INTERFEROMETRY AND SYNTHESIS IN RADIO ASTRONOMY

Second Edition

A. Richard Thompson National Radio Astronomy Observatory

James M. Moran Harvard-Smithsonian Center for Astrophysics

George W. Swenson, Jr. University of Illinois at Urbana-Champaign

WILEY-VCH Verlag GmbH & Co. KGaA

INTERFEROMETRY AND SYNTHESIS IN RADIO ASTRONOMY

INTERFEROMETRY AND SYNTHESIS IN RADIO ASTRONOMY

Second Edition

A. Richard Thompson National Radio Astronomy Observatory

James M. Moran Harvard-Smithsonian Center for Astrophysics

George W. Swenson, Jr. University of Illinois at Urbana-Champaign

WILEY-VCH Verlag GmbH & Co. KGaA

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:

Applied for

British Library Cataloging-in-Publication Data:

A catalogue record for this book is available from the British Library

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de>.

© 2001 by John Wiley & Sons, Inc. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany Printed on acid-free paper

Printing and Bookbinding buch bücher dd ag, Birkach

ISBN-13: 978-0-471-25492-8 **ISBN-10:** 0-471-25492-4 To Sheila, Barbara, Janice, Sarah, Susan, and Michael

... truste wel that alle the conclusiouns that han ben founde, or elles possibly mighten be founde in so noble an instrument as an Astrolabie, ben un-knowe perfitly to any mortal man...

> GEOFFREY CHAUCER A Treatise on the Astrolabe circa 1391

CONTENT'S

Pre	Preface to the Second Edition		xix
Pre	eface to 1	the First Edition	xxi
1	Introd	uction and Historical Review	1
	1.1	Applications of Radio Interferometry 1	
	1.2	Basic Terms and Definitions 3	
		Cosmic Signals 3	
		Source Positions and Nomenclature 9	
		Reception of Cosmic Signals 10	
	1.3	Development of Radio Interferometry 12	
		Evolution of Synthesis Techniques 12	
		Michelson Interferometer 13	
		Early Two-Element Radio Interferometers 16	
		Sea Interferometer 18	
		Phase-Switching Interferometer 18	
		Optical Identifications and Calibration Sources 21	
		Early Measurements of Angular Width 21	
		Survey Interferometers and the Mills Cross 24	
		Centimeter-Wavelength Solar Mapping 26	
		Measurements of Intensity Profiles 27	
		Spectral Line Interferometry 28	
		Earth-Rotation Synthesis Mapping 28	
		Development of Synthesis Arrays 31	
		Very-Long-Baseline Interferometry 33	
		VLBI Using Orbiting Antennas 37	
	1.4	Quantum Effect 39	
2	Introd	uctory Theory of Interferometry and Synthesis Imaging	50

- 2.1 Planar Analysis 50
- 2.2 Effect of Bandwidth 53

x	CONTENTS

2.3	One-Dimensional Source Synthesis 57	
	Interferometer Response as a Convolution 58	
	Convolution Theorem and Spatial Frequency 60	
	Example of One-Dimensional Synthesis 61	
2.4	Two-Dimensional Synthesis 64	
	Projection-Slice Theorem 65	
3 Analys	is of the Interferometer Response	68
3.1	Fourier Transform Relationship between Intensity and Visibility 68	
3.2	Cross-Correlation and the Wiener–Khinchin Relation 77	
3.3	Basic Response of the Receiving System 78	
	Antennas 78	
	Filters 79	
	Correlator 80	
	Response to the Incident Radiation 80	
Appendix 3.1	Mathematical Representation of Noise-Like Signals 82	
	Analytic Signal 82	
	Truncated Function 84	
4 Geome	tric Relationships and Polarimetry	86
4.1	Antenna Spacing Coordinates and (u, v) Loci 86	
4.2	(u', v') Plane 90	
4.3	Fringe Frequency 91	
4.4	Visibility Frequencies 92	
4.5	Calibration of the Baseline 93	
4.6	Antenna Mounts 94	
4.7	Beamwidth and Beam-Shape Effects 96	
4.8	Polarimetry 97	
	Parameters Defining Polarization 97	
	Antenna Polarization Ellipse 99	
	Stokes Visibilities 102	
	Instrumental Polarization 105	
	Matrix Formulation 109	
	Calibration of Instrumental Polarization 112	
Appendix 4.1	Conversion Between Hour Angle–Declination and Azimuth–Elevation Coordinates 117	
Appendix 4.2	Leakage Parameters in Terms of the Polarization Ellipse 117	
	Linear Polarization 118	
	Circular Polarization 119	

