Collision intervals 
Thermal conductivity (B = 0) 
Magnetic diffisivity 
Magnetic Reynolds number 
Plasma frequency 
Collisionless skin-depth 
Debye length 
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1 The Equations of Gas Dynamics 

1.1 Molecular models and fluids 

A plasma is a mixture of positive ions, electrons and neutral particles, electrically neutral 
over macroscopic volumes, and usually permeated by macroscopic electrical and magnetic 
fields. In addition to these ‘smoothed’ or averaged electromagnetic fields, which with lab- 
oratory plasmas are often imposed from outside the plasma volume, there are the localized 
micro-fields due to the individual particles. The trajectories of the charged particles are thus 
continuously modified by a range of electromagnetic forces, the average fields acting like 
body forces and the micro-fields like collisional forces. The micro-fields are responsible for 
the transmission of pressure and viscous forces, for the conduction of particle energy, and 
for the friction forces between diffusing components of the plasma. Some care is needed 
in dividing the continuum of electromagnetic forces into their macroscopic and microscopic 
components, but with this achieved, there is little formal distinction between the theory of the 
macroscopic behaviour of neutral gases and that of magnetoplasmas. 

The aim of this book is to describe the various physical processes that underpin plasma 
theory and the equations representing these processes. The distinction between what we shall 
term the ‘mechanisms’ and the equations based on them - symbolisms - is particularly im- 
portant in a complex subject like plasma physics. Definitions of physical properties can be 
taken either from the mechanisms or the symbolisms, but one must take care not to mix the 
two, e.g. to adopt a purely mathematical definition of a property and then to assume that this 
automatically entails the usual physical attributes of that property. 

Our method is to commence with the macroscopic description of the individual compo- 
nents of the plasma, that is we shall treat the collections of electrons, ions and neutrals as 
comprising separate fluids, and their fluid properties developed. In the next chapter they will 
be combined to make a plasma, an approach with the merit of making a clear distinction 
between the fluid and electrical properties of a plasma. Readers already familiar with fluid 
mechanics might skip to Chapter 2, although in § 1 .S there is an introduction to kinetic theory 
that will be required in later chapters. 

1.1.1 Introduction 

Except for the basic concept of a ‘mean-free-path’, the trajectories of individual particles 
will be described in a later chapter. In this chapter we shall introduce the standard macroscopic 
variables of gas dynamics, such as pressure, temperature, fluid velocity and entropy, and de- 
rive the equations relating them. Excepting entropy, these physical properties are best defined 
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in terms of mechanisms although sometimes synthetic definitions have a place. Consider tem- 
perature for example; either it is defined physically via thermometers and the mechanism of 
thermal equilibrium, which requires close physical contact through molecular particle colli- 
sions, or it may be defined symbolically as a kinetic temperature, which is a property of the 
distribution of molecular velocities and collisions are not explicitly involved. The danger of 
employing the second definition is that it is too easy to adopt properties of temperature that re- 
ally depend on the first definition. For example the conduction of heat, which depends on the 
temperature gradient, is a collisional process in which the gradient of the kinetic temperature 
would be misplaced without the additional constraint that the medium is collision-dominated, 
the precise meaning of which will be discussed later in 1.3.4. 

1.1.2 Microscopic particles 

A substance in the gaseous state consists of an assembly of a vast number of microscopic 
particles that, excepting when they collide with each other, move freely and independently 
through the region of physical space available to them. The nature of the particles depends 
largely on the temperature of the assembly. At low temperatures, but above the critical value 
at which liquefaction can occur, they are molecules. At higher temperatures the molecules 
dissociate into atoms, and at still higher temperatures the atoms become ions by shedding 
some of their electrons. The resulting assembly is termed a ‘plasma’. Partially ionized plasmas 
consist of a mixture of neutral atoms, electrons, and ions, requiring at least three distinct 
species of microscopic particles to be included in a complete mathematical representation of 
their collective behaviour. 

