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Many of the problems faced today by physicists, engineers, and applied 
mathematicians involve difficulties, such as nonlinear governing equations, 
variable coefficients, and nonlinear boundary conditions at complex known 
or unknown boundaries, which preclude their solutions exactly. To solve 
these problems we are forced to resort to a form of approximation, a numerical 
solution, or a combination of both. Foremost among the approximation 
techniques is the systematic method of perturbations (asymptotic expansions) 
in terms of a small or a large parameter or coordinate. This book is con- 
cerned only with these perturbation techniques. 

According to these perturbation techniques, the solution of the full 
problem is represented by the first few terms of a perturbation expansion, 
usually the first two terms. Although these perturbation expansions may be 
divergent, they can be more useful for a qualitative as well as a quantitative 
representation of the solution than expansions that are uniformly and 
absolutely convergent. 

It is the rule rather than the exception that the straightforward (pedestrian) 
expansions in powers of a parameter have limited regions of validity and 
break down in certain regions called regions of nonuniformity. To render 
these expansions uniformly valid, investigators working in different branches 
of physics, engineering, and applied mathematics have developed a number 
of techniques. Some of these techniques are radically different, while others 
are different interpretations of the same basic idea. 

The purpose of this book is to present in a unified way an account of some 
of these techniques, pointing out their similarities, differences, and advantages, 
as well as their limitations. The different techniques are described using 
examples which start with model simple ordinary equations that can be 
solved exactly and progress toward complex partial differential equations. 
The examples are drawn from different branches of physics and engineering. 
For each example a short description of the physical problem is first pre- 
sented. 

The different techniques are described as formal procedures without 
any attempt at justifying them rigorously. In fact, there are no rigorous 
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mathematical justifications available yet for the expansions obtained for some 
of the complex examples treated in this book. 

At the end of each chapter, a number of exercises have been included, 
which progress in complexity and provide further references. 

The reader need not understand the physical bases of the examples used 
to describe the techniques, but it is assumed that he has a knowledge of basic 
calculus as well as the elementary properties of ordinary and partial differen- 
tial equations. 

Chapter 1 presents the notations, definitions, and manipulations of 
asymptotic expansions. The sources of nonuniformity in perturbation 
expansions are classified and discussed in Chapter 2. Chapter 3 deals with 
the method of strained coordinates where uniformity is achieved by ex- 
panding the dependent as well as the independent variables in terms of new 
independent parameters. Chapter 4 describes the methods of matched and 
composite asymptotic expansions; the first method expresses the solution 
in terms of several expansions valid in different regions but related by 
matching procedures, while the second method expresses the solution in 
terms of a single expansion valid everywhere. In Chapter 5 the idea of fast 
and slow variables is used in conjunction with the variation of parameters 
method to study the slow variations of the amplitudes and phases of weakly 
nonlinear waves and oscillations. The methods of Chapter 3, 4, and 5 are 
generalized in Chapter 6 into one of three versions of the method of multiple 
scales. Chapter 7 treats available methods for obtaining asymptotic solutions 
of linear ordinary and partial differential equations. 

My first technical debt is to Dr. W. S. Saric and to my brothers Dr. Adnan 
Nayfeh and Mr. Munir Nayfeh for their comments and encouragement 
throughout the writing of this book. I am indebted to several colleagues for 
helpful comments and criticism, including in particular Drs. D. T. Mook, 
D. P. Telionis, A. A. Kamel, and B. H. Stephan and Messers 0. R. Asfar 
and M. S. Tsai. This book would not have been written without the patience 
and encouragement of my wife, and the insistence of my parents Hasan and 
Khadrah, in spite of their illiteracy, that I acquire a higher education. 
Therefore I dedicate this book to my parents and wife. 

ALI HASAN NAYFEH 
Blacksburg. Virginia 
May I972 



1. Introduction 1 

1.1 .  Parameter Perturbations, 1 
1.1.1. An Algebraic Equation, 2 
I .  I .2 .  

I .2. I .  
I .2.2. 
Order Symbols and Gauge Functions, 7 
Asymptotic Expansions and Sequences, 9 
I .4.  I .  Asymptotic Series, 9 
I .4.2. Asymptotic Expansions, 12 
1.4.3. Uniqueness of Asymptotic Expansions, 14 
Convergent versus Asymptotic Series, 15 

Elementary Operations on Asymptotic Expansions, 18 

The uan der Pol Oscillator, 3 

The Bessel Equation of Zeroth Order, 5 
A Simple Example, 6 

1.2. Coordinate Perturbations, 4 

1.3. 
1.4. 

1.5. 
1.6. Nonuniform Expansions, 16 
1.7. 
Exercises, 19 

2. Straightforward Expansions and Sources of Nonuniformity 

2.1. Infinite Domains, 24 
2. I .  I. 
2.1.2. 
2.1.3. 
2.1.4. 
A Small Parameter Multiplying the Highest Derivative, 31 
2.2.1. A Second-Order Example, 31 
2.2.2. High Reynolds Number Flow Past a Body, 33 
2.2.3. Relaxation Oscillations, 34 
2.2.4. Unsymmetrical Bending of Prestressed Annular 

The Du$ing Equation, 24 
A Model for  Weak Nonlinear Instability, 25 
Supersonic Flow Past a Thin Airfoil, 26 
Small Reynolds Number FIow Past a Sphere, 28 

2.2. 

