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PREFACE 

In the last few decades engineering materials have gone through different phases 
and can be categorized into four groups: composite materials, smart materials, 
micro- and nano-materials, and materials for Gossamer (or ultra-lightweight deploy- 
abldinflatable) space structures. The factors that distinguish them are the ability 
for tailoring; coupling of mechanical, electrical, magnetic, and/or thermal fields; 
tremendous size decrease; and tremendous increase in size but decrease in mass den- 
sity. Research in continuum mechanics has followed and advanced through these 
phases, but the major challenge is still the modeling and analysis of structures built 
with such materials. Although modeling of such structures built with materials in 
different groups requires consideration of different effects, all these structures can 
be modeled as continuum media, especially as cables, beams, plates, and/or shells. 
However, such structures are usually nonlinear by nature or, in some cases, by design. 

For example, thin-walled structures play an important role in the design of aircraft 
structures because they are often designed to operate in the postbuckling range in order 
to reduce structural weight. In recent years, the rapid development and use of huge 
deployabldinflatable structures in aerospace and space exploration has stimulated 
extensive research into fully nonlinear modeling and analysis, thermal buckling, and 
control of highly flexible structures. Also, the increasing use of laminated composite 
materials in modem structures has stimulated the development of refined structural 
theories that can account for nonclassical effects, such as transverse shear stresses, 
interlaminar peeling stresses, torsional warping, freeedge effects, and warping re- 
straint effects. Nonlinear problems considered in such structures are mostly those 
of postbuckling analysis, prediction of stability, and flutter analysis. However, the 

xv 
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nonlinear dynamics of such structures have to be ascertained in order to design and 
control them. Hence, nonlinear modeling and analysis of structures becomes a com- 
plex but important step in advancing the design and optimization of modem structural 
systems. 

This book presents mathematically consistent and systematic derivations of com- 
prehensive structural theories developed by the authors as well as well-known linear 
and nonlinear structural theories in the literature, details the physical meaning of lin- 
ear and nonlinear structural mechanics, shows how to perform nonlinear structural 
analysis, points out important nonlinear structural dynamic behaviors, and provides 
ready-to-use governing equations and boundary conditions, ranging from simple lin- 
ear ones to complex nonlinear ones, for strings, cables, beams, plates, and shells. 
The major goal of this book is to close the gap between the practicing engineer and 
the applied mathematician in the modeling and analysis of geometrically nonlinear 
structures. This book is written in a common vector-based mathematical language 
that is understandable by most engineering students. A unique unified approach, 
more general than those found in most structural mechanics books, is used to model 
geometric nonlinearities of structures. As a result, the reader can readily extend the 
methods to formulate and analyze different and/or more complex structures. This 
book is intended to be a graduate-level text and a reference book for graduate stu- 
dents and stmctural engineers in mechanical, civil, and aeronautical engineering or 
in applied mechanics who have had courses in mechanics of materials, ordinary and 
partial differential equations, and vibrations. 

The text is organized into nine chapters. Chapter 1 is essentially an introduction to 
modeling issues, dynamic characteristics of linear and nonlinear discrete systems, and 
methods for analyzing linear and nonlinear continuous systems. Chapter 2 presents 
a self-contained treatment of the basic principles of structural mechanics. Chap- 
ter 3 presents linear and geometrically exact formulations, nonlinear analysis, and 
nonlinear dynamics of taut strings, cables, and bars. Chapter 4 presents linear and 
geometrically exact formulations of beams. Chapter 5 presents nonlinear analysis 
and dynamics of different beams, including microbeams for h4EMS devices. Chap- 
ter 6 presents the mathematics needed for geometrically exact modeling of plates 
and shells. Chapter 7 presents linear and geometrically exact formulations of plates. 
Chapter 8 presents nonlinear analysis and dynamics of different plates, including 
MEMS-based microplates and thermally loaded circular and annular plates. Chap- 
ter 9 presents linear and geometrically exact formulations, nonlinear analysis, and 
nonlinear dynamics of shells. It also includes the nonlinear dynamics of circular 
cylindrical shells and spherical shells. A long list of references, by no means com- 
plete or up-to-date but consisting of most of the important articles in the literature, is 
provided in the Bibliography at the end of the book. 

The authors wish to acknowledge with great appreciation the many valuable sug- 
gestions from their colleagues. In particular, the authors thank Dr. Haider Arafat for 
his valuable comments, thorough proofreading of the entire manuscript, and preparing 
many of the tables and illustrations. Also, the authors thank Drs. Pramod Malatkar 
and Eihab Abdel-Rahman for their valuable comments and thorough proofreading of 
parts of the manuscript. We wish also to thank Mr. Nader Nayfeh for editing and 
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preparing the postscript files for some of the illustrations. Many results presented in 
this book were obtained under research grants supported by NSF, NASA, ARO, and 
AFOSR; the support is gratefully acknowledged. Last but not least, the authors want 
to express their appreciation to Mrs. Sally Shrader for repeatedly typing, correcting, 
and beautifying the manuscript. 

