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PREFACE 

The  principal aim of this book is to introduce the reader to the concept and 
applications of a special class of nonlinear oscillations termed nonlinear nor- 
mal modes (NNMs). These motions can be regarded as nonlinear analogs of 
the classical normal modes of linear vibration theory, although NNMs 
possess some distinctively nonlinear properties; first, the number ofNNMs of 
a discrete nonlinear oscillator may exceed in number its degrees of freedom; 
second, in contrast to linear theory, a general transient nonlinear response 
cannot be expressed as a linear superposition ofNNM responses; third, a sub- 
class of NNMs is spatially localized and leads to nonlinear motion confine- 
ment phenomena. Hence, the study ofNNMs and nonlinear mode localization 
in discrete and continuous oscillators reveals a variety of exclusively non- 
linear phenomena that cannot be modeled by linear or  even linearized 
methodologies. As shown in this book, these essentially nonlinear phenomena 
have direct applicability to the vibration and shock isolation ofgeneral classes 
of practical engineering structures. On a more theoretical level, the concept of 
NNMs will be shown to provide an excellent framework for understanding a 
variety of distinctively nonlinear phenomena such as mode bifurcations and 
standing or traveling solitary waves. 

The material of this book is organized into ten chapters. In the first chapter 
a general discussion on the concept of NNMs and nonlinear mode localiza- 
tion is given. Lyapunov’s and Rosenberg’s definitions ofNNMs are presented, 
along with a group-theoretic approach to nonlinear normal oscillations. A 
motivational example is included to demonstrate the concepts. In Chapter 2 
general qualitative results on the existence ofNNMs in a class of discrete con- 
servative oscillators are presented and applications of the general theory are 
given for systems with convex or convex stiffness nonlinearities. In  addition to 
general existence theorems, theorems regarding the nonlinear mode shapes of 
NNMs in discrete oscillators are also proved. In  Chapter 3 quantitative ana- 
lytical methodologies for computing NNMs of conservative and nonconser- 
vative discrete oscillators are discussed. NNMs are asymptotically studied by 
analyzing their trajectories in configuration space or  by computing invariant 
normal mode manifolds in phase space; the later approach due to Shaw and 
Pierre provides an  analytical framework for extending the concept of NNM in 
general classes of damped oscillators. In the same chapter, a group-theoretic 
approach for computing NNMs is presented, along with a discussion of 