Plates, 35 

23 

vii 



viii CONTENTS 

2.3. Type Change of a Partial Differential Equation, 37 
2.3.1. A Simple Example, 38 
2.3.2. Long Waves on Liquids Flowing down Incline 

The Presence of Singularities, 42 
2.4.1. Shqt in Singularity, 42 
2.4.2. The Earth-Moon-Spaceship Problem, 43 
2.4.3. Thermoelastic Surface Waves, 45 
2.4.4. Turning Point Problems, 48 

2.5. The Role of Coordinate Systems, 49 
Exercises, 52 

Planes, 38 
2.4. 

3. The Method of Strained Coordinates 

3.1. The Method of Strained Parameters, 58 
3.1.1. 
3.1.2. 
3.1.3. 

3. I .4. 

3.1.5. 

3. I .6. 
3.1.7. 
3. I .8. 

The Lindstedt-Poincard Method, 58 
Transition Curves for the Mathieu quation, 60 
Characteristic Exponents for the Mathieu Equation 
(Whittaker’s Method), 62 
The Stability of the Triangular Points in the Elliptic 
Restricted Problem of Three Bodies, 64 
Characteristic Exponents for the Triangular Points in 
the Elliptic Restricted Problem of Three Bodies, 66 
A Simple Linear Eigenvalue Problem, 68 
A Quasi-Linear Eigenvalue Problem, 7 1 
The Quasi-Linear Klein-Gordon Equation, 76 

A First-Order Direrential Equation, 79 
The One- Dimensional Earth- Moon-Spaceship Problem, 
82 
A Solid Cylinder Expanding Uniformly in Still Air, 83 
Supersonic Flow Past a Thin Airfoil, 86 
Expansions by Using Exact Characteristics-Nonlinear 
Elastic Waves, 89 

3.2. Lighthill’s Technique, 77 
3.2.1. 
3.2.2. 

3.2.3. 
3.2.4. 
3.2.5. 

3.3. Temple’s Technique, 94 
3.4. Renormalization Technique, 95 

3.4.1. The Dufing Equation, 95 
3.4.2. A Model for Weak Nonlinear Instability, 96 
3.4.3. Supersonic Flow Past a Thin Airfoil, 97 
3.4.4. Shijit in Singularity, 98 
Limitations of  the Method of Strained Coordinates, 98 
3.5.1. 

3.5. 
A Model for Weak Nonlinear Instability, 99 

56 



CONTENTS ix 
3.5.2. 

3.5.3. 

A Small Parameter Multiplying the Highest Derivative, 
100 
The Earth- Moon- Spaceship Problem, 1 02 

Exercises, 103 

4. The Methods of Matched and Composite Asymptotic Expansions 110 

4. I .  The Method of Matched Asymptotic Expansions, 1 1  1 
4. I .  I .  Introduction-Prandtl‘s Technique, 11 1 
4.1.2. Higher Approximations and Rejined Matching Pro- 

cedures, 114 
4.1.3. A Second-Order Equation with Variable Coeficients, 122 
4.1.4. Reynolds’ Equation for  a Slider Bearing, 125 
4.1.5. Unsymmetrical Bending of Prestressed Annular Plates, 

128 
4.1.6. Thermoelastic Surface Waves, 133 
4.1.7. The Earth-Moon-Spaceship Problem, 131 
4.1.8. 

4.2. The Method of Composite Expansions, 144 
4.2. 1. 

4.2.2. 

4.2.3. 
4.2.4. 

Small Reynolds Number Flow Past a Sphere, 139 

A Second-Order Equation with Constant Coeficients, 
145 
A Second-Order Equation with Variable Coeficients, 
148 
An Initial Value Problem for  the Heat Equation, 150 
Limitations of the Method of Composite Expansions, 
153 

Exercises, 154 

5. Variation of Parameters and Methods of Averaging 

5.1. Variation of Parameters, 159 
5.1 . I .  Time- Dependent Solutions of the Schrodinger Equation, 

160 
5. I .2. A Nonlinear Stability Example, 162 
The Method of Averaging, 164 
5.2.1. Van der Pol’s Technique, 164 
5.2.2. The Krylov-Bogoliubov Technique, 165 
5.2.3. The Generalized Method of Averaging, 168 

5.2. 

5.3. Struble’s Technique, 171 
5.4. The Krylov-Bogoliubov-Mitropolski Technique, 174 

The Dufiing Equation, I75 
The van der Pol Oscillator, 176 

5.4. I .  
5.4.2. 
5.4.3. The Klein-Gordon Equation, 178 

159 



x CONTENTS 

5.5. The Method of Averaging by Using Canonical Variables, 179 
5.5.1. The Dufing Equation, 182 
5.5.2. The Mathieu Equation, 183 
5.5.3. A Swinging Spring, 185 

5.6. I .  
5.6.2. The Mathieu Equation, 194 
Averaging by Using the Lie Series and Transforms, 200 
5.7. I. The Lie Series and Transforms, 201 
5.7.2. Generalized Algorithms, 202 
5.7.3. SimpliJied General Algorithms, 206 
5.7.4. A Procedure Outline, 208 
5.7.5. 
Averaging by Using Lagrangians, 216 
5.8.1. 
5.8.2. 
5.8.3. 

5.6. Von Zeipel’s Procedure, 189 
The Dufing Equation, 192 

5.7. 

