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PREFACE 

If a physical system has only internal interactions and if space is isotropic, then in- 
trinsic properties of the system must be independent of its orientation and must be 
indistinguishable in all directions. From this fundamental rotational symmetry con- 
cept the theory of angular momentum has been developed into a sophisticated analy- 
tical and computational technique, especially when applied to quantum mechanics. I 
aim in this book to develop angular momentum theory in a pedagogically consistent 
way, starting from the geometrical concept of rotational invariance rather than from 
the dynamical idea of orbital angular momentum and its quantization. The latter ap- 
proach, though hallowed by tradition, needlessly confuses quantum mechanics with 
geometry. 

Topics are presented in an order so that new concepts are introduced and relevant 
formulas are derived in ways arising naturally in the treatment rather than by appeal- 
ing to unfamiliar concepts or ud hoc methods. Modern notation and terminology are 
used in a geometric and algebraic approach. Some concepts of group theory are in- 
troduced and are related to this approach, but knowledge of group theory is not re- 
quired. Those who plan to use continuous groups that are more abstract than the 
rotation group may thereby develop their insight and skills by practicing with rota- 
tions. I try to distinguish carefully results that depend only on rotational symmetry 
and are generally valid from those having their most fruitful interpretation from the 
viewpoint of quantum mechanics. Applications to quantum mechanics therefore 
usually appear toward the end of sections and chapters. 

Although Angular Momentum is intended to be pedagogically self-contained, 
the treatment is not encyclopedic, since broad-ranging surveys of angular momen- 
tum theory and extensive tabulations of formulas are now available. There is also a 
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x i i  PREFACE 

large research literature for further study, to which I direct you. Indeed, the field of 
angular momentum theory has become a mecca for algebraists. In this book, I pre- 
fer to emphasize concepts rather than techniques, because imagination is usually 
more important than knowledge, even in the sciences. 

Visualization of objects and quantities being rotated is important for insightful 
and practical use of the concepts and methods of rotational symmetry. I therefore 
provide nearly 130 illustrations to help you understand what the mathematics is de- 
scribing. If you have access to a computer software system combining mathematics 
and graphics, such as Mathernatica or Maple, you too may explore such visualiza- 
tions. There are 26 program notebooks-used to generate indicated figures in the 
text and for parts of the problem section at the end of each chapter-provided in Ap- 
pendix I. Although written for Mathernatica on an Apple Macintosh computer, 
they are readily adaptable to Maple. 

Practical aspects are not neglected. For example, we discuss how to compute 
coupling coefficients efficiently, while computer programs for numerical evaluation 
of reduced rotation matrix elements and for 3-j, 6-j, and 9-j coefficients are given in 
Appendix 11. These programs are written in the C language and are designed to be 
readily adaptable to Fortran and Pascal. Tables of formulas for practical reference 
are collected in Appendix 111. 

For use as a textbook, Angular Momentum assumes knowledge of mathematics 
through matrix algebra and differential equations, plus understanding of quantum 
mechanics usually acquired in one year of course work. Thus, I hope to make the 
subject of rotational symmetry accessible to advanced undergraduates in chemistry, 
physics, and mathematics. From several years experience of teaching courses using 
the materials in Angular Momentum, I have found that the book can readily be com- 
prehended in less than a half year of course work, even when supplemented by de- 
tailed examples from the specific discipline in which it is taught. Emphasis is placed 
throughout on appropriate interpretation and use of derived results. To help with 
self-study and to test comprehension, 135 problems at the end of the chapters can be 
used to reinforce concepts and to improve skills. 

Angular Momentum should provide suitable preparation for applications to re- 
search in the physical sciences-especially in physics, chemistry, and related areas 
of mathematical physics, such as group theory. Extensive references are given to 
material that is more advanced in concepts and techniques, as well as to applications 
of rotational symmetry aspects in research on physical systems. 