Ali H. Nayfeh 
Blacksburg, VA 

P. Frank Pai 
Columbia, MO 

May 2004 
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1 
INTRODUCTION 

Mechanics of elastic structures includes linear and nonlinear modeling, statics, dy- 
namics, buckling, postbuckling, flutter, stability, and analyses of stresses, strains, and 
failure. This book is primarily concerned with the nonlinear modeling and dynamics 
of elastic structures. 

In the literature, there are many different theories of beams, plates, and shells, 
and the number of structural theories is increasing because of the increase in the use 
of computers and new structural materials and applications. Moreover, the demand 
of materials by today’s technologies tias become so diverse that it often cannot be 
met by single-component materials. Also, structural engineers are confronted by 
the challenge of strict requirements of high vehicle performance, less materials, less 
weight, high safety factors, etc. These requirements cannot be met, in general, except 
by the use of composites. Although composite materials have characteristics that are 
better than those of isotropic materials and hence can meet complex design require- 
ments, some nonclassical structural effects, such as transverse shear strains, peeling 
stresses, free-edge effects, and warping restraint effects, which are usually neglected 
in isotropic materials, are significant in these materials. Hence, modeling of modem 
composite structures has become a complex but important step in design, and refined 
structural theories are needed for the analysis of composite structures. 

1.1 STRUCTURAL ELEMENTS 

In terms of geometries and loading conditions, structures can be divided into six 
groups: cables, bars, beams, membranes, plates, and shells. Cables are one-dimensional 

1 



2 INTRODUCTION 

structures, which can only sustain extensional loads. The buckling loads of cables 
are zero, and hence they cannot sustain compression loads. Strings are pre-tensioned 
and initially straight cables. 

Bars are one-dimensional structures which can sustain extensional, compressional, 
and torsional loads. If a bar is only subjected to longitudinal tensile loads, it is usually 
called a rod. If a bar is only subjected to longitudinal compressive loads, it is usually 
called a column. Rods and columns are two-force members, and trusses consist of 
bars. Beams are structures having one dimension much larger than the other two and 
primarily subjected to lateral loads, resulting in bending of their reference axes. A 
general beam should be able to sustain extension, compression, bending, transverse 
shear (flexure), and twisting loads. In other words, cables, smngs, bars, rods, and 
columns are special cases of a general beam, and arches are initially curved beams. 

Plates are initially flat structures having two dimensions much larger than the 
third and can sustain extension, compression, inplane shear, bending, twisting, and 
transverse shear loads. A membrane is a two-dimensional structure, which can only 
sustain extensional and inplane shear loads. The membrane stresses of a plate can 
contribute significantly to its strength. Shells are initially curved structures having 
two dimensions much larger than the third and can sustain extension, compression, 
inplane shear, bending, twisting, and transverse shear loads. Shells are the most 
general engineering structures; they include plates and membranes as special cases. 
Because the initial curvatures of a shell offer some geometric stiffnesses, the strength 
of a shell depends on its geometry as well as material. 

The complexity of a dynamical system depends on whether the relation between the 
input and the output is linear or nonlinear, the number of independent and dependent 
variables used in the system modeling, and the number of parameters. To describe 
the motion of a discrete dynamical system consisting of N isolated particles, one 
needs 3N dependent variables ui ( t ) ,  ui ( t ) ,  and w, ( t ) ,  i = 1,2, . . . , N, where ui, vi, 
and wi are the displacement components of the ith particle along three perpendicular 
directions and t denotes time. Such a system is called a 3N-degree-of-freedom 
system and a 6N-dimensional system because 3N dependent variables are used and 
second-order time derivatives of all dependent variables are involved. 

Any continuous dynamical system can be described by an infinite number of 
mathematical particles having a volume & dy dz if a Cartesian coordinate system 
zyz is used, and the displacement components of the ith particle are u(zi,  yi, Zi ,  t ) .  
u(Tiy yi, t i ,  t ) ,  and w ( q ,  yi, zi, t ) ,  where (z,, yi, zi) is the location of the ith particle 
at t = 0. For a continuous system without fracture, the distance between two adjacent 
particles is infinitesimal and particle displacements can only vary continuously from 
particle to particle. Hence, only three dependent variables u, u, and w are needed but 
they are continuous functions of three independent spatial variables z, y, and z and 
time t; that is, 