5	Anteni	nas and Arrays	122
	5.1	Antennas 122	
	5.2	Sampling the Visibility Function 126	
		Sampling Theorem 126	
		Discrete Two-Dimensional Fourier Transform 128	
	5.3	Introductory Discussion of Arrays 129	
		Phased Arrays and Correlator Arrays 129	
		Spatial Sensitivity and the Spatial Transfer Function 132	
		Meter-Wavelength Cross and T Arrays 137	
	5.4	Spatial Transfer Function of a Tracking Array 138	
		Desirable Characteristics of the Spatial Transfer Function	140
		Holes in the Spatial Frequency Coverage 141	
	5.5	Linear Tracking Arrays 142	
	5.6	Two-Dimensional Tracking Arrays 147	
		Open-Ended Configurations 148	
		Closed Configurations 150	
		VLBI Configurations 155	
		Orbiting VLBI Antennas 158	
		Planar Arrays 159	
	5.7	Conclusions on Antenna Configurations 161	
	5.8	Other Considerations 162	
		Sensitivity 162	
		Long Wavelengths 163	
		Millimeter Wavelengths 163	
6	Respo	nse of the Receiving System	168
	6.1	Frequency Conversion, Fringe Rotation, and Complex	
		Correlators 168	
		Frequency Conversion 168	
		Response of a Single-Sideband System 169	
		Upper-Sideband Reception 171	
		Lower-Sicleband Reception 172	
		Multiple Frequency Conversions 173	
		Delay Tracking and Fringe Rotation 173	
		Simple and Complex Correlators 174	
		Response of a Double-Sideband System 175	
		Conversions 178	
		Fringe Stopping in a Double-Sideband System 180	
		Relative Advantages of Double- and Single-Sideband	

Sideband Separation 181

6.2	Response to the Noise 183	
	Signal and Noise Processing in the Correlator 183	
	Noise in the Measurement of Complex Visibility 188	
	Signal-to-Noise Ratio in a Synthesized Map 189	
	Noise in Visibility Amplitude and Phase 192	
	Relative Sensitivities of Different Interferometer Systems	193
	System Temperature Parameter α 199	
6.3	Effect of Bandwidth 199	
	Mapping in the Continuum Mode 200	
	Wide-Field Mapping with a Multichannel System 204	
6.4	Effect of Visibility Averaging 205	
	Visibility Averaging Time 205	
	Effect of Time Averaging 206	
Appendix 6.1	Partial Rejection of a Sideband 208	
	5	
7 Design	of the Analog Receiving System	212
7.1	Principal Subsystems of the Receiving Electronics 212	
	Low-Noise Input Stages 212	
	Noise Temperature Measurement 214	
	Local Oscillator 217	
	IF and Signal Transmission Subsystems 218	
	Optical Fiber Transmission 218	
	Delay and Correlator Subsystems 220	
7.2	Local Oscillator and General Considerations of Phase Stability 221	
	Round-Trip Phase Measuring Schemes 221	
	Swarup and Yang System 222	
	Frequency-Offset Round-Trip System 223	
	Automatically Correcting System 228	
	Fiberoptic Transmission of LO Signals 229	
	Phase-Locked Loops and Reference Frequencies 230	
	Phase Stability of Filters 232	
	Effect of Phase Errors 233	
7.3	Frequency Responses of the Signal Channels 233	
	Optimum Response 233	
	Tolerances on Variation of the Frequency Response: Degradation of Sensitivity 235	
	Tolerances on Variation of the Frequency Response: Gain Errors 235	

	Delay-Setting Tolerances 238	
	Implementation of Bandpass Tolerances 239	
7.4	Polarization Mismatch Errors 240	
7.5	Phase Switching 240	
	Reduction of Response to Spurious Signals 240	
	Implementation of Phase Switching 241	
	Interaction of Phase Switching with Fringe Rotation and Delay Adjustment 246	
7.6	Automatic Level Control and Gain Calibration 248	
Appendix 7.1	Sideband-Separating Mixer 248	
Appendix 7.2	Dispersion in Optical Fiber 249	
8 Digital	Signal Processing	254
81	Bivariate Gaussian Probability Distribution 255	
8.2	Periodic Sampling 256	
0.2	Nyouist Rate 256	
	Correlation of Sampled but Unquantized Waveforms 257	
8.3	Sampling with Quantization 260	
	Two-Level Ouantization 261	
	Four-Level Ouantization 264	
	Three-Level Quantization 271	
	Quantization with Eight or More Levels 273	
	Quantization Correction 276	
	Comparison of Quantization Schemes 277	
	System Sensitivity 278	
8.4	Accuracy in Digital Sampling 278	
	Principal Causes of Error 278	
	Tolerances in Three-Level Sampling 279	
8.5	Digital Delay Circuits 282	
8.6	Quadrature Phase Shift of a Digital Signal 283	
8.7	Digital Correlators 283	
	Correlators for Continuum Observations 283	
	Principles of Digital Spectral Measurements 284	
	Lag (XF) Correlator 289	
	FX Correlator 290	
	Comparison of Lag and FX Correlators 293	
	Hybrid Correlator 297	
	Demultiplexing in Broadband Correlators 297	
Appendix 8.1	Evaluation of $\sum_{q=1}^{\infty} R_{\infty}^2(q\tau_s)$ 298	
Appendix 8.2	Probability Integral for Two-Level Quantization 299	