Although a book may be the offspring of a single author, it has many midwives. 
A generation of students has helped me to refine my ideas on the subject, the U.S. 
Department of Energy unwittingly provided some financial support, while Ms. 
Word and Mac Intosh patiently retyped many drafts of the text and helped prepare 
the illustrations. Professors Louise Dolan and Charles Poole reviewed the manu- 
script and gave many suggestions for improvements. Greg Franklin and Bob 
Hilbert at Wiley-Interscience helped expedite the publication, 

WILLIAM J. THOMPSON 

Chapel Hill, February 1994 



THE COMPUTER INTERFACE 

The interface between angular momentum theory and computers occurs at two 
levels; conceptual and technical. At the conceptual level, computers are useful to 
visualize functions describing rotational symmetries and to produce algebraic formu- 
las correctly and rapidly. At the technical lcvel, we need algebraic and numerical 
results for functions describing these symmetries, and these results are obtained 
most efficiently by using computers. 

Conceptual aspects of angular momentum that are helped by the interface to com- 
puters include illustration of angular momentum eigenstates (Section 4. I ) ,  of par- 
tial-wave expansions (Section 5.4), of rotation matrix elements and their classical 
limits (Sections 6.3 and 6.4), and of spin precession in magnetic fields (Sec- 
tion 8.4). Such visualizations are best produced interactively so that you can vary 
viewpoints and parameters in real time. These visualizations usually require 
computing algebraic (symbolic) expressions before numerical and graphical results 
are obtained. 

The Mathematica Interface. The computer system we use for conceptual as- 
pects of our treatment is Mathemutica, a general-purpose system for doing mathe- 
matics by computer. It has convenient visualization capabilities and is available on 
many computers. In Appendix I we provide Mathemafica programs in “notebook” 
€orm that are immediately usable on several small computers and on workstations. 
Mathemutica is described in several books, such as Maeder’s [Mae911 and Wolf- 
ram’s [Wo191]. The programs are written to make them easy to translate to other 
programming environments, such as the Maple system for symbolic, numerical, 
and graphical computation. Introductions to Maple are provided in the book by 
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Char et al. [Cha92] and in Heck’s book [Hec92]. Both Maple and Mathematica 
provide facilities for translating their symbolic output into C or Fortran code. 

Technical aspects of rotational symmetries for physical systems typically require 
algebraic or numerical evaluation of functions describing eigenstates (Chapter 4), 
partial-wave expansions (Section 5.4), rotation matrices (Chapter 6), and coupling 
coefficients (Chapters 7 and 9). For exploratory use, the 26 Mathernatica pro- 
grams in Appendix I are suitable. 

Problems at the end of each chapter that suggest using one of the Mathematica 
notebooks are indicated by a superscript M, such as 1.2M. 

The C Interface. For numerical computations, Appendix I1 has four programs 
of moderate efficiency for reduced rotation matrix elements and for 3-j, 6-j, and 9-j 
coefficients. These are coded in the C programming language, which is available on 
many computers. The C functions are intended to be incorporated into programs, so 
we provide just a small driver program that enables the functions to be checked for 
numerical correctness. If high efficiency is needed for computing coupling coeffi- 
cients, then the discussions in Sections 7.4.2 (for 3-j coefficients), 9.3.3 (for 6-j 
coefficients), and 9.5.1 (for 9-j coefficients) will guide you to the technical litera- 
ture. 

The Program Diskette. All the Mathematica and C programs in Appendices I 
and I1 are provided on the diskette accompanying this book. The 3.5-inch double- 
density diskette can be read by Apple Macintosh computers, as well as by several 
other computers with appropriate hardware and software. A general-purpose way of 
translating from this diskette to diskettes for other computers is suggested in the 
following diagram. 

r 
El 

Macintosh 
diskette 

Macintosh Translate to 
ASCII (text) 

Modem to 

In1 

Diskettes for other computer 

other computer 1 

First, read the Macintosh diskette provided, by using any Macintosh computer 
that is connected by modem to the other computer, then use the Macintosh to trans- 
late all the files on the diskette to ASCII text files. Next, transfer the files over a 
network to the other computer. Then, in this computer do any editing of the files 
that is needed to produce the correct format for Mathematica or C on that machine. 
Finally, make copies of the diskette for this computer system. 



