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PREFACE TO THE 
SECOND E:DITION 

Half a century of remarkable scientific progress has resulted from the application 
of radio interferometry to astronomy. Advances since 1986, when this book was 
first published, have resulted in the VLBA (Very Long Baseline Array) which 
is the first array fully dedicated to very-long-baseline interferometry (VLBI), 
the globalization of VLBI networks with the inclusion of antennas in orbit, in- 
creasing importance of spectral line observations, and improved instrumental 
performance at both ends of the radio spectrum. At the highest frequencies, 
millimeter-wavelength arrays of the Berkeley-Illinois-Maryland Association 
(BIMA), the Institut de Radio Astronomie MillimCtrique (IRAM), Nobeyama 
Radio Observatory (NF:O) and Owens Valley Radio Observatory (OVRO), which 
were in their infancy in 1986, have been greatly expanded in their capabili- 
ties. The Submillimeter Array (SMA), and the Atacama Large Millimeter Array 
(ALMA), which is a major international project at millimeter and submillimeter 
wavelengths, are under development. At low frequencies, with their special prob- 
lems involving the ionosphere and wide-field mapping, the frequency coverage of 
the Very Large Array (VLA) has been extended down to 75 MHz, and the Giant 
Meter-wave Radio Telescope (GMRT), operating down to 38 MHz, has been 
commissioned. The Australia Telescope and an expanded Multielement Radio- 
linked Interferometer Network (MERLIN) have provided increased capability at 
centimeter wavelengths. 

Such progress has led to this revised edition, the intent of which is not only 
to bring the material up to date but also to expand its scope and improve its 
comprehensibility and general usefulness. In a few cases symbols used in the 
first edition have been changed to follow the general usage that is becoming 
established in radio astronomy. Every chapter contains new material, and there 
are new figures and niany new references. Material in the original Chapter 3 
that was peripheral to the basic discussion has been condensed and moved to 
a later chapter. Chapter 3 now contains the essential analysis of the response 
of an interferometer. The section on polarization in Chapter 4 has been sub- 
stantially expanded, arid a brief introduction to antenna theory has been added 
to Chapter 5. Chapter 6 contains a discussion of the sensitivity for a wide va- 
riety of instrumental configurations. A discussion of spectral line observations 
is included in Chapter 10. Chapter 13 has been expanded to include a descrip- 

xix 



xx PREFACE TO THE SECOND EDITION 

tion of the new techniques for atmospheric phase correction, and site testing 
data and techniques at millimeter wavelengths. Chapter 14 has been added, and 
contains an examination of the van Cittert-Zernike theorem and discussions of 
spatial coherence and scattering, some of which is derived from the original 
Chapter 3. 

Special thanks are due to a number of people for reviews or other help during 
the course of the revision. These include D. C. Backer, J. W. Benson, M. Birkin- 
shaw, G. A. Blake, R. N. Bracewell, B. F. Burke, B. Butler, C. L. Carilli, B. G. 
Clark, J. M. Cordes, T. J. Cornwell, L. R. D’Addario, T. M. J. Dame, J. Davis, 
J. L. Davis, D. T, Emerson, R. P. Escoffier, E. B. Fomalont, L. J. Greenhill, M. A. 
Gurwell, C. R. Gwinn, K. I. Kellermann, A. R. Ken, E. R. Keto, S. R. Kulkami, 
S. Matsushita, D. Morris, R. Narayan, S.-K. Pan, S. J. E. Radford, R. Rao, M. J. 
Reid, A. Richichi, A. E. E. Rogers, J. E. Salah, F. R. Schwab, S. R. Spangler, 
E. C. Sutton, B. E. Turner, R. F. C. Vessot, W. J. Welch, M. C. Wiedner, and 
J.-H. Zhao. For major contributions to the preparation of the text and diagrams, 
we thank J. Heidenrich, G. L. Kessler, P. Smiley, S. Watkins, and P. Winn. For 
extensive help in preparation and editing we are especially indebted to I? L. Sim- 
mons. We are grateful to P. A. Vanden Bout, Director of the National Radio As- 
tronomy Observatory, and to I. 1. Shapiro, Director of the Harvard-Smithsonian 
Center for Astrophysics, for encouragement and support. The National Radio As- 
tronomy Observatory is operated by Associated Universities, Inc. under contract 
with the National Science Foundation, and the Harvard-Smithsonian Center for 
Astrophysics is operated by Harvard University and the Smithsonian Institution. 