Appendix 8.3 Correction for Four-Level Quantization 300

304

9	Very-L	ong-Baseline Interferometry
	9.1	Early Development 304
	9.2	Differences Between VLBI and Conventional Interferometry 306
	9.3	Basic Performance of a VLBI System 308
		Time and Frequency Errors 308
		Retarded Baselines 315
		Noise in VLBI Observations 316
		Probability of Error in the Signal Search 319
		Coherent and Incoherent Averaging 323
	9.4	Fringe Fitting for a Multielement Array 326
		Global Fringe Fitting 326
		Relative Performance of Fringe Detection Methods 329
		Triple Product, or Bispectrum 330
		Fringe Searching with a Multielement Array 331
		Multielement Array with Incoherent Averaging 331
	9.5	Phase Stability and Atomic Frequency Standards 332
		Analysis of Phase Fluctuations 332
		Oscillator Coherence Time 340
		Precise Frequency Standards 342
		Rubidium and Cesium Standards 346
		Hydrogen Maser Frequency Standard 348
		Local Oscillator Stability 351
		Phase Calibration System 352
		Time Synchronization 353
	9.6	Recording Systems 353
	9.7	Processing Systems and Algorithms 357
		Fringe Rotation Loss (η_R) 358
		Fringe Sideband Rejection Loss (η_s) 361
		Discrete Delay Step Loss (η_D) 363
		Summary of Processing Losses 365
	9.8	Bandwidth Synthesis 366
		Burst Mode Observing 368
	9.9	Phased arrays as VLBI Elements 369
	9.10	Orbiting VLBI (OVLBI) 373

10	Calibra	ation and Fourier Transformation of Visibility Data	383
	10.1	Calibration of the Visibility 383	
		Corrections for Calculable or Directly Monitored Effects	384
		Use of Calibration Sources 385	
	10.2	Derivation of Intensity from Visibility 387	
		Mapping by Direct Fourier Transformation 387	
		Weighting of the Visibility Data 388	
		Mapping by Discrete Fourier Transformation 392	
		Convolving Functions and Aliasing 394	
		Aliasing and the Signal-to-Noise Ratio 398	
	10.3	Closure Relationships 399	
	10.4	Model Fitting 401	
		Basic Considerations for Models 402	
		Cosmic Background Anisotropy 404	
	10.5	Spectral Line Observations 404	
		General Considerations 404	
		VLBI Observations of Spectral Lines 406	
		Variation of Spatial Frequency over the Bandwidth 409	
		Accuracy of Spectral Line Measurements 409	
		Presentation and Analysis of Spectral Line Observations	410
	10.6	Miscellaneous Considerations 411	
		Interpretation of Measured Intensity 411	
		Errors in Maps 412	
		Hints on Flanning and Reduction of Observations 413	
Appendi	ix 10.1	The Edge of the Moon as a Calibration Source 414	
Appendi	ix 10.2	Doppler Shift of Spectral Lines 417	
Appendi	ix 10.3	Historical Notes 421	
		Maps from One-Dimensional Profiles 421	
		Analog Fourier Transformation 422	
11	Decon	volution. Adaptive Calibration, and Applications	426
	11.1	Limitation of Spatial Frequency Coverage 426	
	11.2	The Clean Deconvolution Algorithm 427	
		CLEAN Algorithm 427	
		Implementation and Performance of the CLEAN	
	11 2	Maximum Entrony Method 432	
	11.5	MEM Algorithm 432	
		Comparison of CLEAN and MEM 434	
		Other Deconvolution Procedures 435	