Chapter 1 

SYMMETRY IN PHYSICAL SYSTEMS 

The major topic of this book is the study of rotational symmetry applied to physical 
systems. The five sections in this chapter emphasize the relation between symme- 
tries and invariances in dynamical systems (Section l . l) ,  the nature of spatial sym- 
metries (Section 1.2), and particularly rotational symmetries (Section 1.3). In Sec- 
tion I .4 we review the discrete symmetry operations-parity ( P ) ,  charge conjuga- 
tion (C),  and time reversal (T)--all important in quantum mechanics. Here we also 
introduce the main ideas of the Pauli and Luder PCT theorem, illustrating it with 
Maxwell’s equations. The Pauli exclusion principle is also involved in these dis- 
cussions, so we review what is known about the limits of its validity. Finally in this 
chapter, Section 1.5 is an excursion to look at symmetry and broken symmetries 
from cosmetology to cosmology. 

After completing this chapter, especially if you work the problems at the end, 
you should have a good idea of the importance of symmetry properties for studying 
physical systems. In subsequent chapters we expand the concepts of this chapter, 
using the mathematics summarized in Chapter 2. We try throughout to distinguish 
considerations which are general and primarily geometrical from those which have 
their most fruitful applications in quantum mechanics and are primarily dynamical. 

1 . 1  SYMMETRIES AND INVARIANCES 

We begin by illustrating the relation of symmetry properties to invariances 
(conservation laws) of dynamical systems-using in Section 1.1.1 examples from 
nonrelativistic classical mechanics: linear momentum, total energy, and angular mo- 
mentum. In Section 1.1.2 we discuss the generalization of these continuous sym- 
metries to Noether’s theorem, and we also discuss Curie’s symmetry principle. 

1 



2 SYMMETRY IN PHYSICAL SYSTEMS 

1.1 .1  Symmetries and Conservation Laws 

We present here examples of the relation between symmetries and conservation laws 
in the context of classical mechanics. In the following subsection these are general- 
ized to Noether’s theorem, which holds for a very wide range of continuous symme- 
tries. What are the relations between symmetry properties of a physical system and 
conservation laws? To answer this, we consider the time dependence of integrals of 
the motion [Go1801 for several simple examples from nonrelativistic mechanics. 

You should understand that the following examples are interesting because of 
relationships they illustrate between symmetries and conservation laws rather than 
because of any manipulative techniques their derivations require or because of the 
formal results. Indeed, you know the formulas already; it’s the spin we put on them 
that matters. Therefore, most of the details are suggested as problems. 

Momentum Conservation. Consider first the one-dimensional case of a single 
particle having momentum P in the x direction and moving in an external potential 
V(x). Suppose that when we move the particle the potential is unchanged. The time 
rate of change of its momentum, P ,  is then given by 

(1.1) 
. dV 
p=--=o =$ Pconserved 

dx 

This is fairly obvious, being an example of Newton’s law of inertia. 
Now consider-again in one dimension for simplicity-two particles interacting 

only through a mutual potential, V(xl-x2), that depends only on their separation 
x12 = xI-x2, independent of the choice of origin, as shown in Figure 1.1. The total 

FIGURE 1.1 If two particles interact through a mutual potential depending only on their separa- 
tion x12, independent of the choice of origin 0, then the total momentum is conserved. 

momentum of the two-particle system changes with time according to 

-0 * Pconserved (1 4 . dV dV p=------ 
&I 2 dx2 1 

This is just an example of Newton’s law of action and reaction. If this system is 
moved as a unit through a displacement X so that 

x;  = XI + x x; = x2 + x x;2 = x,2 (1.3) 

then (1.2) will still hold and symmetry under spatial translation will also result in 
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conservation of momentum. The general case-three dimensions and a many- 
particle system interacting through two-body potentials satisfying the action-reaction 
condition-requires only technical competence with vector calculus, so we relegate it 
to Problem 1.1. 

Total Energy Conservation. We again start with a simple example-motion of 
a single particle in one dimension. To consider the time evolution of the system we 
must assume that the particle is moving in a time-independent external potential, V, 
but now V may depend upon position x. For example, as hinted in Figure 1.2, the 
external potential may be gravity. 