Algorithms for Canonical Systems, 2 12 

A Model for  Dispersive Waves, 2 17 
A Model for  Wave- Wave Interaction, 219 
The Nonlinear Klein-Gordon Equation, 221 

5.8. 

Exercises, 223 

6. The Method of Multiple Scales 228 

6.1. Description of the Method, 228 
6. I. I .  Many- Variable Version (The Derivatiue-Expansion 

Procedure), 236 
6.1.2. The Two- Variable Expansion Procedure, 240 
6.1.3. Generalized Method-Nonlinear Scales, 241 
Applications of the Derivative-Expansion Method, 243 
6.2.1. The Du-ng  Equation, 243 
6.2.2. The van der Pol Oscillator, 245 
6.2.3. Forced Oscillations of the van der Pol Equation, 248 
6.2.4. Parametric Resonances-The Mathieu Equation, 253 
6.2.5. The van der Pol Oscillator with Delayed Amplitude 

Limiting, 257 
6.2.6. The Stability of the Triangular Points in the Elliptic Re- 

stricted Problem of Three Bodies, 259 
6.2.7. A Swtnging Spring, 262 
6.2.8. A Model for Weak Nonlinear Instability, 264 
6.2.9. A Model for Wave- Wave Interaction, 266 
6.2.10. Limitations of the Derivative-Expansion Method, 269 
The Two-Variable Expansion Procedure, 270 
6.3.1. The Du$’ng Equation, 270 
6.3.2. The van der Pol Oscillator, 212 

6.2. 

6.3. 



CONTENTS xi 
6.3.3. The Stability of the Triangular Points in the Elliptic 

Restricted Problem of Three Bodies, 275 
6.3.4. Limitations of This Technique, 275 

6.4. Generalized Method, 276 
6.4.1. A Second-Order Eqtration with Variable Coeflcients, 

276 
6.4.2. A General Second-Order Equation with Variable 

Coeficients, 280 
6.4.3. A Linear Oscillator with a Slowly Varying Restoring 

Force, 282 
6.4.4. An Example with a Turning Point, 284 
6.4.5. The Dufing Equation with Slowly Varying Coeficients, 

6.4.6. Reentry Dynamics, 291 
6.4.7. The Earth-Moon-Spaceship Problem, 295 
6.4.8. 
6.4.9. 
6.4.10. Advantages and Limitations of the Generalized Method, 

286 

A Model for  Dispersive Waves, 298 
The Nonlinear Klein-Gordon Equation, 301 

302 
Exercises, 303 

7. Asymptotic Solutions of Linear Equations 308 

7. I .  Second-Order Differential Equations, 309 
7. 1. 1. Expansions Near an Irregular Singularity, 309 
7.1.2. An Expansion of the Zeroth-Order Bessel Function for  

Large Argument, 3 12 
7.1.3. Liouville’s Problem, 314 
7.1.4. Higher Approximations for  Equations Containing a 

Large Parameter, 3 15 
7. I .5. A Small Parameter Multiplying the Highest Derivative, 

317 
7.1.6. Homogeneous Problems with Slowly Varying Co- 

eflcients, 3 18 
7. I .  7. Reentry Missile Dynamics, 320 
7.1.8. Inhomogeneous Problems with Slowly Varying Co- 

eficients, 32 1 
7.1.9. Successive Liouville-Green ( WKB) Approximations, 

324 
Systems of  First-Order Ordinary Equations, 325 7.2. 



xii CONTENTS 

7.2.1. 
7.2.2. 
7.2.3. Subnormal Solutions, 331 
7.2.4. 
7.2.5. Homogeneous Systems with Slowly Varying Co- 

Expansions Near an Irregular Singular Point, 326 
Asymptotic Partitioning of System of Equations, 327 

Systems Containing a Parameter, 332 

eficients, 333 

7.3.1. The Method of Matched Asymptotic Expansions, 336 
7.3.2. The Lmger Transformation, 339 
7.3.3. Problems with Two Turning Points, 342 
7.3.4. Higher-Order Turning Point Problems, 345 
7.3.5. Higher Approximations, 346 
7.3.6. An Inhomogeneous Problem with a Simple Turning 

Point-First Approximation, 352 
7.3.7. An Inhomogeneous Problem with a Simple Turning 

Point-Higher Approximations, 354 
7.3.8. An Inhomogeneous Problem with a Second-Order 

Turning Point, 356 
7.3.9. Turning Point Problems about Singularities, 358 
7.3.10. Turning Point Problems of Higher Order, 360 

7.4. Wave Equations, 360 
7.4.1. The Born or Neumann Expansion and The Feynman 

Diagrams, 361 
7.4.2. Renormalization Techniques, 3 67 
7.4.3. Rytov’s Method, 373 
7.4.4. A Geometrical Optics Approximation, 374 
7.4.5. A Uniform Expansion at a Caustic, 377 
7.4.6. The Method of Smoothing, 380 