A. RICHARD THOMPSON 
JAMES M. MORAN 
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Cambridge. Massachusetts 
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PREFACE 'TO THE 
FIRST EDITION 

The techniques of radio interferometry as applied to astronomy and astrometry 
have developed enormously in the past four decades, and the attainable angular 
resolution has advanced from degrees to milliarcseconds, a range of over six or- 
ders of magnitude. As arrays for synthesis mapping* have developed, techniques 
in the radio domain hake overtaken those in optics in providing the finest angular 
detail in astronomical images. The same general developments have introduced 
new capabilities in astiometry and in the measurement of the earth's polar and 
crustal motions. The theories and techniques that underlie these advances con- 
tinue to evolve, but have reached by now a sufficient state of maturity that it is 
appropriate to offer a detailed exposition. 

The book is intended primarily for graduate students and professionals in as- 
tronomy, electrical engineering, physics, or related fields who wish to use inter- 
ferometric or synthesis-mapping techniques in astronomy, astrometry, or geodesy. 
It is also written with radio systems engineers in mind and includes discussions 
of important parameter:; and tolerances for the types of instruments involved. Our 
aim is to explain the underlying principles of the relevant interferometric tech- 
niques but to limit the discussion of details of implementation. Such details of 
the hardware and the software are largely specific to particular instruments and 
are subject to change with developments in electronic engineering and computing 
techniques. With an understanding of the principles involved, the reader should be 
able to comprehend the instructions and instrumental details that are encountered 
in the user-oriented literature of most observatories. 

The book does not stem from any course of lectures, but the material included 
is suitable for a graduatAevel course. A teacher with experience in the techniques 
described should be able to interject easily any necessary guidance to emphasize 
astronomy, engineering, or other aspects as required. 

The first two chapters contain a brief review of radio astronomy basics, a short 
history of the development of radio interferometry, and a basic discussion of the 
operation of an interferometer. Chapter 3 discusses the underlying relationships 
of interferometry from the viewpoint of the theory of partial coherence and may 

*We define synthesis mapping as the reconstruction of images from measurements of the Fourier 
transforms of their brightness distributions. In this book the terms map, image, and brightness (intensity) 
distribution are largely interct angeable. 
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xxii PREFACE TO THE FIRST EDITION 

be omitted from a first reading. Chapter 4 introduces coordinate systems and pa- 
rameters that are required to describe synthesis mapping. It is appropriate then to 
examine configurations of antennas for multielement synthesis arrays in Chapter 
5 .  Chapters 6-8 deal with various aspects of the design and response of receiving 
systems, including the effects of quantization in digital correlators. The special re- 
quirements of very -long-baseline interferometry (VLBI) are discussed in Chapter 
9. The foregoing material covers in detail the measurement of complex visibility 
and leads to the derivation of radio maps discussed in Chapters 10 and 11. The 
former presents the basic Fourier transformation method, and the latter the more 
powerful algorithms that incorporate both calibration and transformation. Preci- 
sion observations in astrometry and geodesy are the subject of Chapter 12. There 
follow discussions of factors that can degrade the overall performance, namely, 
effects of propagation in the atmosphere, the interplanetary medium and the inter- 
stellar medium in Chapter 13, and radio interference in Chapter 14. Propagation 
effects are discussed at some length since they involve a wide range of compli- 
cated phenomena that place fundamental limits on the measurement accuracy. 
The final chapter describes related techniques including intensity interferometry, 
speckle interferometry, and lunar occultation observations. 