FIGURE 1.2 If a particle moves in an external time-independent potential that may depend on  
position x ,  such as gravity, its total energy is conserved. 

The total energy of the particle, E, may be expressed as 

Its energy therefore depends on time as 

di dV 
dt dx 

E = mx- i- -x 

(1.4) 

(1.5) 

By using Newton’s force law, we can convert the first term into the negative of the 
second term, producing 

E = O  3 E conserved (1.6) 

Thus, invariance of the potential energy under continuous time displacements pro- 
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duces conservation of total energy. To prove the general case in three dimensions 
with a many-particle system interacting through time-independent potentials is sug- 
gested in Problem 1.1. 

Angular Momentum Conservation. We now turn to the topic of this book, con- 
sidering the simplest case of mechanical angular momentum-a particle moving in 
an x - y plane under a central potential with no explicit time dependence. This sit- 
uation has V(x, y ,  t) = V(r), where r=.((x2 + y 2 ) .  An example is that of a planet 
moving under the sun’s gravitational attraction, as sketched in Figure 1.3. 

FIGURE 1.3 A planet moves under the sun’s gravitational attraction, a central potential, so its 
angular momentum is conserved. 

Note that the choice of the origin is  important in this example, because the 

To calculate the time rate of change of the classical angular momentum, L,, we 
angular momentum depends upon the location of this reference point. 

need the derivatives 

dV d V d r  x d V  
dx  dr dx r dr 
-=-- = _- 

dV d V d r  y d V  
dy dr dy r dr 
-=--=-- 

From the angular momentum of a particle moving in the x -  y plane, 

L, = m(xy - y i )  

we can readily calculate its time derivative as 

(1.9) 

(1.10) 
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In the second step of (1.10) we used Newton’s force law, then we used (1.7) and 
(1 3) for the potential derivatives. We have found a conservation condition-the 
conservation of angular momentum. What is the symmetry condition? 

If you look at the steps in the derivation of (1.10) you will see that the depen- 
dence of V on x and y-with these coordinates having equal footing, for example as 
they determine r-is the essential step leading to the zero in (1.10). Technically, we 
have assumed a Euclidean metric for the plane of the motion. Equivalently, if we 
performed a rotation of the plane about the same axis as the particle angular momen- 
tum, then the potential would be unaltered, since distance r rather than vector r is the 
variable in V. Thus, the symmetry of rotational invariance of the potential leads to 
conservation of angular momentum of the particle. Generalization of this result for a 
particle in two dimensions to the result in three dimensions is suggested in Prob- 
lem I .  1 and is discussed in Section 2.6 of [Go180]. 

1 .1  .2 Noether’s Theorem and Curie’s Principle 

We now consider two results that help organize one’s thinking about symmetry in 
physical systems. The first, Noether’s theorem, relating symmetries to conservation 
conditions, generalizes our examples in Section 1.1.1. It can be proved for a wide 
variety of systems, including classical mechanics, Maxwell’s formulation of electro- 
dynamics, and many systems (both discrete and continuous) that can be described 
by Lagrangians. The second result, Curie’s principle-relating symmetry in causes 
to symmetry in effects-is just a principle, not a formal theorem. 

Noether in u Nutshell. The examples in Section 1.1.1 of symmetries and their 
conservation laws illustrate Noether’s theorem, which can be stated in nontechnical 
form as follows: 

Noether’s theorem. If a system has a continuous symmetry 
property, then there are corresponding quantities 

whose values are conserved in time. 

Table 1.1 summarizes our examples of Noether’s theorem on continuous symme- 
tries and conservation laws. The examples given here can be generalized to classical 
mechanical systems described by Lagrangians expressed in terms of generalized 
coordinates. Our three examples in Table 1.1 thereby essentially collapse to a single 
example with different “coordinates.” A proof of Noether’s theorem that uses varia- 
tional principles is provided in Section 2.6 of Goldstein’s text on classical mechan- 
ics [Go180]. Section 12.7 of the same text provides a more formal discussion of 
Noether’s theorem for continuous systems and fields. Wigner [Wig27a] made simi- 
lar derivations for quantum mechanics, which are more fully developed in Sec- 
tion IV.l of Roman’s text on elementary particles [Rom611. 
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TABLE 1.1 Examples of continuous symmetries of classical mechanical sys- 
tems and their corresponding conservation laws, illustrating Noether’s theorem. 