11.4	Adaptive Calibration and Mapping With Amplitude Data Only 438	
	Hybrid Mapping 438	
	Self-Calibration 440	
	Mapping with Visibility Amplitude Data Only 444	
11.5	Mapping With High Dynamic Range 445	
11.6	Mosaicking 446	
	Methods of Producing the Mosaic Map 449	
	Some Requirements of Arrays for Mosaicking 451	
11.7	Multifrequency Synthesis 453	
11.8	Non-Coplanar Baselines 454	
11.9	Further Special Cases of Image Analysis 459	
	Use of CLEAN and Self-Calibration with Spectral Line Data 459	
	Low-Frequency Mapping 459	
	Lensclean 461	
12 Interfe	rometer Techniques for Astrometry and Geodesy	467
12.1	Requirements for Astrometry 467	
	Reference Frames 469	
12.2	Solution for Baseline and Source-Position Vectors 470	
	Connected-Element Systems 470	
	Measurements with VLBI Systems 472	
	Phase Referencing in VLBI 476	
12.3	Time and the Motion of the Earth 480	
	Precession and Nutation 481	
	Polar Motion 482	
	Universal Time 482	
	Measurement of Polar Motion and UT1 484	
12.4	Geodetic Measurements 485	
12.5	Mapping Astronomical Masers 485	
Appendix 12.1	Least-Mean-Squares Analysis 490	
13 Propag	ation Effects	507
13.1	Neutral Atmosphere 508	
	Basic Physics 508	
	Refraction and Propagation Delay 513	
	Absorption 518	
	Origin of Refraction 524	
	Smith–Weintraub Equation 528	
	Phase Fluctuations 530	

X

	Kolmogorov Turbulence 534
	Anomalous Refraction 539
	Water Vapor Radiometry 541
13.2	Atmospheric Effects at Millimeter Wavelengths 543
	Site Testing by Opacity Measurement 543
	Site Testing by Direct Measurement of Phase Stability 546
	Reduction of Atmospheric Phase Errors by Calibration 550
13.3	Ionosphere 554
	Basic Physics 555
	Refraction and Propagation Delay 559
	Calibration of Ionospheric Delay 560
	Absorption 562
	Small- and Large-Scale Irregularities 562
13.4	Scattering Caused by Plasma Irregularities 564
	Gaussian Screen Model 564
	Power-Law Model 569
13.5	Interplanetary Medium 571
	Refraction 571
	Interplanetary Scintillation 574
13.6	Interstellar Medium 576
	Dispersion and Faraday Rotation 576
	Diffractive Scattering 579
	Refractive Scattering 580
Van Ci	ttert–Zernike Theorem, Spatial Coherence, and Scattering 594
14.1	Van Cittert–Zernike Theorem 594
	Mutual Coherence of an Incoherent Source 596
	Diffraction at an Aperture and the Response of an Antenna 597
	Assumptions in the Derivation and Application of the Van Cittert-Zernike Theorem 600
14.2	Spatial Coherence 602
	Incident Field 602
	Source Coherence 603
	Completely Coherent Source 606
14.3	Scattering and the Propagation of Coherence 607
Radio 3	Interference 613
15.1	General Considerations 613
15.2	Short- and Intermediate-Baseline Arrays 615

Fringe-Frequency Averaging 616

14

15

15.3 15.4 Appendix 15.1	Decorrelation of Broadband Signals 620 Very-Long-Baseline Systems 621 Interference From Airborne and Space Transmitters 624 Regulation of the Radio Spectrum 625	
16 Related	l Techniques	627
16.1	Intensity Interferometer 627	
16.2	Lunar Occultation Observations 632	
16.3	Measurements on Antennas 636	
16.4	Optical Interferometry 641	
	Modern Michelson Interferometer 642	
	Sensitivity of Direct Detection and Heterodyne Systems 644	
	Optical Intensity Interferometer 646	
	Speckle Imaging 647	
Principal Sy	ymbols	655
Author Index		667
Subject Ind	ex	677

PREFACE TO THE SECOND EDITION

Half a century of remarkable scientific progress has resulted from the application of radio interferometry to astronomy. Advances since 1986, when this book was first published, have resulted in the VLBA (Very Long Baseline Array) which is the first array fully dedicated to very-long-baseline interferometry (VLBI), the globalization of VLBI networks with the inclusion of antennas in orbit, increasing importance of spectral line observations, and improved instrumental performance at both ends of the radio spectrum. At the highest frequencies, millimeter-wavelength arrays of the Berkeley-Illinois-Maryland Association (BIMA), the Institut de Radio Astronomie Millimétrique (IRAM), Nobeyama Radio Observatory (NEO) and Owens Valley Radio Observatory (OVRO), which were in their infancy in 1986, have been greatly expanded in their capabilities. The Submillimeter Array (SMA), and the Atacama Large Millimeter Array (ALMA), which is a major international project at millimeter and submillimeter wavelengths, are under development. At low frequencies, with their special problems involving the ioncsphere and wide-field mapping, the frequency coverage of the Very Large Array (VLA) has been extended down to 75 MHz, and the Giant Meter-wave Radio Telescope (GMRT), operating down to 38 MHz, has been commissioned. The Australia Telescope and an expanded Multielement Radiolinked Interferometer Network (MERLIN) have provided increased capability at centimeter wavelengths.