The simplest model of a microscopic particle is a small featureless sphere, possessing a 
spherically-symmetric force field. For neutral particles this field has a very short range, and 
the particles can be pictured as being almost rigid ‘billiard-balls’, with an effective diameter 
equal to the range of the force field. As they have no structure, these particles have only energy 
of translation. The gas is usually assumed to be sufficiently tenuous for collisions involving 
more than two particles at a time to be ignored, i.e. only binary collisions are considered. The 
model is appropriate for monatomic uncharged molecules. 

Diatomic and more complex molecuIes do not have symmetric force fields, but for many 
purposes they are also well represented by the billiard-ball model. Their relative orientations 
at collisions may be assumed to be randomly distributed, so that averages taken over a large 
number of encounters will have values independent of orientation, just as with symmetric 
force fields. It is the internal vibratory energies possessed by multi-atomic particles that give 
rise to the largest discrepancies between the predictions of the simple billiard-ball model and 
observation, a phenomenon that is easily included in kinetic theory by adding an average 
internal energy to the translatory energy of each molecule. 

Kinetic theory is concerned mainly with the connection between the motions and interac- 
tions of microscopic particles comprising a gas and the transport of macroscopic properties 
like fluid momentum and energy through that gas. The oldest example relating macroscopic 
properties to microscopic behaviour is provided by the pressure force acting on the walls of 
a gas container. That it is due to the near-continuous bombardment of the walls by the vast 
number of neighbouring molecules, is a concept dating back to Boyle and Newton. The more 
subtle relationship between heat and the energy of molecular agitation required more than an- 
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other century before it was revealed with increasing detail in the works of Waterston, Clausius, 
and Maxwell’. Clausius’ main contribution to kinetic theory was the concept of the mean free 
path, which is the average distance travelled by a molecule between successive collisions, and 
which led to Maxwell’s introduction of the velocity distribution function, to be discussed in 
$1.5. 

The intermolecular force law plays a central role in kinetic theory and classical kinetic 
theory proceeds on the assumption that this law has been separately established, either empir- 
ically or from quantum theory, except with charged particles, when the well-known Coulomb 
force law applies. We shall return to this topic in Chapter 5; for the present it is sufficient to 
understand the concept of the mean-free-path. 

1.1.3 The mean free path 

Two microscopic parameters play a leading role in our account of the collective behaviour 
of an assembly of particles. These are the mean free path A, which is the average distance 
moved by a particle between successive encounters with other particles, and the collision 
interval T ,  which is the average time taken by a particle to move this distance. The reciprocal 
of r is known as the ‘collision’ frequency, v = T - ~ .  The terminology is particularly fitting 
for ‘hard’ molecules, i.e. those with force fields abruptly falling to zero outside a molecular 
diameter CT, say. 

An approximate formula for X can be found as follows. Suppose there are n molecules 
per unit volume, and we assume that all are stationary, save one that has a velocity v, relative 
to the others. In a tenuous or dilute gas, X >> CT and hence mr2vr is a good approximation 
to the volume swept in one second by the sphere of influence of the moving particle. Those 
molecules with centres lying within this volume will experience a collision and therefore the 
collision frequency per molecule is 7-l = m2nvr.  Replacing v, by the average molecular 
speed E relative to the centre of mass of all the similar molecules within a macroscopic volume 
element, and writing X = re, we arrive at the estimate 

X x 1/(7r&) (7- = X / E ) .  (1.1) 

The accurate formula for X is 2-4 times this value. 
‘Soft’ molecules have extended force fields that make only slight changes in the momen- 

tum and energy of most passing molecules, so many such ‘grazing’ collisions are required to 
accumulate significant changes in these properties for a given test particle. However, by mod- 
ifying to denote an ‘effective’ diameter, we can extend (1.1) to the case of soft molecules. 
Then X becomes the average distance that a sequence of small-angle collisions takes to stop 
a test particle moving in a given direction, i.e. to give a 90” deflection, and T is the time it 
takes for this change to happen. Even with hard molecules, a small sequence of collisions is 
required to ‘stop’ a particle. Another consequence of this cascade process is that momentum 
and energy require related but slightly different times to be transported in a specified direction. 