7.3. Turning Point Problems, 335 

Exercises, 382 

References and Author Index 

Subject Index 

387 

417 



CHAPTER 1 

Introduction 

Most of the physical problems facing engineers, physicists, and applied 
mathematicians today exhibit certain essential features which preclude 
exact analytical solutions. Some of these features are nonlinearities, variable 
coefficients, complex boundary shapes, and nonlinear boundary conditions 
at known or, in some cases, unknown boundaries. Even if the exact solution 
of a problem can be found explicitly, it may be useless for mathematical 
and physical interpretation or numerical evaluation. Examples of such 
problems are Bessel functions of large argument and large-order and doubly 
periodic functions. Thus, in order to obtain information about solutions 
of equations, we are forced to resort to approximations, numerical solutions, 
or combinations of both. Foremost among the approximation methods are 
perturbation (asymptotic) methods which are the subject of this book. 
According to these techniques, the solution is represented by the first few 
terms of an asymptotic expansion, usually not more than two terms. The 
expansions may be carried out in terms of a parameter (small or large) which 
appears naturally in the equations, or which may be artificially introduced 
for convenience. Such expansions are called parameter perturbations. Alter- 
natively, the expansions may be carried out in terms of a coordinate (either 
small or large); these are called coordinate perturbations. Examples of 
parameter and coordinate expansions and their essential characteristics are 
presented in Sections 1.1 and 1.2. To formalize the concepts of limits and error 
estimates, definitions of order symbols and other notations are introduced in 
Section 1.3. Section 1.4 contains definitions of an asymptotic expansion, 
an asymptotic sequence, and a power series, while Section 1.5 presents a 
comparison of convergent and asymptotic series. Uniform and nonuniform 
asymptotic expansions are then defined in Section 1.6. A short summary of 
operations with asymptotic expansions is given in Section 1.7. 

1.1. Parameter Perturbations 

Many physical problems involving the function u(x,  e) can be represented 
mathematically by the differential equation L(u, x, E) = 0 and the boundary 
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2 INTRODUCTION 

condition B(u, E) = 0, where z is a scalar or vector independent variable 
and E is a parameter. In general, this problem cannot be solved exactly. 
However, if there exists an E = e0 (e can be scaled so that E,, = 0) for which 
the above problem can be solved exactly or more readily, one seeks to find 
the solution for small E in, say, powers of E; that is 

u(z; E) = uo(z) + EUl(Z) + E 2 U z ( z )  + - - (1 .l. 1) 

where u, is independent of E and uo(z) is the solution of the problem for 
E = 0. One then substitutes this expansion into L(u, 2, 6) = 0 and B(u, E) = 
0, expands for small E, and collects coefficients of each power of E. Since 
these equations must hold for all values of E, each coefficient of c must vanish 
independently because sequences of E are linearly independent. These 
usually are simpler equations governing u,, which can be solved successively. 
This is demonstrated in the next two examples. 

1.1.1. AN ALGEBRAIC EQUATION 
Let us consider first the solution of the algebraic equation 

24 = 1 + EU3 (1. I .2) 

for small E. If E = 0, u = 1. For E small, but different from zero, we let 

u = 1 + EU1 + E2U2 + E3U3 + - ' 
and (1.1.2) becomes 

(1. I .3)  

6u1 + e2uZ + c3u3 + . - * = ~ ( 1  + cul + c2u2 + e3u3 + * - -)3 (1.1.4) 

Expanding for small E, we rewrite (1.1.4) as 

EU1 + c2uz + E3U3 + * * * = ~ [ 1  + 3 ~ ~ 1  + 3 E 2 ( U 2  + U12) + * .] (1.1.5) 

Collecting coefficients of like powers of E ,  we have 

E(U1 - 1) ez(u2 - 3241) e3(U3 - 3242 - 3U12)  + a * = 0 (1.1.6) 

Since this equation is an identity in E ,  each coefficient of E vanishes inde- 
pendently. Thus 

24,-l=O (1.1.7) 

(1.1.8) 

( 1.1.9) 

u2 - 3u, = 0 

Us - 324, - 3u12 = 0 

The solution of (1.1.7) is 

u1 = 1 (1.1.10) 
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Then the solution of (1.1.8) is 

U2 = 3U1 = 3 

and the solution of (1.1.9) is 

(1.1.1 1) 

u3 = 3u2 + 3u12 = 12 (1.1.12) 

Therefore (1.1.3) becomes 

u = 1 + E + 3e2 + 12€3 + * - ( I .  1.13) 

where the ellipsis dots stand for all terms with powers of E" for which 
n 2 4. Thus (1.1.13) is an approximation to the solution of (1.1.2), which is 
equal to 1 when E EE 0. 

1.1.2. THE VAN DER POL OSCILLATOR 
As a second example, we consider van der Pol's (1922) equation 

d ' u  du - + u = E(1 - 2)- 
dt2 dt 

for small t. If c = 0 this equation reduces to 

d2u 
- + u = o  
dt2 

with the general solution 

u = acos  ( t  + p) 

(1.1.14) 

(1 . l .  15) 

(1.1.16) 

where a and q are constants. To determine an improved approximation to 
the solution of (1.1.14), we seek a perturbation expansion of the form 

(1.1.17) 

where the ellipsis dots stand for terms proportional to powers of E greater 
than 2. Substituting this expansion into (1.1.14), we have 

u(t; c) = uo(t) + EUI(1) + E2U2( t )  + * 
* 

= 4 1  - (uo + EU1 + EZU2 + . . -+€!!!!I dt + E 2 d l l Z  dt + .  . . ] (1.1.18) dt 
Expanding for small E ,  we obtain 