ix 
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NNMs and nonlinear localization in vibro-impact oscillators. The stability 
and hifurcations of NNMs of discrete oscillators are discussed in Chapter 4. 
Linearized stability methodologies are considered, and the problem of sta- 
bility of a NNM is converted to the equivalent problem of determining the 
stability of the zero solution of a set of variational equations with periodic 
coefficients. In many cases it is advantageous to transform this variational set 
to a set of equations with regular singular points. Analytical techniques for 
computing the instability zones of the transformed variational set are pre- 
sented. In addition, conditions for the existence of finite numbcrs ofinstability 
zones in the variational equations are derived (finite-zoning instability). As a 
demonstrative example, the bifurcations o f  NNMs of a discrete oscillator in 
internal resonance are analyzed in more detail. In Chapter 5 forced reso- 
nances occurring in neighborhoods of NNMs are studied. I t  is shown that 
exact steady state motions of nonlinear systems occur close to NNMs of the 
corresponding unforced systems. Moreover, it is found that NNM bifur- 
cations have profound effects on the topological structure of the nonlinear fre- 
quency response curves of the forced system. A new analytical methodology 
for studying nonlinear oscillations is formulated in Chapter 6, termed the 
method of nonsmooth temporal transformations (NSTTs). This method is 
based on nonsmooth (saw-tooth) transformations of the temporal variable 
and leads to asymptotic solutions that are valid even i n  strongly nonlinear 
regimes where conventional analytical methodologies are less accurate. An 
application of the NS7T methodology to the problem ofcomputing NNMs in 
strongly nonlinear discrete systems is presented along with some additional 
strongly nonlinear (even nonlinearizablc) applications. In Chapter 7 non- 
linear mode localization in certain classes of periodic oscillators is discussed. 
and analytical studies of transitions from mode localization to nonlocaliza- 
tion are given: in addition. NNM bifurcations in a discrete system with cyclic 
symmetry are analyzed. In the same chapter a numerical example of non- 
linear passive motion confinement of responses generated by impulsive loads 
in a cyclic system is presented. The extension of the concept of NNM in 
continuous oscillators is performed in Chapter 8. Several quantitative meth- 
odologies for studying continuous NNMs are discussed, based on discretiza- 
tion or on direct analysis of the governing partial differential equations of 
motion. It is shown that the concept of NNM can be employed to study non- 
linear stationary waves in partial differential equations, o r  waves with decay- 
ing envelopes in attenuation zones of continuous periodic systems of infinite 
spatial extent. In Chapters 9 and 10 nonlinear localization and passive motion 
confinement in periodic assemblies of continuous oscillators is discussed, 
and three examples from mechanics are analyzed in detail: a system of 
coupled nonlinear beams, a multispan nonlinear beam, and a nonlinear peri- 
odic spring-mass chain. Experimental studies of nonlinear localization i n  
systems of coupled nonlinear beams are also presented in Chapter 9, and a 
new design methodology based on  the nonlinear motion confinement 
phenomenon is formulated. An interesting conclusion from the applications 
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presented in Chapter 10 is that the concept of localized NNM can be used to 
analyze solitary waves or solitons in certain classes of nonlinear partial dif- 
ferential equations. In that context, localized NNMs in discrete oscillators can 
be regarded as discrete analogs of spatially localized solitary waves and 
solitons encountered in nonlinear partial differential equations on infinite 
domains. 

Many individuals contributed with critical discussions and suggestions in 
the development of the ideas and methodologies presented in this book. The 
authors would like to thank Prof. Thomas K. Caughey and Prof. Stephen 
Wiggins (California Institute ofTechnology), Prof. Richard H. Rand (Cornell 
University), Prof. Ali H. Nayfeh (Virginia Polytechnic Institute and State 
University), Prof. R. A. Ibrahim (Wayne StateUniversity), Prof. Stephen Shaw 
(Michigan State University), Prof. V. Ph. Zuravlev (Russian Academy of 
Sciences), Prof. A. Bajaj (Purdue University), Prof. I. Adrianov (Prydneprovic 
State Academy of Civil Engineering and Architecture), and Prof. L. Zhupiev 
(Mining University ofthe Ukraine) for stimulating discussions, contributions, 
and suggestions on many topics of this book. The first author would also like 
to acknowledge the contributions of his current and former graduate students, 
M. E. King (Boston University), C. Cetinkaya (Wolfram Research Inc.), and T. 
A. Nayfeh, J. Aubrecht, M. A. F. Azeez, E. Emaci, and J. Brown (Hughes Air- 
craft Company); their valuable contributions made this book more complete. 
In addition, the first author would like to acknowledge the past and current 
support received in the form of research and equipment grants from the 
National Science Foundation (NSF), the Dow Chemical Company, the Elec- 
tric Power Research Institute (EPRI), the Hughes Aircraft Company, and 
IBM. Additional research support was provided by the Center for Advanced 
Study, the National Center for Supercomputer Applications (NCSA), and 
the Department of Mechanical and Industrial Engineering and the College of 
Engineering of the University of Illinois at Urbana-Champaign. This sup- 
port was instrumental in the development of a major part of the theoretical 
and experimental results contained in this book. In addition, the authors 
would like to acknowledge the secretarial support of Mrs. Cel Daniels and 
Mrs. Tammy Smith of the University of Illinois at Urbana-Champaign. 