The Coulomb force fields of electrons and ions have ranges extensive enough to influence 
great numbers of nearby particles, so that purely binary collisions are very rare. The billiard- 
ball model and the associated concept of a mean free path are not strictly relevant, although 

‘See The kind of motion we call heat by Stephan Brush, North-Holland Publishing Company, 1976. 
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it is usual to describe the distance required for a 90” deflection of a test particle as being a 
‘mean free path’. More precisely, X is defined to be the distance over which this particle loses 
its momentum along its initial direction of motion. 

1.1.4 Fluid particles 

A fluid is sometimes described as being a ‘continuum’, that is a substance that has a 
continuous rather than a discrete structure, but since nature is particulate, obviously this is 
an approximate model, valid only on a length scale so large that the mean free path appears 
negligible2. Familiar properties of a fluid are density, pressure, temperature and velocity, 
which we shall discuss in detail shortly. However, there are other important properties of 
fluids which depend on X having a non-zero magnitude and that would vanish in a genuine 
continuum, e.g. fluid viscosity, electrical conductivity and thermal conductivity, all of which 
are proportional to relevant mean free paths. 

The mechanism that qualifies an assembly of particles to be described as being afluid is 
the frequency of collisions between the particles, which in turn depends on the size C of the 
assembly. Evidently if C is smaller than the mean free path A, there will be few collisions and 
the assembly will lack the continuum properties required of a fluid. If L << A, the assembly 
is certainly not a fluid and is described as being a ballistic system; in plasmas the word ‘colli- 
sionless’ is adopted with the same meaning. The smallest physical element that can be called a 
fluid is termed a ‘fluid particle’ and such elements have the usual properties of thermodynamic 
systems. Neighbouring fluid particles interact with each other via collisions, e.g. by exerting 
a force on each other and by exchanging particle energy, whereas adjacent ballistic elements 
can not do this. It follows that a key dimensionless parameter in fluid mechanics is the ratio 
of a microscopic length (or time) to a macroscopic scale length (or time), a ratio known as the 
Knudsen number, k,. We shall return to this basic concept in 31.3.4. 

1.2 Macroscopic variables 

1.2.1 Number density 

The first task in the application of thermodynamics to continua is to specify precisely 
what is meant by the ‘thermodynamic system’ at apoint (r, t )  in the medium. A ‘point’ in 
fluid mechanics is not a mathematical point, i.e. an object in space that has position but no 
magnitude; by the point P(r, t )  is meant an infinitesimal volume element dr (= dx dy dz), 
centred at the mathematical point M(r, t ) ,  and with sufficient extension so that dr contains 
a vast number of microscopic particles of the species under consideration. This is termed a 
macroscopic point. Let the number of particles in dr be n dr, then the fluctuations in n due 
to particles entering or leaving dr merely due to the discreteness of matter, will be negligible. 
We may therefore introduce the number density n(r, t )  as a continuum variable provided the 
size dC = (dr)1/3 of the fluid particle is very much larger than the inter-particle distance, 
n--1/3.  On the other hand, we must not take d! to be too large, otherwise significant variations 

*A ‘fluid’ is to be distinguished from a ‘liquid’, which is a special case of a fluid. 
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in n(r, t )  may be smothered. Thus de should satisfy 

np1l3 << de << C, (C, = (dlnn/dx)-'), (1.2) 

where L, is a typical distance over which n changes by a significant fraction of its local 
value3. 

TheJfuid density is the macroscopic variable 

where m is the particle mass, and for the present we are assuming that only one molecular 
species is present. 