""1 + . . . (1.1.19) 
duo 2 du, 

= E(1 - U l )  + 2[(1 - uo ) - - 2u0u1 - 
dt dt 
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Since u, is independent of E and (1.1.19) is valid for all small values of E, 

the coefficients of like powers of E must be the same on both sides of this 
equation. Equating the coefficients of like powers of E on both sides of 
(1.1.19), we have 

Coefficient of EO 
d2uo 
- + u o = o  
dt2 

Coefficient of E 

d2ul 2 duo 
- + u1 = (1 - uo )- 
dt2 dt 

Coefficient of 

( 1.1.20) 

( 1.1.21) 

(1.1.22) d2u2 du, duo - + u2 = (1 - uo2) - - 2u0u, - 
dt2 dt dt 

Note that (1.1.20) is the same as (1.1.15) and its general solution is given 

(1.1.23) 
by (1.1.16); that is 

uo = a cos ( t  + 9) 
Substituting for uo into (1.1.21) gives 

d2u, 
- + u1 = -[I - a2 cos2 ( t  + 9)la sin ( t  + y )  
dt2 

Using the trigonometric identity 

sin ( t  + 9) + sin 3(t + y )  

4 
cos2 ( t  + y )  sin ( t  + y )  = 

we can rewrite this equation as 

d2u1 a3 - 4a 
dt' 4 

+ul=- sin (t + y )  + &a3 sin 3(t + p) - 

Its particular solution is 

(1.1.24) 

(1.1.25) 

With uo and u1 known the right-hand side of ( I .  1.22) is known, and one can 
solve it for u2 in a similar fashion. The usefulness of such an expansion is 
the subject of this book. 

1.2. Coordinate Perturbations 

If the physical problem is represented mathematically by a differential 
equation L(u, 2) = 0 subject to the boundary conditions B(u) = 0, where x 
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is a scalar, and if u(x) takes a known form uo as x --f xo (xo is scaled to 0 or co), 
one attempts to determine the deviation of u from uo for x near xo in terms of 
powers of z if zo = 0, or x-l if xo = 00. This technique is demonstrated by 
the next two examples. 

1.2.1. 
We consider the solutions of 

THE BESSEL EQUATION OF ZEROTH ORDER 

d2Y dy x-  +-+  z y =  0 
dx2 dx 

(1.2.1) 

This equation has a regular singular point at x = 0, which suggests that a 
power series solution for y can be obtained using the method of Frobenius 
(e.g., Ince, 1926, Section 16.1). Thus we let 

m 

(1.2.2) 

where the number p and the coefficients a, must be determined so that 
(1.2.2) is a solution of (1.2.1). 

Substituting (1.2.2) into (1.2.1) gives 

2 ( p  + m)(p + m - l ) ~ , ~ + ~ - '  
W 

m=O 

or 
m m 

m=O -0 
2 (p  + m)2umxP+m-1 + 2 U , X P + ~ + '  = O (1.2.3) 

which can be written as 

m m 

p2uozfl-' + (p + 1)2alx' + 2 (p + m)2umzP+m-' + 2 amzP+'"+l = O 

Replacing m by m + 2 in the first summation of this equation, we can rewrite 
it as 

p2aoxp-' + (p + 1)2ulzfl + 2 [(p + m + 2)'~,+~ + a,]z"+"+' = 0 (1.2.4) 

Since (1.2.4) is an identity in x, the coefficient of each power of x must 

p%, = 0 (1.2.5) 
(1.2.6) 

(1.2.7) 

m=2 m=O 

a0 

m=O 

vanish independently; that is 

(p + 1)"l = 0 

(p + m + 2)2am+2 + a, = 0, m = 0, 1 , 2 , .  . . 
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The first equation demands that ,u = 0 if a, # 0; then (1.2.6) gives a, = 0 
and (1.2.7) gives 

(1.2.8) am 
am+2 = - m = 0, 1 , 2 , .  . . 

(p + m + 2)2 ' 
Therefore 

a,,, = 0, m = 1 , 2 , 3 ,  . . . , 

(1.2.9) 

The solution thus obtained if a, = 1 is a Bessel function of zeroth order, and 
it is often denoted by J,. Thus 

Since the ratio of the nth term to the (n - 1)th term is -x2/(2n)$ and tends 
to zero as n + co irrespective of the value and sign of x, the series (1.2.10) 
for J, converges uniformly and absolutely for all values of x. 

An expansion valid for large values of x is obtained in Section 7.1.2 and 
compared with the above expansion in Section 1.5. 

1.2.2. A SIMPLE EXAMPLE 
As a second example, we consider the solution of 

dY 1 - + y = -  
dx X 

for large x. For large x we seek a solution in the form 

m 
I 

y = 2 amx-m 
m=l 

Substituting this expansion into (1.2.1 1) yields 

(1.2.1 1) 

(1.2.12) 

m 00 

2 -mamx-m--l + 2 a,x- + (a1 - 1 ) P  = 0 (1.2.13) 
m=l  m=2 

Replacing m by m + 1 in the second summation series, we can rewrite this 
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equation as 
a, 

( a ,  - 1 ) d  + 2 (a,,, - ma,)x-m-' = 0 (1.2.14) 

Since this equation is an identity in x ,  the coefficient of each x - ~  must 
vanish independently; that is 

a, = 1 ,  a,,, = ma, for m 2 1 (1.2.15) 
Hence 

m=l 

u2 = 1 ,  u3 = 2 ! ,  a4 = 3 ! ,  a ,  = (n - l)! 

and (1.2.12) becomes 

( n  - l)! 
+-+... ( 1.2.16) y = - + - + - + - + . . .  1 l !  2! 3 !  

x x2 2 3  2 4  X n  

Since the ratio of the nth to the (n - 1)th term is ( n  - 1)x-1 and it tends 
to infinity as n - a3 irrespective of the value of x ,  the series (1.2.16) diverges 
for all values of x .  In spite of its divergence, this series is shown in Section 1.4 
to be useful for numerical calculations, and it is called an asymptotic series. 