Finally, the authors would like to thank Fotis and Anneta Vakakis, Sotiria 
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Zevin and Raisa Phybusovitch; and their extended families in Greece, the 
United States, and the Commonwealth of Independent States. This book 
could never have been written or  even conceived without their continuous and 
unconditional love and support. This book is dedicated to them with immense 
gratitude. 
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CHAPTER 1 

INTRODUCTION 

1.1 CONCEPTS OF IONLINE. 
NONLINEAR LOCALIZATION 

R NOR ODE AND 

It is well established that normal modes are of fundamental importance in the 
theory of linear conservative and nonconservative dynamical systems. This is 
so because linear normal modes can be used to uncouple the governing 
equations of motion, and to analytically evaluate the free or forced dynamic 
response for arbitrary sets of initial conditions. This is performed by 
employing modal analysis and making use of the principle of linear 
superposition to express the system response as a superposition of modal 
responses. In classical vibration theory, the problem of computing the 
normal vibrations of discrete or continuous oscillators is reduced to the 
equivalent problem of computing the eigensolutions (natural frequencies and 
corresponding eigenvectors or eigenfunctions) of linear transformations. 
Clearly, such an approach as well as the principle of linear superposition are 
generally inapplicable in nonlinear theory. So, the obvious question arises: I s  
there a reason to extend the concept of normal modes in the nonlinear case? 

Naturally, one can define nonlinear normal modes (NNMs) merely as 
synchronous periodic particular solutions of the nonlinear equations ot 
motion without seeking any connection of such motions to the (linear) 
superposition principle. In the framework of such a restricted definition, a 
nonlinear generalization of the concept of normal mode is possible, and 
beginning with the works of Lyapunov several attempts were undertaken in 
this direction. Lyapunov's theorem (1907) proves the existence of n 
synchronous periodic solutions (NNMs) i n  neighborhoods of stable 
equilibrium points of n degree-of-freedom (DOF) hamiltonian systems 
whose linearized eigenfrequencies are not integrably related. Weinstein 
(1973) and Moser (1976) extended Lyapunov's result to systems with 
integrably related linearized eigenfrequencies (systems in "internal 
resonance"). Kauderer (1958) studied analytically (and graphically) the free 
periodic oscillations of a two-DOF system, thus becoming a forerunner in 
the conceivement of quantitative methods for analyzing NNMs. The 

1 



2 INTRODUCTION 

formulation and development of the theory of NNMs can be attributed to 
Rosenberg and his co-workers who developed general qualitative (Pak and 
Rosenberg, 1968), and quantitative (Rosenberg, 1960, 1961, 1962, 1963, 
1966; Rosenberg and Hsu, 1961; Rosenberg and KUO, 1964) techniques for 
analyzing NNMs in discrete conservative oscillators. Rosenherg mnsiderecf n 
DOF conservative oscillators and defined NNMs as "vibrations in unison," 
i.e,, synchronous periodic motions during which all coordinates qf the 
system vibrate equiperiodically, reaching their inuximum and rninirnuin 
values at the same instant of time. Some additional representative quantitative 
techniques based on the previous formal definition of NNMs were 
performed in (Magiros, 1961; Rand, 1971a,b, 1973, 1974; Rand and Vito, 
1972; Manevitch and Mikhlin, 1972; Manevitch and Pilipchuk, 198 I ;  
Mikhlin, 1985; Vakakis, 1990; Caughey and Vakakis, 1991; Shaw and 
Pierre, 1991, 1992, 1993, 1994; Boivin et al., 1993; Nayfeh and Nayfeh, 
1993, 1994; Nayfeh et al., 1992; Pakdemirli and Nayfeh, 1993). Application 
of the concept of NNM to control theory is studied by Slater (1993). General 
reviews of analytical and numerical methods for computing NNMs in 
discrete and continuous oscillators can be found in King (1994) and Slater 

In linearizable systems with weak nonlinearities it is natural to suppose that 
NNMs are particular periodic solutions that, as the nonlinearities tend to 
zero, approach in limit the classical normal modes of the corresponding 
linearized systems. Evidently the number of these NNMs must be less or 
equal to the number of DOF of the systems considered. Moreover, when 
weak periodic forcing is applied, NNMs can be used to study the structure of 
thc system's nonlinear resonances (Malkin, 1956; HSU, 1959, 1960; Kinney, 
1965; Kinney and Rosenberg, 1966; Manevitch and Cherevatzky, 1972; 
Mikhlin, 1974; Vakakis and Caughey, 1992; Vakakis, 1992b). Here rests a 
,first practical application of defining NNMs: Although the principle (fl 
superposition does not hold in the nonlinear case, fo rwd  resonunccs of '  
nonlinear systems occur in neighborhoods of NNMs, in direct analogy to 
linear theory. Hence, understanding the structure of NNMs of discrete or 
continuous oscillators enables one to better study the forced responses of 
these systems to external periodic inputs. 