Such progress has led to this revised edition, the intent of which is not only to bring the material up to date but also to expand its scope and improve its comprehensibility and general usefulness. In a few cases symbols used in the first edition have been changed to follow the general usage that is becoming established in radio astronomy. Every chapter contains new material, and there are new figures and many new references. Material in the original Chapter 3 that was peripheral to the basic discussion has been condensed and moved to a later chapter. Chapter 3 now contains the essential analysis of the response of an interferometer. The section on polarization in Chapter 4 has been substantially expanded, and a brief introduction to antenna theory has been added to Chapter 5. Chapter 6 contains a discussion of the sensitivity for a wide variety of instrumental configurations. A discussion of spectral line observations is included in Chapter 10. Chapter 13 has been expanded to include a description of the new techniques for atmospheric phase correction, and site testing data and techniques at millimeter wavelengths. Chapter 14 has been added, and contains an examination of the van Cittert-Zernike theorem and discussions of spatial coherence and scattering, some of which is derived from the original Chapter 3.

Special thanks are due to a number of people for reviews or other help during the course of the revision. These include D. C. Backer, J. W. Benson, M. Birkinshaw, G. A. Blake, R. N. Bracewell, B. F. Burke, B. Butler, C. L. Carilli, B. G. Clark, J. M. Cordes, T. J. Cornwell, L. R. D'Addario, T. M. J. Dame, J. Davis, J. L. Davis, D. T. Emerson, R. P. Escoffier, E. B. Fomalont, L. J. Greenhill, M. A. Gurwell, C. R. Gwinn, K. I. Kellermann, A. R. Kerr, E. R. Keto, S. R. Kulkarni, S. Matsushita, D. Morris, R. Narayan, S.-K. Pan, S. J. E. Radford, R. Rao, M. J. Reid, A. Richichi, A. E. E. Rogers, J. E. Salah, F. R. Schwab, S. R. Spangler, E. C. Sutton, B. E. Turner, R. F. C. Vessot, W. J. Welch, M. C. Wiedner, and J.-H. Zhao. For major contributions to the preparation of the text and diagrams, we thank J. Heidenrich, G. L. Kessler, P. Smiley, S. Watkins, and P. Winn. For extensive help in preparation and editing we are especially indebted to P. L. Simmons. We are grateful to P. A. Vanden Bout, Director of the National Radio Astronomy Observatory, and to I. I. Shapiro, Director of the Harvard-Smithsonian Center for Astrophysics, for encouragement and support. The National Radio Astronomy Observatory is operated by Associated Universities, Inc. under contract with the National Science Foundation, and the Harvard-Smithsonian Center for Astrophysics is operated by Harvard University and the Smithsonian Institution.

> A. RICHARD THOMPSON JAMES M. MORAN GEORGE W. SWENSON, JR.

Charlottesville, Virginia Cambridge, Massachusetts Urbana, Illinois November 2000

PREFACE TO THE FIRST EDITION

The techniques of radio interferometry as applied to astronomy and astrometry have developed enormously in the past four decades, and the attainable angular resolution has advanced from degrees to milliarcseconds, a range of over six orders of magnitude. As arrays for synthesis mapping* have developed, techniques in the radio domain have overtaken those in optics in providing the finest angular detail in astronomical images. The same general developments have introduced new capabilities in astrometry and in the measurement of the earth's polar and crustal motions. The theories and techniques that underlie these advances continue to evolve, but have reached by now a sufficient state of maturity that it is appropriate to offer a detailed exposition.

The book is intended primarily for graduate students and professionals in astronomy, electrical engineering, physics, or related fields who wish to use interferometric or synthesis-mapping techniques in astronomy, astrometry, or geodesy. It is also written with radio systems engineers in mind and includes discussions of important parameters and tolerances for the types of instruments involved. Our aim is to explain the underlying principles of the relevant interferometric techniques but to limit the discussion of details of implementation. Such details of the hardware and the software are largely specific to particular instruments and are subject to change with developments in electronic engineering and computing techniques. With an understanding of the principles involved, the reader should be able to comprehend the instructions and instrumental details that are encountered in the user-oriented literature of most observatories.