Continuous symmetry Conserved quantity 

Spatial displacement 
(translation invariance) Linear momentum 

Time displacement Total energy 

Rotation about an axis Angular momentum 

Is there a converse to Noether’s theorem? Is it true that if we observe conserved 
quantities in physical systems that there must be a related symmetry? One can con- 
struct counterexamples for special systems, but nowadays the persistent and wide- 
spread observation of conserved quantities, especially in subatomic systems, is 
usually taken to be a signal that there exists an underlying symmetry condition, if 
only we are able to find it. 

Emmy Noether (1882- 1935) was a leading mathematician of the early twentieth 
century, best known for her contributions to mathematics. Like the work of her 
mentor, Paul Gordan (known to physical scientists through the Clebsch-Gordan 
coefficients that we introduce in Section 7.2.1), Noether’s work provided mathe- 
matical substance and depth to the concepts and techniques of physics. One trib- 
ute to her life and work is the biography edited by Brewer and Smith [Bre81], 
while another (written by her nephew) is in Grinstein and Campbell’s collection 
of biographies of women of mathematics [Gri87]. 

In his essays on symmetry, Wigner-one of the founders of the use of symme- 
try principles in quantum mechanics and its applicationsaiscusses [Wig67, Chap- 
ters 2 and 41 the historical development of ideas about symmetry and conservation 
laws. We take up this thread again in Section 5.5 when we trace the conceptual de- 
velopment of angular momentum. 

Curie ’s Principle. In the pioneering investigations of piezoelectricity and pyro- 
electricity that he made with his brother Jacques, Pierre Curie enunciated [Cur941 the 
following guiding principle related to symmetry: 

Curie’s principle. The symmetry of an isolated system 
cannot decrease as the system evolves with time. 

In the solid-state physics of crystals this is called Neumann’s principle: Every 
point-group symmetry (Section 2.5.4) of a crystal is exhibited by every physical 
property of that crystal. Indeed, this is the context in which Curie first applied the 
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principle. Curie’s principle has been generalized by Renaud [Ren35] and is discuss- 
ed extensively in Section 6.2 of Rosen’s primer on symmetries [Ros83]. 

There is no formal proof of the correctness of this principle, the major reason 
being that there is no quantifiable definition of the degree of symmetry of a system. 
However, Curie’s principle is a very useful guide when investigating symmetries 
and their consequences. 

Pierre Curie (1859- 1906) made fundamental discoveries in three areas of physics: 
piezoelectricity, magnetism (the Curie temperature), and radioactivity. With his 
wife Marie (1867- 1934), he discovered the elements polonium (named after her 
native Poland) and radium, both in 1898. They were awarded a Nobel Prize in 
1903 for this work. 

1.2  SPATIAL SYMMETRIES 

In the following two sections we discuss spatial symmetries, beginning with general 
considerations in this section, then specializing to rotational symmetries-the subject 
of this book-in Section 1.3. These discussions and methods prepare us for the 
treatment of discrete symmetries, emphasizing quantum systems, in Section 1.4. 

Geometry and Symmetries. Almost as soon as we encounter geometry, we are 
drawn to considering geometric symmetry. An overview of the relations between 
geometry in three dimensions and its symmetries is given in Figure 1.4. 

FIGURE 1.4 Overview relating geometric symmetries of three types-reflections, rotations, and 
translations--to abstract geometry and its origins in the practical geometry used in ancient Egypt. 

As an example of the geometry-symmetry connection, in plane geometry equilat- 
eral triangles and squares are often visually more appealing than arbitrary triangles 
and quadrilaterals, while in three dimensions regular polyhedra such as a regular 
tetrahedron or a cube are usually perceived as more interesting than polyhedra with 
unbalanced sides. As shown in Section 1.2.2, one reason for this is that such fig- 
ures can fill space (in two and three dimensions) without leaving voids. 
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Albert Einstein-who did so much to change concepts about space and time- 
provides [Ein54] an interesting discussion about the relation between practical geo- 
metry (as used for building the Egyptian pyramids), experience, and the abstraction 
of geometry to Euclid’s system and its extensions that Einstein used in his general 
theory of relativity. 