References are included to seminal papers and to many other publications and 
reviews that are relevant to the topics of the book. Numerous descriptions of in- 
struments and observations are also referenced for purposes of illustration. Details 
of early procedures are given wherever they are of help in elucidating the princi- 
ples or origin of current techniques, or because they are of interest in their own 
right. Because of the diversity of the phenomena described, it has been necessary, 
in some cases, to use the same mathematical symbol for different quantities. A 
glossary of principal symbols and usage follows the final chapter. 

The material in this book comes only in part from the published literature, and 
much of it has been accumulated over many years from discussions, seminars, 
and the unpublished reports and memoranda of various observatories. Thus we 
acknowledge our debt to colleagues too numerous to mention individually. Our 
special thanks are due to a number of people for critical reviews of portions of the 
book, or other support. These include D. C. Backer, D. S. Bagri, R. H. T. Bates, 
M. Birkinshaw, R. N. Bracewell, B. G. Clark, J. M. Cordes, T. J. Cornwell, L. R. 
D’Addario, J. L. Davis, R. D. Ekers, J. V. Evans, M. Faucherre, S. J. Franke, J. 
Granlund, L. J. Greenhill, C. R. Gwinn, T. A. Herring, R. J. Hill, W. A. Jeffrey, 
K. I. Kellermann, J. A. Klobuchar, R. S. Lawrence, J. M. Marcaide, N. C. Mathur, 
L. A. Molnar, P. C. Myers, P. J. Napier, P. Nisenson, H. V. Poor, M. J. Reid, J. T. 
Roberts, L. F. Rodriguez, A. E. E. Rogers, A. H. Rots, J. E. Salah, F. R. Schwab, 
I. I. Shapiro, R. A. Sramek, R. Stachnik, J. L. Turner, R. F. C. Vessot, N. Wax, and 
W. J. Welch. The reproduction of diagrams from other publications is acknowl- 
edged in the captions, and we thank the authors and the publishers concerned for 
permission to use this material. For major contributions to the preparation of the 
manuscript, we wish to thank C. C. Barrett, C. F. Burgess, N. J. Diamond, J. M. 
Gillberg, J. G. Hamwey, E. L. Haynes, G. L. Kessler, K. I. Maldonis, A. Patrick, 
V. J. Peterson, S. K. Rosenthal, A. W. Shepherd, J. F. Singarella, M. B. Weems, 
and C. H. Williams. We are grateful to M. S. Roberts and P. A. Vanden Bout, for- 
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mer Director and present Director of the National Radio Astronomy Observatory, 
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1 Introduction and 
Historical Review 

The subject of this book can be broadly described as the principles of radio in- 
terferometry applied to the measurement of natural radio signals from cosmic 
sources. The uses of such measurements lie mainly within the domains of astron- 
omy, astrometry, and geodesy. As an introduction we consider in this chapter the 
applications of the technique, some basic terms and concepts, and the historical 
development of the instruments and their uses. 

1.1 APPLICATIONS OF RADIO INTERFEROMETRY 

Radio interferometers and synthesis arrays, which are basically ensembles of two- 
element interferometers, are used to make measurements of the fine angular de- 
tail in the radio emission from the sky. The angular resolution of single radio 
antennas is insufficient for many astronomical purposes. Practical considerations 
limit the resolution to a few tens of arcseconds. For example, the beamwidth of a 
100-m-diameter antenna at 7 mm wavelength is approximately 17 arcsec. In the 
optical range the diffraction limit of large telescopes (diameter -8 m) is about 
0.015 arcsec, but the angular resolution achievable from the ground by conven- 
tional techniques is limited to about one arcsec by turbulence in the troposphere. 
For progress in astronomy it is particularly important to measure the positions 
of radio sources with sufficient accuracy to allow identification with objects de- 
tected in the optical and other parts of the electromagnetic spectrum. It is also 
very important to be able to measure parameters such as intensity, polarization, 
and frequency spectrum with similar angular resolution in both the radio and op- 
tical domains. Radio interferometry enables such studies to be made. 