In addition, in some of the aforementioned works particular attention was 
devoted to "homogeneous" systems, i.e., to nonlinearizable (essentially 
nonlinear) systems whose stiffness nonlinearities are proportional to the 

(1 993, 1994). 



1.1 CONCEPTS OF NNM AND NONLINEAR LOCALIZATION 3 

same power of the displacement. It was shown that the NNMs of 
homogeneous systems can exceed in number their DOF, a feature with no 
counterpart in linear theory (with the exception of the case of multiple 
natural frequencies). This is due to NNM bifurcations, which become 
exceedingly more complicated as the number of DOF of the systems 
increase. Thus, not all NNMs can be regarded as nonlinear analytic 
continuations of normal modes of linearized systems; indeed, an accurate 
computation of NNMs can reveal dynamic behavior that cannot be modeled 
by conventional linear or linearized approaches. Bifurcations of NNMs in 
discrete systems were first studied in works by Rand and co-workers (Rand, 
1971a; Rand and Vito, 1972; Month and Rand, 1977; Johnson and Rand, 
1979; Month, 1979; Rand et al., 1992), and in (Zhupiev and Mikhlin, 1981; 
Manevitch et al., 1989; Caughey et al., 1990). In these works it was found 
that bifurcating NNMs are typically localized in a small portion of the 
dynamical system. It will be shown that such locali~ed NNMs lead to 
nonlinear spatial confinement of motions generated by external inputs, a 
feature which is one of the most interesting and important applications o j  
the theory of NNMs. Nonlinear mode localization can be studied in the 
frumework of NNMs and gives rise to a variety of nonlinear dynamic 
phenomena that can be used to develop robust shock and vibration isolation 
designs for certain classes of engineering systems. 

Some alternative ways of viewing nodinear normal oscillations are 
formulated in the following exposition. It is known that linear conservative 
systems possess certain symmetries that reflect on the properties of their 
normal modes. Every such property can be associated with a specific 
symmetry of the governing equations of motion, and in classical vibration 
theory the normal modes of linear conservative systems can be computed by 
imposing an invariance of the equations of motions with respect to arbitrary 
temporal shifts (temporal invariance). In particular, for oscillations on a 
normal mode all position coordinates of a linear system are proportional to 
the same exponential function, dut, where j=(-l)l'2, co is the frequency of 
the normal mode oscillation, and t is the temporal variable. Part of the 
properties of linear normal modes can be extended to the nonlinear case. 
More specifically, for  a certain class of nonlinear systems it is possible to 
define NNMs as special periodic solutions with exponential temporal 
dependence of all positional variables. The simplest system representative of 
this class is a system composed of two weakly coupled particles that are 
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connected to the ground by weakly nonlinear springs. This system is 
governed by the following equations of motion: 

ii + a u  + E e (u - v)  - E b u3 = 0 

v + a v + E e (v - u) - E b v3 = O (1.1 . I )  

where a, e, and b are real quantities, and 1 ~ 1  << 1 .  It is well known (Nayfeh 
and Mook, 1984) that the free response of this system is governed by two 
time scales, t and Et, which exist due to the weak nonlinearity and the weak 
coupling. Moreover, weak coupling leads to energy redistribution (beating) 
between the two particles of the system. Hence, a two-scales asymptotic 
analysis seems to be the natural way to proceed in computing an 
approximation to the free oscillation (Rand et al., 1992). In this case normal 
modes correspond to single-frequency motions, which to the leading order 
of approxiniation possess exponential temporal dependence. However, one 
can consider an alternative method for solving the problem. Instead of 
computing an approximate asymptotic solution of system (1.1.1), it is 
possible to replace it by the following equivalent nonlinear system which 
adinits exact (closed-form) solutions (Kosevich and Kovalev, 1989): 

where j = (-1)1/* and 51 characterizes the coupling term Note that if a=O 
system (1.1.2) becomes linear. It is easy to show that both linear and 
nonlinear systems admit single-frequency exponential solutions of the form: 