The book does not stem from any course of lectures, but the material included is suitable for a graduate-level course. A teacher with experience in the techniques described should be able to interject easily any necessary guidance to emphasize astronomy, engineering, or other aspects as required.

The first two chapters contain a brief review of radio astronomy basics, a short history of the development of radio interferometry, and a basic discussion of the operation of an interferometer. Chapter 3 discusses the underlying relationships of interferometry from the viewpoint of the theory of partial coherence and may

^{*}We define synthesis mapping as the reconstruction of images from measurements of the Fourier transforms of their brightness distributions. In this book the terms map, image, and brightness (intensity) distribution are largely interchangeable.

be omitted from a first reading. Chapter 4 introduces coordinate systems and parameters that are required to describe synthesis mapping. It is appropriate then to examine configurations of antennas for multielement synthesis arrays in Chapter 5. Chapters 6-8 deal with various aspects of the design and response of receiving systems, including the effects of quantization in digital correlators. The special requirements of very-long-baseline interferometry (VLBI) are discussed in Chapter 9. The foregoing material covers in detail the measurement of complex visibility and leads to the derivation of radio maps discussed in Chapters 10 and 11. The former presents the basic Fourier transformation method, and the latter the more powerful algorithms that incorporate both calibration and transformation. Precision observations in astrometry and geodesy are the subject of Chapter 12. There follow discussions of factors that can degrade the overall performance, namely, effects of propagation in the atmosphere, the interplanetary medium and the interstellar medium in Chapter 13, and radio interference in Chapter 14. Propagation effects are discussed at some length since they involve a wide range of complicated phenomena that place fundamental limits on the measurement accuracy. The final chapter describes related techniques including intensity interferometry, speckle interferometry, and lunar occultation observations.

References are included to seminal papers and to many other publications and reviews that are relevant to the topics of the book. Numerous descriptions of instruments and observations are also referenced for purposes of illustration. Details of early procedures are given wherever they are of help in elucidating the principles or origin of current techniques, or because they are of interest in their own right. Because of the diversity of the phenomena described, it has been necessary, in some cases, to use the same mathematical symbol for different quantities. A glossary of principal symbols and usage follows the final chapter.

The material in this book comes only in part from the published literature, and much of it has been accumulated over many years from discussions, seminars, and the unpublished reports and memoranda of various observatories. Thus we acknowledge our debt to colleagues too numerous to mention individually. Our special thanks are due to a number of people for critical reviews of portions of the book, or other support. These include D. C. Backer, D. S. Bagri, R. H. T. Bates, M. Birkinshaw, R. N. Bracewell, B. G. Clark, J. M. Cordes, T. J. Cornwell, L. R. D'Addario, J. L. Davis, R. D. Ekers, J. V. Evans, M. Faucherre, S. J. Franke, J. Granlund, L. J. Greenhill, C. R. Gwinn, T. A. Herring, R. J. Hill, W. A. Jeffrey, K. I. Kellermann, J. A. Klobuchar, R. S. Lawrence, J. M. Marcaide, N. C. Mathur, L. A. Molnar, P. C. Myers, P. J. Napier, P. Nisenson, H. V. Poor, M. J. Reid, J. T. Roberts, L. F. Rodriguez, A. E. E. Rogers, A. H. Rots, J. E. Salah, F. R. Schwab, I. I. Shapiro, R. A. Sramek, R. Stachnik, J. L. Turner, R. F. C. Vessot, N. Wax, and W. J. Welch. The reproduction of diagrams from other publications is acknowledged in the captions, and we thank the authors and the publishers concerned for permission to use this material. For major contributions to the preparation of the manuscript, we wish to thank C. C. Barrett, C. F. Burgess, N. J. Diamond, J. M. Gillberg, J. G. Hamwey, E. L. Haynes, G. L. Kessler, K. I. Maldonis, A. Patrick, V. J. Peterson, S. K. Rosenthal, A. W. Shepherd, J. F. Singarella, M. B. Weems, and C. H. Williams. We are grateful to M. S. Roberts and P. A. Vanden Bout, former Director and present Director of the National Radio Astronomy Observatory, and to G. B. Field and I. I. Shapiro, former Director and present Director of the Harvard–Smithsonian Center for Astrophysics, for encouragement and support. Much of the contribution by J. M. Moran was written while on sabbatical leave at the Radio Astronomy Laboratory of the University of California, Berkeley, and he is grateful to W. J. Welch for hospitality during that period. G. W. Swenson, Jr. thanks the Guggenheim Foundation for a fellowship during 1984–1985. Finally, we acknowledge the support of our home institutions: the National Radio Astronomy Observatory which is operated by Associated Universities, Inc. under contract with the National Science Foundation; the Harvard-Smithsonian Center for Astrophysics which is operated by Harvard University and the Smithsonian Institution; and the University of Illinois.