Precise measurement of the angular positions of stars and other cosmic ob- 
jects is the concern of astrometry. This includes the study of the small changes 
in celestial positions attributable to the parallax introduced by the earth’s orbital 
motion, as well as those resulting from the intrinsic motions of the objects. Such 
measurements are an essential step in the establishment of the distance scale of 
the universe. Astrometric measurements have also provided a means to test the 
general theory of relativity and to establish the dynamical parameters of the solar 
system. In making astrometric measurements it is essential to establish a refer- 
ence frame for celestial positions. A frame based on extremely distant large-mass 
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objects as position references is close to ideal. Radio measurements of distant, 
compact, extragalactic sources presently offer the best prospects for the estab- 
lishment of such a system. Radio techniques provide an accuracy of the order of 

arcsec or less for the relative posi- 
tions of objects closely spaced in angle. Optical measurements of stellar images, 
as seen through the earth’s atmosphere, allow the positions to be determined with 
a precision of about 0.05 arcsec. However, stellar positions have been measured 
to - 1 milliarcsecond (mas) with the Hipparcos satellite, and optical measure- 
ments with the National Aeronautics and Space Administration (NASA) Space 
Interferometry Mission hold promise of position measurements to -4 parcsec. 

As part of the measurement process, astrometric observations include a de- 
termination of the orientation of the instrument relative to the celestial reference 
frame. Ground-based observations therefore provide a measure of the variation of 
the orientation parameters for the earth. In addition to the well-known precession 
and nutation of the direction of the axis of rotation, there are irregular shifts of 
the earth’s axis relative to the surface. These shifts, referred to as polar motion, 
are attributed to the gravitational effects of the sun and moon on the equatorial 
bulge of the earth, and to dynamic effects in the earth’s mantle, crust, oceans, and 
atmosphere. The same causes give rise to changes in the angular rotation velocity 
of the earth, which are manifest as corrections that must be applied to the sys- 
tem of universal time. Measurements of the orientation parameters are important 
in the study of the dynamics of the earth. During the 1970s it became clear that 
radio techniques could provide an accurate measure of these effects, and in the 
late 1970s the first radio programs devoted to the monitoring of universal time 
and polar motion were set up jointly by the U.S. Naval Observatory and the U.S. 
Naval Research Laboratory, and also by NASA and the National Geodetic Sur- 
vey. Polar motion can also be studied by observation of satellites, in particular the 
Global Positioning System, but distant radio sources provide the best standard for 
measurement of earth rotation. 

In addition to revealing angular changes in the motion and orientation of the 
earth, precise interferometer measurements entail an astronomical determination 
of the vector spacing between the antennas, which for spacings of -100 km or 
more, is usually more precise than can be obtained by conventional surveying 
techniques. Very-long-baseline interferometry (VLBI) involves antenna spacings 
of hundreds or thousands of kilometers, and the uncertainty with which these 
spacings can be determined has decreased from a few meters in 1967, when 
VLBI measurements were first made, to a few millimeters. Average relative mo- 
tions of widely spaced sites on separate tectonic plates lie in the range 1-10 cm 
per year, and have been tracked extensively with VLBI networks. Interferometric 
techniques have also been applied to the tracking of vehicles on the lunar surface 
and the determination of the positions of spacecraft. In this book, however, we 
limit our concern mainly to measurements of natural signals from astronomical 
objects. The attainment of the highest angular resolution in the radio domain of 
the electromagnetic spectrum results in part from the ease with which radio fre- 
quency signals can be processed electronically. Also, the phase variations induced 
by the earth’s neutral atmosphere are less severe than at shorter wavelengths. Fu- 

arcsec for absolute positions and 
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ture technology will provide even higher resolution at infrared and optical wave- 
lengths from observatories above the earth’s atmosphere. However, radio waves 
will remain of vital importance in astronomy since they reveal objects that do not 
radiate in other parts of the spectrum, and they are able to pass through galactic 
dust clouds that obscure the view in the optical range. 

1.2 BASIC TERMS AND DEFINITIONS 

This section is written for readers who are unfamiliar with the basics of radio as- 
tronomy. It presents a brief review of some background information that is useful 
when approaching the subject of radio interferometry. 