1.2.1 Reflection Symmetry in Nature 

In the world around us we observe many examples of reflection symmetry, or close 
approximations to it. On the other hand, as one zooms into the microscopic scale 
from macroscopic through mesoscopic scales, a lack of reflection symmetry often 
becomes evident. We now introduce some terminology used when discussing re- 
flection symmetry, then we discuss reflection symmetry in nature at the mesoscopic 
level. 

Handedness, Chirality, Helicity. Several terms are used to denote that there is 
a distinction between left and right. One term is just handedness, with an obvious 
meaning, at least for humans when translated from English into an intelligible lang- 
uage. Figure 1.5 reminds you how mirror reflection is related to handedness. 

FIGURE 1.5 Hands reflected in mirrors interchange left and right if the mirror is vertical or if 
the mirror is horizontal. Note that reflection in two mirrors that are at right angles to each other re- 
stores the handedness, since diagonally opposite hands are either both left (top left and bottom right) 
or both right (top right and bottom left). 

The term chirality (from the Greek for hand, cheir) is used in technical con- 
texts, as in stereochemistry and in some areas of subatomic physics. The root word 
chiro also occurs in chiropractor-a physician who uses hands to manipulate (Latin 
manus, hand, as in manuscript, a handwritten document). Practitioners of angular 
momentum theory often use their hands to describe rotations; hence, their 
handwaving (nonrigorous) discussions. Molecules that have opposite handedness 
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are called enantiomers, and a mixture having the same proportion of the two enan- 
tiomers is called rucemic. 

The term helicity (from the same Greek root as helix, a spiral) is most often 
used by physicists when describing the projection of intrinsic spins along the direc- 
tion of motion, especially in relativistic situations such as for photons. The usual 
definition of the helicity, h, is 

(1.1 1) 

where J is the angular momentum of the particle and p is a unit vector along the di- 
rection of motion. Sometimes h/J is used instead. 

The problcm of communicating with extraterrestrial life having an intelligence 
compatible with that of humans an indication of which side is to be labelcd Left 
and which Right, but without sending pictures (which might accidentally be 
reconstructed in reverse) has been called by Martin Gardner the Ozma problem. It 
is posed in Chapter 18 of his book [Ga190], and a solution in terms of a weak- 
interaction experiment is given in Chaptcr 22. 

Handedness in Nature. One of the first scientists to recognize the significance 
of handedness in nature-especially at the microscopic level-was Louis Pasteur 
(1822-1895), who in 1848 discovered the handedness of tartaric-acid molecules, as 
sketched in Figure 1.6. His discovery is vividly recounted in the biography of Pas- 
teur written by Dubos [Dub76]. 

FIGURE 1.6 Handcdness of the two enantiomers of tartaric acid discovered by Pasteur, and the 
right-handed helix of DNA discovered by Crick and Watson. 

The culmination of discoveries of handedness in biological systems is that by 
Crick and Watson, who demonstrated the helical structure of DNA molecules in 
1953. In Chapter 12 of his book on ambidexterity in the universe, Gardner [Gar901 
gives an interesting presentation of Pasteur’s discovery, and in later chapters he dis- 
cusses asymmetry in biological molecules. An unexplained puzzle, to which we re- 
turn in Section 1.5, is why creatures on Earth have proteins that are almost exclu- 
sively left-handed, whereas DNA molecules contain only right-handed sugars. 
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At the subatomic level, the weak interaction exhibits violation of parity symme- 
try, for example in nuclear beta decay. This possibility was first suggested by Yang 
and Lee [Yan56] and verified experimentally by Wu et al. [Wu57]. 