Wi = ai exp(-jot), i = 1,2 (1.1.3) 

where the complex amplitudes aj are expressed as: 

(1.1.4) 
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If 8 = n/4 one obtains at most two single-frequency solutions. When $ = 0 
the system vibrates in an inphase NNM and the oscillators undergo in-phase 
vibrations with frequency equal to 

Similarly, when $ = 71: the system vibrates in an antiphase NNM and the 
motions of the oscillators are in antiphase, with frequency 

Hence, one obtains a nonlinear generalization of linear normal modes from 
the viewpoint considered. The previous example illustrates an additional 
dynamical feature of the nonlinear system. It is easily proven that, if 

N > No= Q/a 
two additional NNMs exist, corresponding to 

These additional modes bifurcate from the in-phase NNM, which for N > No 
becomes orbitally unstable. The two bifurcating modes are stable (Kosevich 
and Kovalev, 1989), and spatially localized, since the energy of each 
bifurcating mode is found to be predominantly confined to only one of two 
particles of the system. So one observes two essentially nonlinear features of 
system (1. 1. 1), namely, that its NNMs can exceed in number the DOF of the 
oscillator, and that some of its NNMs are spatially localized. 

Spatial nonlinear localization is one of the most important properties 
encountered in NNMs and provides a link between NNMs and solitary 
solutions (solitary waves and solitons) in the theory of nonlinear waves. To 
demonstrate this link one must consider a generalization of system (1.1.1) 
for arbitrarily large or infinite degrees of freedom (Scott et al., 1985). The 
analysis then shows that in the limit of weak nonlinearity the n DOF system 
possesses NNMs in direct analogy to the linear case. Moreover, when the 
coupling terms become of the same order as the nonlinear terms, there exist 
numerous mode bifurcations, and the system possesses (3"-1)/2 NNMs, the 
majority of which are spatially localized; this is in contrast to the 
corresponding linear n DOF system which only possesses n normal modes. 
Hence, nonlinear mode localization is a general property of a wide class of 
weakly coupled oscillators. An additional interesting feature of the n DOF 
generalization of system (1.1.1), is that as n -+ 00 the system reduces to the 
discrete approximation of the continuous nonlinear Schr odinger's equation 
(NSE) with periodic boundary conditions [for an application of 
Schrodinger's equation to model a linear disordered lattice, see Kuske et al. 

o = 00 - a N/2 

o = 00 + Q - a N/2 

Q = 0 ,  e = ~4 c o s - l ( ~ / a ~ )  
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(1993)l. The important work of Ford (1961) and Waters and Ford (1966) 
must be mentioned here. They studied recurrence phenomena in the Ularn- 
Fermi-Pasta (1955) problem, and showed that lack of equipartition of energy 
in an infinite nonlinear lattice with periodic boundary conditions is partly 
due to the existence of stable nonlinear normal modes in this system. The 
NSE equation is well known (Lamb, 1980; Novikov et al., 1984) to describe 
a fully integrable dynamical system and to possess soliton solutions of 
different types in the form of spatially localized waves. Hence, there is a 
relationship hetween the localized N N M s  of certain w e a k l ~ ~  coupled 
mechanical systerns and the soliton solutions of' the NSE.  AS shown in 
(Vedenova et al., 1985; Vedenova and Manevitch, 1981; King and Vakakis, 
1994), in the context of NNM theory, stationary periodic solitary waves can 
be regarded as NNMs of infinite-dimensional systems defined on unbounded 
domains. A note of caution is appropriate, however, here. If the NSE is 
regarded as the continuous approximation of an infinite nonlinear lattice of 
weakly coupled particles, the continuous approxirnation i s  only applicable 
for waves whose wavelengths exceed the distance between adjacent particles. 
In contrast to such solutions, certain (strongly) localized NNMs of the 
discrete infinite system are localized predominantly to single particles. 
Taking this observation into account one notes that rlw concepts of loccdizc~/ 
NNMs and solitons mutually complement each other. 