(1.1.1) u = u(z,y ,z , t ) ,  21 = V(Z,Y,Z,t), w = W(GY,Z,t) 

If the dependence of u, u,  and w on x, y, z,  and t can be separated as 

u = wz, 9, z)q(t>,  = V ( z ,  91 z ) d t ) ,  w = WbC, Y I  z )q ( t )  (1.1.2) 
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and if the spatial functions U, V, and W are known, then there is only one unknown 
dependent variable q( t ) ,  which is called a generalized coordinate in structural en- 
gineering, and the system has a single degree of freedom; q(t)  is governed by a 
second-order differential equation. However, the spatial functions U, V, and W are 
load-dependent or unknown or even do not exist (in other words, they are time- 
dependent functions). Hence, to find the solution of a continuous medium subjected 
to a general load, engineers usually use an infinite number of assumed, known spatial 
functions to approximate the solution as 

M 

i= 1 i=l i=l 
(1.1.3) 

In order to have a convergent solution for a general loading condition, one needs to 
choose the spatial functions from a set of complete functions. 

Structures are three-dimensional continuous systems. Structural engineers usually 
use linear eigenfunctions, which are obtained from the unforced undamped governing 
equations and are called mode shapes, as the spatial functions. Because an infinite 
number of dependent variables q,(t) is involved, any continuous system has infinite 
degrees of freedom. 

Although solving a three-dimensional structural problem may not be impossible, it 
may require an insurmountable amount of work. Fortunately, most structural elements 
have one or two of their geometric dimensions much smaller than the others, and hence 
their motions can be described by the particles on a reference line in the case of cables, 
bars, and beams or a reference plane in the case of membranes, plates, and shells. 
Their spatial functions depend on one or two independent variables. However, in 
addition to the displacements u, v, and w of a general point on the reference line 
or plane, extra displacement variables are needed in order to describe the motion of 
a general point that is not on the reference line or plane, which results in different 
structural theories. Moreover, depending on the type of loading and/or the geometric 
constraints on the structure, one can adopt some more assumptions about the stress 
distribution and/or the displacement distribution to simplify the model. 

Mathematical modeling is a form of an approximation theory; different models 
are the result of adopting different assumptions. Simple or rough models are easy to 
solve, but their accuracy in predicting the system behavior may be poor. To improve 
the accuracy of structural models, researchers developed refined structural theories 
by relaxing some of the constraints on the displacement and/or stress field represen- 
tations. However, relaxing constraints results in an increase in the number and order 
of the governing equations. In other words, to solve problems modeled by refined 
theories requires more effort. Consequently, choosing an appropriate model for a 
specific problem is critical in the analysis. 

There are no rules about how to choose a right model, and hence one can only 
make a decision based on experience, accuracy requirement, and the goal of the 
analysis. For example, in the dynamic analysis of a pendulum, it can be treated as 
a rigid body if the forcing frequency is far below its first natural bending frequency. 
When the forcing frequency is close to or above its first natural bending frequency, 
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the pendulum needs to be treated as an Euler-Bernoulli beam, where transverse shear 
strains are neglected. When the forcing frequency is higher than the first bending 
frequency, the shear effect may become important and Timoshenko’s beam theory or 
a higher-order shear-deformation theory is required in order to have accurate results. 
Moreover, to study the initiation of delamination of laminated composite plates, one 
needs to choose a plate model that is able to accurately predict the interlaminar shear 
and peeling stresses because composite laminates are weak in shear. 

1.2 NONLlNEARlTlES 

Nonlinear systems are those for which the principle of superposition does not hold. 
Nature abounds with nonlinear systems; in fact they are the rule rather than the 
exception. The sources of nonlinearities can be material or constitutive, geometric, 
inertia, body forces, or friction. The constitutive nonlinearity occurs when the stresses 
are nonlinear functions of the strains. The geometric nonlinearity is associated with 
large deformations in solids, such as beams, plates, frames, and shells, resulting in 
nonlinear strain-displacement relations (e.g., mid-plane stretching, large curvatures 
of structural elements, large strains, and large rotations of elements). The inertia 
nonlinearity may be caused by the presence of concentrated or distributed masses; in a 
Lagrangian formulation, the kinetic energy is a function of the generalized coordinates 
as well as their rates and, in fluid flow, the acceleration includes a nonlinear convective 
term. Other examples include Coriolis and centripetal accelerations. The nonlinear 
body forces are essentially magnetic and electric forces. The friction nonlinearity 
occurs because the friction force is a nonlinear function of the displacement and 
velocity, such as dry Friction and backlash. 

Thenonlinearities may appear in the governing partial-differential equations, or the 
boundary conditions, or both. To some extent, the form of the nonlinearity appearing 
in the equations and boundary conditions depends on the coordinate system used and 
the orientation of the body forces, such as gravity. Examples of nonlinear boundary 
conditions include free surfaces in fluids and deformation-dependent constraints. 