Throughout this book, as motifs at the head of chapters, we have drawings of 
helical shells in both left- and right-handed varieties, just as they occur in nature. 
These shells characterize some aspect of the rotational symmetry and angular mo- 
mentum topics in the chapter. If you look carefully at the pictures, such as Fig- 
ure 1.7, you will notice that in addition to the handedness of the shell, there is also 
another reflection symmetry between pictures. To train yourself to recognize such 
kinds of symmetry, find out what it is. (Discovery favors the prepared mind.) To 
understand the geometry of these helices and their symmetries, do Problem 1.2. 

FIGURE 1.7 Helical shells of the left- and right-handed variety (left side) and their spatial reflec- 
tions (right side). (Adapted from Muthernntica notebook She1 1 .) 

1.2.2 Translation Symmetries; Mosaics and Crystals 

Before introducing rotational symmetries, we summarize some essential properties 
of geometrical symmetries resulting from translations in a plane and in three dimen- 
sions. Translations are much simpler than rotations, because (unlike the latter in 
three dimensions) they commute-that is, their order of application is unimportant. 
We consider figures whose edges are all the same size and that cover a region of the 
plane (regular polygons) or of three-dimensional space (regular polyhedra) without 
leaving space between them. They therefore have translational symmetry for dis- 
crete translations by the length of a side. 

Mosaics. The regular polygons are those that can cover a plane so that no space 
is left unfilled, thereby forming a mosaic of tiles. Problem 1.3 leads to the proof 
that the only regular polygons that tile the plane are the triangle, square, and 
hexagon, as shown in Figure 1.8. 

It is interesting to note that each of these figures has a center of reflection sym- 
metry, whereas the pentagon, intermediate between square and hexagon, does not 
have such a center. An extensive discussion of fivefold symmetry is given in the 
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monograph edited by Hargittai [Har92], and discussions of mathematical puzzles 
and problems in tiling are given in Martin’s book on polyominoes [ M d l ] .  

E= 3 E= 4 €= 6 

FIGURE 1.8 The three regular polygons that can tile the plane. The number of edges of each 
polygon is E. 

Crystals. Now consider the situation in three dimensions. Suppose that we 
have a regular polyhedron with F faces as shown in Figure 1.9. (A polyhedron is 
regular if all its faces are the same shape and size.) 

tetrahedron [4] hexahedron (cube) [6] octahedron [8] 

dodecahedron [12] icosahedron [20] 

FIGURE 1.9 The five regular solids that can fill space without leaving voids. For each solid 
the number in brackets is the number of polyhedron faces, F. (Adapted from Mathemarica 
notebook Polyhedra, which results in irregular edges.) 

The appearance of a regular polyhedron will be unchanged by any rotation about 
the center through a discrete angle 8 = 2 n  n/F. Such a polyhedron might describe 
the filling of a region of space without voids by a crystalline material. The regular 
solids were described by Plat0 of Athens (427 - 347 B.C.), so they are often called 
the Platonic solids. Problem 1.4 leads to the proof that the only regular polyhedra 
have F = 4,6, 8, 12, and 20, as shown in Figure 1.9 and summarized in Table 1.2. 
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TABLE 1.2 Geometric properties of the regular polyhedra (Platonic solids). 

N ,  edges at S, edges at 
Polyhedron F ,  faces v, vertices E,  edges each vertex each face 

Tetrahedron 4 4 6 3 3 

Hexahedron (cube) 6 8 12 3 4 

Octahedron 8 6 12 4 3 

Dodecahedron 12 20 30 3 5 
Icosahedron 20 12 30 5 3 

A truncated icosahedron-with the same geometry as a soccer ball (in America) or 
football (in Europe)-has a particular interest, since it describes the molecule C60, 
called buckminsterfullerene or the “buckyball.” The mathematics of the buckyball is 
described in a Scientific American article by Chung and Sternberg [Chu93]. 

Now that we have discussed symmetries and conservation laws for physical 
systems in Section 1.1, as well as reflection and translation symmetries in this sec- 
tion, we turn to the main topic of this book-rotational symmetries. 