1.3. Order Symbols and Gauge Functions 

Suppose we are interested in a function of the single real parameter E ,  

denoted byf'(E). In carrying out our approximations, we are interested in the 
limit off(€) as E tends to zero, denoted by E -+ 0. This limit might depend 
on whether E tends to zero from below, denoted by E 0, or from above, 
denoted by E 1 0. If the limit off(€) exists (i.e., it does not have an essential 
singularity at E = 0 such as sin E - , ) ,  then there are three possibilities 

f ( e ) - - A  as E - + O , O < A  < co (1.3.1) 1 f (€1 --+ 0 

f (€1 - 00 

In the first and last cases, the rate at which f ( c )  -+ 0 and f ( ~ )  4 00 is 
expressed by comparing f ( ~ )  with known functions called gauge functions. 
The simplest and most useful of these are 

. . . , E - - n ,  . . . , E - 2 ,  €-I, 1 ,  E ,  € 2 , .  . . , E n , .  . . 
In some cases these must be supplemented by 

log E-,, log (log E-'), e' , e-' , and so on 
-1 -1 

Other gauge functions are 

sin E ,  cos E ,  tan Q ,  sinh c ,  cosh E ,  tanh E ,  and so on 
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The behavior of a functionf(E) is compared with a gauge function g(e)  
as E -+ 0, employing either of the Landau symbols: 0 or 0. 

The Symbol 0 

We write 
f ( ~ )  = 0[g(~)J as E -0 (1.3.2) 

if there exists a positive number A independent of E and an co > 0 such that 

If(4l s A lg(4 for all 1.1 I €0 (1.3.3) 

This condition can be replaced by 

(1.3.4) 

For example, as E - 0 

sin E = O(E), 

sin 7~ = O(E),  

sin c2 = O(c2) 

sin 2~ - 2~ = 0(c3) 

cos E = 0(1), 

Jo(E) = 0(1), 

1 - cos E = O(E2) 

Jo(E) - 1 = O(c2) 

sinh E = O(E),  

tanh E = O(E), 

coth E = O(E-'), 

cosh E = O(1) 

tan E = O(E) 

cot E = O(6-I) 

Iff is a function of another variable x in addition to c ,  and g(x ,  G) is a 

f(z, c )  = O[g(x ,  E ) ]  as E -+ 0 (1.3.5) 

if there exists a positive number A independent of c and an E~ > 0 such that 

If@., €11 I A I&, €11 for all I 4  I co (1.3.6) 

If A and c0 are independent of x, the relationship (1.3.5) is said to hold 
uniformly. For example 

gauge function, we also write 

sin (x + c)  = O(1) = O[sin (x)] uniformly as E -+ 0 
while 

e"' - 1 = O(c) nonuniformly as E -+ 0 

JFE - ,/: = ~ ( r )  nonuniformiy as E -+ o 
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The Symbol o 

We write 
f ( ~ )  = o[~(E)]  as E -0 (1.3.7) 

if for every positive number 6, independent of E, there exists an c0 such that 

If<.>l I 6 Ig(4 for I 4  I €0 (1.3.8) 

This condition can be replaced by 

(1.3.9) 

Thus as E -+ 0 

sin E = o(l), sin E~ = O(E) 

cos E = o(E-1’2), 

coth E = ~ ( e - ~ ” ) ,  

1 - cos 3~ = o(E),  

.TO(€) = o(E-1) 

cot E = o[E-(”+~)/~] 

exp (-€-I) = o(E”) 

for positive n 

for all n 

Iff = f ( x ,  E )  and g = g(x,  E), then (1.3.7) is said to hold uniformly if 6 
and e0 are independent of x. For example 

sin (z + E) = o ( E - ~ / ~ )  uniformly as E -+ 0 
while 

e--Et - 1 = o(rl”) nonuniformly as E -+ o 
- Jx = o ( ~ ~ ‘ ~ )  nonuniformly as E -+ o 

1.4. Asymptotic Expansions and Sequences 

1.4.1. ASYMPTOTIC SERIES 
We found in Section 1.2.2 that a particular solution of 

1 

dx 
(1.4.1) 

is 
(n - l)! 