> A. RICHARD THOMPSON JAMES M. MORAN GEORGE W. SWENSON, JR.

Charlottesville, Virginia Cambridge, Massachusetts Urbana, Illinois January 1986

1 Introduction and Historical Review

The subject of this book can be broadly described as the principles of radio interferometry applied to the measurement of natural radio signals from cosmic sources. The uses of such measurements lie mainly within the domains of astronomy, astrometry, and geodesy. As an introduction we consider in this chapter the applications of the technique, some basic terms and concepts, and the historical development of the instruments and their uses.

1.1 APPLICATIONS OF RADIO INTERFEROMETRY

Radio interferometers and synthesis arrays, which are basically ensembles of twoelement interferometers, are used to make measurements of the fine angular detail in the radio emission from the sky. The angular resolution of single radio antennas is insufficient for many astronomical purposes. Practical considerations limit the resolution to a few tens of arcseconds. For example, the beamwidth of a 100-m-diameter antenna at 7 mm wavelength is approximately 17 arcsec. In the optical range the diffraction limit of large telescopes (diameter ~ 8 m) is about 0.015 arcsec, but the angular resolution achievable from the ground by conventional techniques is limited to about one arcsec by turbulence in the troposphere. For progress in astronomy it is particularly important to measure the positions of radio sources with sufficient accuracy to allow identification with objects detected in the optical and other parts of the electromagnetic spectrum. It is also very important to be able to measure parameters such as intensity, polarization, and frequency spectrum with similar angular resolution in both the radio and optical domains. Radio interferometry enables such studies to be made.

Precise measurement of the angular positions of stars and other cosmic objects is the concern of astrometry. This includes the study of the small changes in celestial positions attributable to the parallax introduced by the earth's orbital motion, as well as those resulting from the intrinsic motions of the objects. Such measurements are an essential step in the establishment of the distance scale of the universe. Astrometric measurements have also provided a means to test the general theory of relativity and to establish the dynamical parameters of the solar system. In making astrometric measurements it is essential to establish a reference frame for celestial positions. A frame based on extremely distant large-mass objects as position references is close to ideal. Radio measurements of distant, compact, extragalactic sources presently offer the best prospects for the establishment of such a system. Radio techniques provide an accuracy of the order of 10^{-3} arcsec for absolute positions and 10^{-5} arcsec or less for the relative positions of objects closely spaced in angle. Optical measurements of stellar images, as seen through the earth's atmosphere, allow the positions to be determined with a precision of about 0.05 arcsec. However, stellar positions have been measured to ~1 milliarcsecond (mas) with the Hipparcos satellite, and optical measurements with the National Aeronautics and Space Administration (NASA) Space Interferometry Mission hold promise of position measurements to ~4 μ arcsec.

As part of the measurement process, astrometric observations include a determination of the orientation of the instrument relative to the celestial reference frame. Ground-based observations therefore provide a measure of the variation of the orientation parameters for the earth. In addition to the well-known precession and nutation of the direction of the axis of rotation, there are irregular shifts of the earth's axis relative to the surface. These shifts, referred to as polar motion, are attributed to the gravitational effects of the sun and moon on the equatorial bulge of the earth, and to dynamic effects in the earth's mantle, crust, oceans, and atmosphere. The same causes give rise to changes in the angular rotation velocity of the earth, which are manifest as corrections that must be applied to the system of universal time. Measurements of the orientation parameters are important in the study of the dynamics of the earth. During the 1970s it became clear that radio techniques could provide an accurate measure of these effects, and in the late 1970s the first radio programs devoted to the monitoring of universal time and polar motion were set up jointly by the U.S. Naval Observatory and the U.S. Naval Research Laboratory, and also by NASA and the National Geodetic Survey. Polar motion can also be studied by observation of satellites, in particular the Global Positioning System, but distant radio sources provide the best standard for measurement of earth rotation.