Let w be the velocity of a typical particle at P,  measured relative to a frame L (the 'lab- 
oratory' frame), and use ( + . . ) to denote average values taken over the particles in dr. The 
fluid velocity at P is the macroscopic variable v(rl t )  = (w). It is the velocity of the centre of 
mass of the particles at P. For a more precise account, we need a statistical treatment. 

The basic variable for statistical mechanics was introduced by Maxwell at the end of the 
eighteen fifties; this is the number density f ( r ,  w, t )  in six-dimensional phase space, usually 
termed the 'velocity distribution function'. Thus f (r ,  w ,  t) dr dw is the number of molecules 
that at time t have positions lying in a volume element dr (= dz dy dz) about the position 
r, and velocities (of translation) lying within the velocity-space element dw (= dv, dv, dv,) 
about w. 

The physical number density is 

where the integral is over the whole of velocity space. It follows that f dw/n is the probability 
that a given molecule at the (macroscopic) point (r, t )  has a velocity in the element dw at w. 
We shall sometimes adopt the notation 

where the average on the left-hand side is the macroscopic variable corresponding to the 
phase-space function 4. 

1.2.2 Fluid velocity 

The fluid velocity v is defined by the average 

nv(r,  t) = w f(r ,  w ,  t) dw , (1.6) s 
3Let 6n be the root mean square fluctuation in n, then it is a standard result in fluctuation theory that 

the 6n/n N N - ' l 2 ,  where N is the total number of particles in the system. For a system of volume 
condition that 6n/n << 1 requires that 71(6.!?)~ >> 1, as in (1.2). 
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and similarly the acceleration of the fluid at P(r, t) is 

fi = 1 w f(r ,w,t)/ndw, 
dt (1.7) 

where w is the acceleration of the typical particle relative to L. When there are several distinct 
components present, the i-th component of which is a fluid with a velocity vi and density pi, 
the velocity of the fluid as a whole is 

and we can therefore interpret v as being the velocity of mass flux. An obvious property of 
v is its dependence on the choice of the laboratory frame L, and as the equations describing 
the behaviour of fluids must be independent of this choice, v can not appear alone in these 
equations. A ‘ frame-indifference’ molecular velocity will be introduced shortly. 

There is another fluid motion of considerable importance in the theory. This is the ‘spin’ 
n of the fluid at P(r ,  t), the meaning of which is that the fluid circulates around the mathe- 
matical point M(r, t) with an angular velocity a. Below we shall show that it is related to 
the fluid vorticity 6 = V x v by4 

a = ;v x v. (1.9) 

A macroscopic point that coincides momentarily with P(r, t), that has the same velocity, 
acceleration, rate of change of acceleration and so on, as the fluid, is called a convectedpoint, 
and its locus is termed a path line. If axes are fixed relative to the fluid at this point and 
allowed to rotate with the local fluid spin 52, then the point thus augmented, say P,, is a 
convectedframe. Viewed from this frame, the fluid near P, will appear to be almost stationary, 
and without spin. This is a frame in which the ambient fluid is stationary and therefore it is 
the appropriate frame in which to specify the local thermodynamic system. By referring to a 
fluid property ‘p ‘at Pc’, we shall mean that value of ‘p as observed in a convected, spinning 
macroscopic point at r ,  t. The spin and acceleration of P, are important when time derivatives 
of vectors and tensors at P, are required in the theory. 

Spatial changes in the fluid velocity v(r, t )  influence the transport of properties between 
adjacent fluid particles. To calculate the effects on transport we need the following analysis. 
Suppose that a convected point Pc(r, t) moves with a velocity v(r, t), then a neighbouring 
convected point Qc(r + R, t) has the fluid velocity 

v’(r + R, t) = v(r, t) + R. Vv(r, t) + O ( R 2 ) ,  (1.10) 
~ ~ 

41n Cartesian coordinates, with unit vectors i ,  j, k,  

a a a  V X v = (iz +j- + k-) x (v,i +v,j  + vkk) 
a y  8% 