+- + . . .  (1.4.2) 
Y = - f - + - + - + . . .  1 l !  2 !  3!  

x x2 x3 x4 X” 

which diverges for all values of x. To investigate whether this series is of 
any value for computing a particular solution of our equation, we determine 
the remainder if we truncate the series after n terms. To do this we note that 
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a particular integral of our differential equation 

y = e-" [" x-'ez ds 

is given by 

(1.4.3) 
J-w 

which converges for negative x. Integrating (1.4.3) by parts, we find that 

y = - 1 + e-r~-~x-ze2  dx = - 1 1  + - + 2e-z[wx-3er dx 
X x x2 

1 1 2  
x 2 2  2 3  

- - - + - + - + 3! e-" 

1 l !  2! 3! (n - I)! 
x x2 9 =-+-+-+,+... +- 2" 

4- n !  e-zs_',x-n-lez dx (1.4.4) 

Therefore if we truncate the series after n terms, the remainder is 

R ,  = n! e-z [" x-"-'e" dx (1.4.5) 
J- w 

which is a function of n and x. For the series to converge, lim R, must be 

zero. This is not true in our example; in fact, R, + 00 as n + 03 so that the 
series diverges for all 2 in agreement with what we found in Section 1.2.2 
using the ratio test. Therefore, if the series (1.4.2) is to be useful, n must be 
fixed. For negative x 

n-m 

(1.4.6) 

Thus the error committed in truncating the series after n terms is numerically 
less than the first neglected term, namely, the (n + 1)th term. Moreover, as 
1x1 -+ a) with n fixed, R, + 0. Therefore, although the series (1.4.2) diverges, 
for a fixed n the first n terms in the series can represent y with an error which 
can be made arbitrarily small by taking 121 sufficiently large. Such a series 
is called an asymptotic series of the Poincare' type (Poincart, 1892) and is 
denoted by 

(1.4.7) 

on 
-In general, given a series 2 (am/xnl), where a,,, is independent of x, we say 

m=O 
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that the series is an asymptotic series and write 

(1.4.8) 

if and only if 

y = 5 + o(lx1-n) as 1x1 -+ oo (1.4.9) 
m=O X" 

The condition (1.4.9) can be rewritten as 

As another example of an asymptotic series, we consider, after Euler 
(1 754), the evaluation of the integral 

for large positive w. Since 

0 (-1)"x" 
if x < o  - _  -1 

Q + x m=O om 
and 

(1.4.1 1) 

(1.4.12) 

(1.4.13) 

(1.4.14) 

Since the ratio of the mth to the (m - 1)th term, -mu-', tends to infinity as 
m + co, the series (1.4.14) diverges for all values of o. 

To investigate whether (1.4.14) is an asymptotic series, we estimate the 
remainder if the series is 'truncated after the nth term. To do this we note 
that 

0 n-l (-1)"s" (- 1)nX" -- - 
on-yw + 2) - 2  + 

w + x m=O wrn 
Hence 

where 

(1.4.15) 

( 1.4.16) 

m xne-x n! 
lRnl = -dx I <- is r x n e - .  dx = - Wn (1.4.17) 

0 w + x  wn-l 
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Hence the error committed by truncating the series after the first n terms is 
numerically less than the first neglected term, and 

Therefore the series (1.4.14) is an asymptotic series, and we write 

(-l)mm! 
f (0) - I: 

m=o wm 

(1.4.18) 

(1.4.19) 

1.4.2. ASYMPTOTIC EXPANSIONS 
One does not need to use a power series to represent a function. Instead, 

dn(e) = o[~,-,(E)] as c ---f 0 (1.4.20) 

Such a sequence is called an asymptotic sequence. Examples of such asymptotic 

(1.4.21) sequences are 
E", en'3, (log E) -~ ,  (sin z ) ~ ,  (cot E ) - ~  

In terms of asymptotic sequences, we can define asymptotic expansions. 

Thus, given 2 umdm(c) where a, is independent of B and am(€) is an asymp- 

totic sequence, we say that this expansion is an asymptotic expansion and 
write 

one can use a general sequence of functions an(€) as long as 

W 

m=o 

W 

y - 2  urndm(~)  as a - O  
m=O 

n-1 
if and only if 

(1.4.22) 

Y = I: u , ~ , ( E )  + 0[6,(e)] as E - o (1.4.23) 
m=O 

Clearly, an asymptotic series is a special case of an asymptotic expansion. 
As an example of an asymptotic expansion that is not an asymptotic 

power series, we return to the integral (1.4.11). Following van der Corput 
(1962), we represent f ( w )  in terms of the factorial asymptotic sequence 
[ (w + I ) ( o  + 2) * - . (w + n)]-l as w -+ co. To do this we note that 

1 5 --- - -  1 

w + x 0 w(O + 5) 

1 X 5(2 - 1) + 
w w(w + 1) w(w + l ) ( 0  + 5) 

0 o ( w  + 1) w ( 0  + l)(w + 2) 

- - - _  

X x(5 - 1) 5(5 - l)(x - 2) - 1 + --  - 
0 ( w  + l)(0 + 2)(w + 5) 

(1.4.24) 
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In general 

0 (-l)mz(z - 1). . * (z + 1 - m) -- -2  
0 + z m=O (0 + l)(o + 2) * . . (0 + m) 

(- I)n+lz(z - 1) . . . (z - n) 
(w + 1x0 + 2) . . * (0 + n)(w + 5) 

+ (1.4.25) 

This equation can be proved by induction as follows. If (1.4.25) is valid 
for n, we show that it is valid for (n + 1). To do this we note that 

w (- l)"z(z - 1) . . . (x + 1 - rn) 

(-1)"+'z(z - 1) * . . (2 - n) 
(0 + l)(w + 2) ' . * (w + n + 1) 

(-l)"+lz(z - 1) * * . (x - n) 
(0 + l)(o + 2 ) .  * . (w + n + 1) 

(- l)n+'z(z - 1) . . . (z - n) 
(w + l)(o + 2) * * . (w + n)(w + 2) 

-- - 2  
co + z m=O (W + l)(w + 2 ) .  * . (O + m) 

+ 

- 

+ 
By combining the last two terms and extending the summation to n + 1, we 
can rewrite this expression as 

0 n+l( - l )m2(z-  l ) . . . ( z +  1 - rn) -- - 2  
0 + z m=O (w + l)(w + 2). . . (w + m) 

z(2 - 1) * . (z - n - 1) + (- l)n+2 (1.4.26) 

Thus if (1.4.25) is true for n ,  (1.4.26) shows that it is true for n + 1. Since 
(1.4.25) is true for n = 0, 1 ,  and 2 according to (1.4.24), it is true for n = 3, 
4, 5 ,  . . . . Therefore it is true for all n. 