A third distinct formulation of NNMs can be performed by considering 
symmetries in the configuration space of a nonlinear oscillator. If one 
expresses the equations of motion of a linear conservative systcm in Jacobi's 
form (geometric formulation), one finds that these equations are invariant 
with respect to a continuous group of' extensions or compressions in the 
configuration space. Linear normal modes (which correspond to straight 
lines in the configuration space) turn out to be the only possible solutions 
that are invariant with respect to this group of transformations. Taking this 
property of normal modes into account, it is possible to construct a 
systematic analytic methodology for computing normal modes, by reducing 
the problem to an algebraic eigenvalue one. From this viewpoint, this group- 
invariance method is equivalent to the previous approach for computing 
NNMs based on temporal invariance. However, in contrast to the latter, the 
former approach provides the eigenvectors or eigenfunctions, but does not 
compute directly the eigenfrequencies of the normal modes. Invariance with 
respect to extensions or compressions in the configuration space is not a 
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distinctive property of linear systems. Considering a nonlinear conservative 
discrete oscillator with homogeneous potential function of even degree, it 
can be shown that its equations of motion can be made invariant to extensions 
or compressions in the configuration space. Hence, for a homogeneous 
system it is possible to seek NNMs that correspond to straight lines in the 
configuration space and possess the group-invariance properties of the linear 
modes. This formulation provides an alternative nonlinear generalization of 
the concept of linear normal modes. What distinguishes the nonlinear from 
the linear case is the fact that a nonlinear homogeneous system may possess 
more straight-line NNMs than its DOF. This feature was also noticed in the 
previous definitions of NNMs, where it was noted that the majority of the 
additional NNMs are spatially localized. So, one finds that homogeneous 
systems (i.e., systems with essential nonlinearities) exhibit nonlinear mode 
localization. As shown in the following chapters this is not an exclusive 
feature of homogeneous systems, since localized NNMs will be detected in a 
wider class of nonlinear oscillators. 

A last generalization of the concept of normal mode to the nonlinear case 
can be carried out by noting that the equations of the motion of linear 
systems possess an additional discrete symmetry group in the 
configurational space: After transforming to normal coordinates, any 
Cartesian transformation of coordinates is equivalent to mere inversions of 
normal coordinates. This reveals that linear normal modes are invariant 
solutions with respect to the group in Cartesian transformations in the 
configuration space. This viewpoint turns out to provide a very efficient way 
of computing normal modes of linear systems with geometric symmetries. In  
the linear case, there exits a linear vector space that is formed by the linearly 
independent normal modes; certainly, this is not the case in nonlinear theory. 
A first attempt was undertaken by Yang (1968) to employ discrete 
symmetries of certain nonlinear systems for computing NNMs, without 
resorting to group theoretic techniques. As discussed by Manevitch and 
Pinsky (1972a), NNMs can be determined in the framework of the theory of 
invariant-group solutions. In that context, one must classify sets in the 
configuration space that are invariant with respect to subgroups of admitting 
groups. This procedure allows one to find the sub-space of the configuration 
space that contains a certain NNM. If the dimension of this subspace is equal 
to 1, the subspace coincides wirh a NNM. Since the theory of discrete group- 
invariant solutions is applicable to both linear and nonlinear systems, one 
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obtains un additional nonlinear generalization of normal modes. Moreover, 
considering a general nonlinear conservative system, one can formulate the 
following "inverse" problem: Is it possible to compute a special set of system 
parameters that leads to an extension of the admitting group? The answer to 
this problem allows one (at least in principle) to classify all nonlinear 
systems possessing specified symmetries in the configuration space and to 
compute their NNMs (Manevitch et al., 1989; Manevitch and Pinsky, 1972a; 
Pilipchuk, 1985). 