Cosmic Signals 

The voltages induced in antennas by radiation from cosmic sources are gener- 
ally referred to as signals, although they do not contain information in the usual 
engineering sense. Such signals are generated by natural processes and almost 
universally have the form of Gaussian random noise. That is to say, the voltage 
as a function of time at the terminals of a receiving antenna can be described as 
a series of very short pulses of random Occurrence that combine as a waveform 
with Gaussian amplitude distribution. In a bandwidth Au the envelope of the ra- 
dio frequency waveform has the appearance of random variations with duration 
of order l /Au .  For most radio sources the characteristics of the signals are in- 
variant with time, at least on the scale of minutes or hours typical of the duration 
of a radio astronomy observation. Gaussian waveforms of this type are assumed 
to be identical in character to the noise voltages generated in resistors and ampli- 
fiers. Such waveforms are usually assumed to be stationary and ergodic, that is, 
ensemble averages and time averages converge to equal values. 

Most of the power is in the form of continuum radiarion, the power spectrum 
of which shows slow variation with frequency and may be regarded as constant 
over the receiving bandwidth of most instruments. Figure I .1 shows continuum 
spectra of three radio sources. Radio emission from the radio galaxy Cygnus A 
and from the quasar 3C48 is generated by the synchrotron mechanism [see, e.g., 
Rybicki and Lightman (1979), Longair (1992)], in which high-energy electrons 
in magnetic fields radiate as a result of their orbital motion. The radiating elec- 
trons are generally highly relativistic, and under these conditions the radiation 
emitted by each one is concentrated in the direction of its instantaneous motion. 
An observer therefore sees pulses of radiation from those electrons whose orbital 
motion lies in, or close to, a plane containing the observer. The observed polar- 
ization of the radiation is mainly linear, and any circularly polarized component 
is generally very small. The overall linear polarization from a source, however, 
is seldom large, since it is randomized by the variation of the direction of the 
magnetic field within the source and by Faraday rotation. The power in the elec- 
tromagnetic pulses from the electrons is concentrated at harmonics of the orbital 
frequency, and a continuous distribution of electron energies results in a contin- 
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Figure 1.1 Continuum spectra of three discrete sources: Cygnus A, B radio galaxy; 3C48, a 
quasar; and NGC7027, an ionized nebula within our Galaxy. Data are from Conway, Keller- 
mann, and Long ( 1963); Kellermann and Pauliny-Toth ( 1  969); and Thompson ( 1  974). [One 
jansky (Jy) = lo-*' W m-* Hz-'.I 

uum radio spectrum. The individual pulses from the electrons are too numerous to 
be separable, and the electric field appears as a continuous random process with 
zero mean. The variation of the spectrum as a function of frequency is related 
to the slope of the energy distribution of the electrons. In the quasar in Fig. 1.  I ,  
which is a very much more compact object than the radio galaxy, the electron 
density and magnetic fields are high enough to produce self-absorption of the 
radiation at low frequencies. 

NGC7027, the spcctrum of which is shown in Fig. 1.1, is a planetary nebula 
within our Galaxy in which the gas is ionized by radiation from a central star. The 
radio emission is a thermal process and results from free-free collisions between 
unbound electrons and ions within the plasma. At the low-frequency end of the 
spectral curve the nebula is opaque to its own radiation and emits a blackbody 
spcctrum, for which the Rayleigh-Jeans law is a valid approximation. As the 
frequency increases, the absorptivity, and hence the emissivity, decrease approxi- 
mately as v-* [see, e.g., Rybicki and Lightman (1979)], where v is the frequency. 
This behavior counteracts the v2  dependence of the Rayleigh-Jeans law, and thus 
the spectrum becomes flat when the nebula is no longer opaque to the radiation. 
Radiation of this type is unpolarized. 

In contrast to continuum radiation, specrml lirzr rudiution is generated at spe- 
cific frequencies by atomic and molecular processes. A fundamentally important 