In addition to revealing angular changes in the motion and orientation of the earth, precise interferometer measurements entail an astronomical determination of the vector spacing between the antennas, which for spacings of ~ 100 km or more, is usually more precise than can be obtained by conventional surveying techniques. Very-long-baseline interferometry (VLBI) involves antenna spacings of hundreds or thousands of kilometers, and the uncertainty with which these spacings can be determined has decreased from a few meters in 1967, when VLBI measurements were first made, to a few millimeters. Average relative motions of widely spaced sites on separate tectonic plates lie in the range 1-10 cm per year, and have been tracked extensively with VLBI networks. Interferometric techniques have also been applied to the tracking of vehicles on the lunar surface and the determination of the positions of spacecraft. In this book, however, we limit our concern mainly to measurements of natural signals from astronomical objects. The attainment of the highest angular resolution in the radio domain of the electromagnetic spectrum results in part from the ease with which radio frequency signals can be processed electronically. Also, the phase variations induced by the earth's neutral atmosphere are less severe than at shorter wavelengths. Future technology will provide even higher resolution at infrared and optical wavelengths from observatories above the earth's atmosphere. However, radio waves will remain of vital importance in astronomy since they reveal objects that do not radiate in other parts of the spectrum, and they are able to pass through galactic dust clouds that obscure the view in the optical range.

1.2 BASIC TERMS AND DEFINITIONS

This section is written for readers who are unfamiliar with the basics of radio astronomy. It presents a brief review of some background information that is useful when approaching the subject of radio interferometry.

Cosmic Signals

The voltages induced in antennas by radiation from cosmic sources are generally referred to as *signals*, although they do not contain information in the usual engineering sense. Such signals are generated by natural processes and almost universally have the form of Gaussian random noise. That is to say, the voltage as a function of time at the terminals of a receiving antenna can be described as a series of very short pulses of random occurrence that combine as a waveform with Gaussian amplitude distribution. In a bandwidth Δv the envelope of the radio frequency waveform has the appearance of random variations with duration of order $1/\Delta v$. For most radio sources the characteristics of the signals are invariant with time, at least on the scale of minutes or hours typical of the duration of a radio astronomy observation. Gaussian waveforms of this type are assumed to be identical in character to the noise voltages generated in resistors and amplifiers. Such waveforms are usually assumed to be stationary and ergodic, that is, ensemble averages and time averages converge to equal values.

Most of the power is in the form of continuum radiation, the power spectrum of which shows slow variation with frequency and may be regarded as constant over the receiving bandwidth of most instruments. Figure 1.1 shows continuum spectra of three radio sources. Radio emission from the radio galaxy Cygnus A and from the quasar 3C48 is generated by the synchrotron mechanism [see, e.g., Rybicki and Lightman (1979), Longair (1992)], in which high-energy electrons in magnetic fields radiate as a result of their orbital motion. The radiating electrons are generally highly relativistic, and under these conditions the radiation emitted by each one is concentrated in the direction of its instantaneous motion. An observer therefore sees pulses of radiation from those electrons whose orbital motion lies in, or close to, a plane containing the observer. The observed polarization of the radiation is mainly linear, and any circularly polarized component is generally very small. The overall linear polarization from a source, however, is seldom large, since it is randomized by the variation of the direction of the magnetic field within the source and by Faraday rotation. The power in the electromagnetic pulses from the electrons is concentrated at harmonics of the orbital frequency, and a continuous distribution of electron energies results in a contin-

Figure 1.1 Continuum spectra of three discrete sources: Cygnus A, a radio galaxy; 3C48, a quasar; and NGC7027, an ionized nebula within our Galaxy. Data are from Conway, Kellermann, and Long (1963); Kellermann and Pauliny-Toth (1969); and Thompson (1974). [One jansky $(Jy) = 10^{-26}$ W m⁻² Hz⁻¹.]

uum radio spectrum. The individual pulses from the electrons are too numerous to be separable, and the electric field appears as a continuous random process with zero mean. The variation of the spectrum as a function of frequency is related to the slope of the energy distribution of the electrons. In the quasar in Fig. 1.1, which is a very much more compact object than the radio galaxy, the electron density and magnetic fields are high enough to produce self-absorption of the radiation at low frequencies.

NGC7027, the spectrum of which is shown in Fig. 1.1, is a planetary nebula within our Galaxy in which the gas is ionized by radiation from a central star. The radio emission is a thermal process and results from free-free collisions between unbound electrons and ions within the plasma. At the low-frequency end of the spectral curve the nebula is opaque to its own radiation and emits a blackbody spectrum, for which the Rayleigh-Jeans law is a valid approximation. As the frequency increases, the absorptivity, and hence the emissivity, decrease approximately as ν^{-2} [see, e.g., Rybicki and Lightman (1979)], where ν is the frequency. This behavior counteracts the ν^2 dependence of the Rayleigh-Jeans law, and thus the spectrum becomes flat when the nebula is no longer opaque to the radiation. Radiation of this type is unpolarized.

In contrast to continuum radiation, *spectral line radiation* is generated at specific frequencies by atomic and molecular processes. A fundamentally important