Multiplying (1.4.25) by exp (-2) and integrating from z = 0 to z = a, 
we have 

(w + l)(w + 2) * . . (0 + n + l)(o + z) 

II 

~ ( w )  = 2 amarn(w) + UU) (1.4.27) 
m=o 

where 
am = r z ( z  - 1) . . . (z - m + 1)eP dx (1.4.28) 
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Since w is a positive large number 

= Ian1 Idn(w)l (1.4.31) 

Thus the error committed by keeping the first n terms is numerically less 
than the nth term, hence 

Since dm(w) is an asymptotic sequence as w -+ co 

W 

f ( w )  -2  am6,(o) as w 4 co (1.4.33) 
-0 

1.4.3. UNIQUENESS OF ASYMPTOTIC EXPANSIONS 
We have shown in the previous two sections that 

(1.4.34) 

and 

(-l)mJmx(x - 1) . . . (z + 1 - m)e-' dx 
as w-+m (1.4.35) 

Thus the asymptotic representation off(w) as w --f co is not unique. In fact, 
f(w) can be represented by an infinite number of asymptotic expansions 
because there exists an infinite number of asymptotic sequences that can be 
used in the representation. However, given an asymptotic sequence 6,(w), 
the representation off(o) in terms of this sequence is unique. In this case 

f(o) - 1 a,d,(o) as w -+ a0 (1.4.36) 

0 
f(w) m-0 1 

(w + l)(w + 2). . (w + m) 

W 

m=O 

where the am are uniquely given by 

(1.4.37) 
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1.5. Convergent versus Asymptotic Series 

We found in Section 1.2.1 that one of the solutions of Bessel's equation 

d2Y dY x -+ - + xy = 0 
dx2 d x  

is given by the series 

(1.5.1) 

z2 2 4  X6 X2n 

22.42. . . (2n)2 + . 
Jo(x) = 1 - - + - - + . . . + ( -1y  22 2 2 .  42 22. 42. 62 

(1.5.2) 

Another representation of Jo can be obtained if we note that the change 
which is uniformly and absolutely convergent for ail values of x. 

of variable 

transforms (1.5.1) into 
y = x-l/Zy, 

As x 4 co, this equation tends to 

with the solutions 
y1 = &a" 

y1 = &y2 

This suggests the transformation 

which gives 

This equation can be satisfied formally by 

+ 1 .  1 . 32 1 . 3 2 ' 5 2  + 1 . 3 2 .  5 2 -  72 
yz = 1 - - I  - 

8 s  g 2 . 2 ! .  x2 + 83. 3!.  x3 g 4 .  4! . x4 

(1.5.3) 

(1.5.4) 

(1.5.5) 

(1.5.6) 

(I .  5.7) 

(1.5.8) 

(1.5.9) 

By combining this series with that obtained by changing i into --i, we 
obtain the following two independent solutions 

y'l' x-l/2 (u cos x + t) sin x) 

y(2) N x-l'z(u sin x - D cos x) 
(1.5.10) 



(1.5.11) 

To determine the connection between Jo(x) and these two independent 
solutions, we use the integral representation 

d 0 ( x )  =[cos (z cos 8) d8 (J.S.12) 

and obtain (see Section 7.1.2) 

The ratio test shows that yz. u, and u ,  and hence the right-hand side of 
(1.5.13), are divergent for all values of x. However, for large x the leading 
terms in u and B decrease rapidly with increasing rank so that (1.5.13) is an 
asymptotic expansion for large x. 

For small x the fist few terms of (1.5.2) give fairly accurate results. In 
fact, the first 9 terms give a value for J0(2) correct to 11 significant figures. 
However, as x increases, the number of terms needed to yield the same 
accuracy increases rapidly. At x = 4, eight terms are needed to give an 
accuracy of three significant figures, whereas the first term of the asymptotic 
expansion (15.13) yields the same accuracy. As x increases further, an 
accurate result is obtained with far less labor by using the asymptotic 
divergent series (1 513). 

1.6. Nonuniform Expansions 

In parameter perturbations the quantities to be expanded can be functions 
of one or more variables besides the perturbation parameter. If we develop the 
asymptotic expansion of a function f ( x ;  P), where x is a scalar or vector 
variable independent of E, in terms of the asymptotic sequence d,,,(c), we have 

f(z; P) - 2 a,,,(z)d,(~) as E + 0 (1.6.1) 

where the coefficients a,,, are functions of x only. This expansion is said to 
be uniformly valid if 

m 

m=O 

(1.6.2a) 

R,(x; E )  = O [ d , 4 ~ ) ]  uniformly for all z of interest (1.6.2b) 