The previous exposition shows that there exist several distinct ways for 
extending the concept of normal mode vibrations to nonlinear system. In  
that context, NNMs can be regarded, (a) as mere synchronous periodic 
solutions of the equations of motion (formal approach), (b) as solutions that 
possess exponential temporal dependence, or (c) as solutions that preserve 
invariance of the equations of motion with respect to certain continuous or 
discrete symmetry groups (group-theoretic approach). By extending the 
notion of normal mode to nonlinear theory one is able to better classify and 
study the symmetries and the forced resonances of discrete and continuous 
oscillators. In addition, NNMs provide the necessary framework for 
studying nonlinear mode localization and motion confinement phenomena in 
weakly coupled oscillators and can be employed to establish a link between 
localized periodic responses of discrete or continuous oscillators and solitary 
waves or solitons in nonlinear wave theory. Additional applications of NNMs 
on the study of the global dynamics and chaotic responses of nonlinear 
oscillators are discussed in later chapters. 

1.2 EXAMPLE: NNMs OF A TWO-DOP DYNAMICAL SYSTEM 

The concept of nonlinear normal modes is now demonstrated by considering 
the dynamics of a simple nonlinear oscillator. To this end, the two DOF 
hamiltonian system depicted in Figure 1.2.1 will be studied, with governing 
equations of motion given by: 

( I  .2. I )  
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X Y 

Figure 1.2.1 The two DOF nonlinear oscillator 

where the exponent m is assumed to be an odd number. This system 
possesses similar NNMs, corresponding to the following lineur relation 
between the depended variables x and y: 

y = c x  ( I  .2.2j 

The similar modes (1.2.2) are represented by straight modal lines i n  the 
configuration plane of the system, and are the only types of normal modes 
encountered in linear theory. As shown in chapter 3, similar NNMs are not 
generic in nonlinear discrete oscillators, since they exist only in systems with 
special symmetries (such as the system depicted in Figure 1.2.1). More 
typical in nonlinear systems are nonsimilar NNMs, which correspond to 
nonlinear relations between depended variables of the form y = f(x), and 
are represented in the configuration space by modal curves. Asymptotic 
methodologies for computing nonsimilar NNMs are also developed in 
chapter 3. As shown by Vakakis and Rand (1992), the similar NNMs (1.2.2) 
are the only type of normal modes that system (1.2.1) can possess. 

Since the linear relation (1.2.2) is assumed to hold at all times, one can use 
it to eliminate the y variable from the equations of motion and to obtain the 
following equivalent set of equations: 

xi- x + [l + K (l-c)m] xm= 0 

x + x - (l/c) [K (1-cjm+ cm] xm = 0, c # 0 (1.2.3) 

For motion on a NNM both equations (1.2.3) must provide the same 
response x = x(t), a requirement that is satisfied by matching the respective 
coefficients of linear and nonlinear terms. Since both equations possess 
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identical linear parts, one obtains a single equation satisfied by the modal 
constant c: 

K ( l + ~ )  (c-l)m = ~ ( l -  ~ m - l ) ,  c # 0 (1.2.4) 

As pointed out by Vakakis (1990), the simultaneous matching of d l  linear 
and nonlinear coefficients in a discrete system generally leads to a set of 
overdetermined algebraic equations governing the modal constants, which 
can only be solved if the problem under consideration possesses certain 
symmetries. The algebraic equation (1.2.4) always possesses the solutions c = 
k l ,  which correspond to in-phase and antiphase NNMs. These are the o n l y  
normal modes that the corresponding linear system (with m = 1) can possess. 
Interestingly enough, the nonlinear system (m = 3 , S ,  ...) can possess 
additional NNMs, with modal constants computed by solving the following 
algebraic equations: 

(m- 1)/2 

k= 1 
d k - 1  + K (1-c)m-1 = 0, c f 0, m = 3,5,7 ,... (1.2.5) 