1 . 3  ROTATIONAL SYMMETRIES 

In this section we introduce the main geometric ideas and formulas relating to rota- 
tional symmetries. One of the most important topics is the distinction between active 
and passive rotations, which we emphasize and clarify in Section 1.3.1. Here we 
also introduce Euler’s scheme for describing rotations in three dimensions and we 
derive the matrices that describe active rotations of the coordinates of an object. In 
Section 1.3.2 we develop our understanding of coordinate systems for rotations by 
considering rotations of the Earth as seen from a fixed point in space. Finally in this 
section, we provide in Section 1.3.3 a cameo portrait illustrating connections be- 
tween different topics in this book. 

Is Space Isotropic ? To modern ways of thinking about the physical sciences, 
this is probably a meaningless question. I believe it to be assumed that space is iso- 
tropic, and you will agree with me upon reflection. In an experiment, if we observe 
that a phenomenon depends on orientation, we attribute this to the presence of inter- 
actions. That is, interactions are those things that give rise to a dependence on di- 
rection in space. 

This viewpoint is consistent with ideas in general relativity, where “curvature” in 
space-time is attributed to gravitational interactions in the macroworld. Further, in 
experiments on fundamental symmetries in the microworld-such as breaking of re- 
flection symmetry measured in parity-violation experiments-space is assumed to be 
isotropic, so the system may be rotated without changing its intrinsic properties. 

When you do experiments, a constant problem is to shield the complete appara- 
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tus of the measurement from so-called “external” influences. Electromagnetic fields 
are particularly troublesome in this regard. Indeed, if the results depend on the ori- 
entation of the apparatus as a whole, this is taken as a signal that the equipment is 
not sufficiently shielded, rather than as a sign that space is anisotropic. 

Given the assumption of the isotropy of space, the subject of rotation symmetry 
and angular momentum is about how our description of phenomena change when 
we break this symmetry by choosing a reference frame with a particular orientation. 
This idea is sketched in Figure 1.10. 

FIGURE 1.10 Space i s  intrinsically isotropic (left), hut this symmetry is broken upon choos- 
ing a reference axis (middle) or a reference frame (right). 

The subject of angular momentum is about how our description of a system 
changes when we rotate the system relative to a reference frame in space. By ana- 
lyzing these changes of description we may learn about the interactions within the 
system. It is to the study of these rotations that we now turn our attention. 

1.3 .1  

A rotation can be considered from one of two viewpoints, active or passive. We 
now discuss this idea and develop some technical vocabulary and mathematics. 

Active and Passive Rotations; Euler Angles 

Active Rotations. The first point of view for rotations is called an active 
rotation. Here the observer is in a fixed reference frame while the object-a body 
in classical mechanics, a field component (E, B, or A) in electromagnetism, or an 
operator in quantum mechanics-rotates with respect to this reference frame. Such 
dynamical rotations of objects and transformations of operators are the same as those 
in classical mechanics. An alternative name for an active rotation is alibi (from the 
Latin for “elsewhere”). In quantum mechanics active rotations are analogous to the 
Heisenberg viewpoint for time dependence, in which operators are changed by 
transformations while state vectors (wave functions) are unchanged thereby. 

Tn Figure 1.1 1 the top half shows active rotation of an ellipsoid, with the ob- 
server’s eye being kept fixed. Active rotations can be specified by describing the 
relation between coordinates of a representative point of the object before rotation, 
r = (x, y ,  z), and after rotation, r: = (x’, y’, 2 ’ ) .  Geometrically, such rotations 
are described as indicated in Figure 1.12. 
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FIGURE 1.11 Active and passive rotations compared. In the top half of the figure an active ro- 
tation of the ellipsoid has been made, with the observer's eye fixed. In the bottom half of the figure 
the ellipsoid is fixed (passive) while the observer's eye rotates around it. Note that the two rota- 
tions are the inverse of each other. 
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FIGURE 1.12 Active rotations in terms of the successive rotations through Euler angles a, fl ,  
then 5 with thc rotations being applied in this order. 

An alternative way of describing an active rotation is depicted in Figure 1.13. 

Algebra of Active Rotations. Having examined rotations from the geometric 
viewpoint, it is now time to make an algebraic formulation. Algebraically, in order 
to describe the active rotation of a representative point on the object, write 