I t  turns out that thc additional normal modes (1.2.5) always occur in 
reciprocal pairs and bifurcate from the antiphase mode c = -1 at the critical 
value, 

(m- 1 ) /2  

k =  1 
K = Kc = 21-m (-1)zk-l  

in hamiltonian pitchfork bifurcations. The stability of the computed NNMs 
can be studied by performing, a local (linearized) analysis (Rosenberg and 
Hsu, 1961; Pecelli and Thomas, 1979; Zhupiev and Mikhlin, 1981, 1984; 
Caughey et al., 1990), an analysis based on Ince-algebraisatioll of the 
variational equations (Zhupiev and Mikhlin, 198 1,1984) or a global 
(nonlinear) analysis based on analytical or numerical Poincare' maps 
(Month, 1979; Hyams and Month, 1984; Vakakis and Rand, 1992). In Figure 
1.2.2 the NNMs of systenis with m = 1, 3, S and 7 are depicted. These results 
are summarized in the following remarks. 

(1) The additional bifurcating NNMs of the nonlinear systems with m = 3 
and 7 exist only at small values of the coupling parameter. The 
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Figure 1.2.2 Bifurcations of NNMs for systems with (a) m = 1 (linear 
case), (b) m = 3 ,  (c )  m = 5 ,  and (d) m = 7. 
- Stable NNMs, ------ Unstable NNMs. 

bifurcating NNMs are essentially nonlinear and cannot be regarded as 
analytic continuations of any linear modes. This is in contrast to the 
modes c = k1 which can be regarded as nonlinear continuations of the 
linear normal modes of the system with m = 1. 

(2) As K -+ 0, a pair of bifurcating NNMs becomes strongly localized, with 
modal constants approaching the limits, c + 0 and 00, respectively. It can 
be shown that these NNMs are orbitally stable and, thus, physically 
realizable. 

(3) The bifurcations of NNMs have important implications on the low- and 
high-energy global dynamics and on the forced nonlinear resonances of 
system (1.2.1). 
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To demonstrate the effects of the mode bifurcations on the global 
dynamics, the nonlinear system with m = 3 is considered in more detail. This 
system is hamiltonian with a four-dimensional phase space 

and its global dynamics can be studied by constructing numerical or 
analytical Poincare' maps (Month and Rand, 1977, 1980; Month, 1979). 
Here only a brief description of the construction of these maps will be given, 
and for a more detailed discussion, the reader is referred to the 
aforementioned references. By fixing the total energy of the dynamical 
system to a constant level, one restricts the flow in the phase space to a three- 
dimensional isoenergetic manifold. This is perfornied by imposing the 
following condition: 

(x, x, y, y, 

where H(a) is the hamiltonian of the system, and h is the fixed energy level. 
The hamiltonian H is a first integral of the motion, and for autonomous 
oscillators represents conservation of energy during free oscillations. 11' an 
additional independent first integral of motion exists, the two-DOF system is 
said to be integrable and the isoenergetic manifold H = h is fibered by 
invariant two-dimensional tori (Guckenheimer and Holnies, 1984). 'This 
integrability property is not generic in hamiltonian systems, and, in general, 
one does not expect the existence of an independent second integral of 
motion. However, for low energies, even nonintegrable oscillators appear to 
have an approximate second integral of motion. This is because for low 
energies the isoenergetic manifolds of these systems appear to be fibered by 
approximate invariant tori which, as the energy increases, "break," giving 
rise to randomlike chaotic motions (Lichtenberg and Lieberman, 1983). 

Now suppose that one intersects the three-dimensional isoenergetic 
manifold defined by (1.2.6) with a two-dimensional cut-plane. If the 
intersection of the two manifolds is transverse (Guckenheimer and Holmes, 
1984; Wiggins, 1990), the resulting cross-section, X, is two-dimensional, and 
the flow of the dynamical system intersecting the cut-plane defines a 
'Poincare' map. Choosing the cut-plane as T:{x=O), the Poincare' section C 
is defined as 

Z =  { x = O , X > O }  n . { H = h }  