The nonlinearities considered in this book are primarily geometric arising from 
large rotations and displacements and electric arising from the proximity of two plate 
electrodes to each other. To include the effects of material nonlinearities, one only 
needs to replace the constant stiffnesses with displacement-dependent ones; they are 
usually obtained from experiments. 

Suppose that a metallic panel is subjected to a longitudinal compressive load. As 
long as the panel remains flat, it is in equilibrium, and it can only fail by crushing; that 
is, the compressive stress exceeds the stress that the material can withstand. However, 
it is well known that panels, whose length is much larger than its thickness, may bend 
before it fails by crushing. This phenomenon is called buckling or elastic instability, 
which can occur in bars, beams, plates, and shells. It results in an unproportional 
increase in the displacement resulting from a small increase in the load. In spite of 
this, the postbuckling strength of thin-walled structures plays an important role in 
the design of aircraft structures because conventional aircraft structural elements are 
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often designed to operate in the postbuckling range. To determine the postbuckling 
behavior, one needs to develop a more inclusive, geometrically nonlinear theory. 
Hence, nonlinear problems considered in the theory of elastic structures are mostly 
those of postbuckling analysis, prediction of stability, and nonlinear panel flutter 
analysis. 

In recent years, the rapid developments in aerospace exploration have stimulated 
extensive research into the dynamics and control of large flexible space structures, 
such as solar collectors, dish antennas, radar arrays, long truss structures. space tele- 
scopes, and space stations. Because these structures are characterized by low flexural 
rigidities, weak material dampings, and interconnections of rigid and flexible parts, 
and because there is no air damping in space, maneuvers often lead to destructive 
large-amplitude vibrations, which introduce excessive material fatigue and affect the 
operational accuracy of such structures. The tasks of controlling the rotation and 
high-pointing accuracy and eliminating the structural vibrations in a finite period of 
time pose difficult control problems, which require theoretical and computational 
advances. From the dynamic point of view, a great disadvantage of such flexible 
structures is that their natural frequencies are clustered in very narrow bands, making 
them more prone to becoming involved in resonant vibrations that cannot be easily 
controlled. Moreover, flexible structures can undergo large displacements without 
exceeding the elastic limit. Consequently, the responses of flexible structures exhibit 
many complicated vibration phenomena, such as multiple solutions, jumps, hystere- 
sis, modal interactions, flutter, chaos, and transfer of energy from high-frequency to 
low-frequency modes. 

To design strategies for the control of large-amplitude structural vibrations, one 
needs to understand their nonlinear static and dynamic behavior, including modal 
couplings (transfer of energy among the structure modes) and static and dynamic 
instabilities. These require accurate nonlinear structural models. 

The modeling of structural systems can be divided into three groups: (1) linear 
modeling, (2) pseudo nonlinear modeling, and (3) nonlinear modeling. In linear 
modeling, both static and dynamic behaviors of a structure are described by linear 
models whose static and dynamic solutions are unique. A linear static model can 
predict the onset of static (or geometric) bifurcation (e.g.. buckling), but cannot give 
the magnitude of buckled displacements. In pseudo nonlinear modeling, the static 
behavior is described by a nonlinear model, but the dynamic behavior is described 
by a linear model. A nonlinear static model can predict the magnitudes of buckled 
displacements of a structure. Then, a linear dynamic model around the static equilib- 
rium position is used to perform dynamic stability anaiyses and predict the onset of 
dynamic bifurcations. However. such linear models cannot predict the amplitudes of 
limit cycles or the presence and character of chaotic attractors, which usually occur 
after dynamic bifurcations. We note that the parameters of the linear dynamic model 
will generally depend upon the static (equilibrium) model, and there may be several 
static equilibria. In nonlinear modeling, both the statics and dynamics are described 
by nonlinear models. Several distinct possible dynamic equilibria may coexist, and 
the one observed depends on the static equilibria, the system parameters, and initial 
conditions. 
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1.3 COMPOSITE MATERIALS 

Because of their high strength-to-weight ratio, long fatigue life, resistance to cono- 
sion, high damping, structural simplicity, and possible use for aeroelastic tailoring, 
advanced laminated structures made of fiber-reinforced composite materials, such as 
boron-epoxy, graphite-epoxy, and boron-aluminum, have emerged as primary mate- 
rials for advanced aerospace vehicle structures, marine structures, large space struc- 
tures, automotive parts, helicopter rotor blades, turbine blades, and robot manipula- 
tors. They show great promise for improved performance. Moreover, the inherent 
anisotropy is an important property of composite materials and one of the basic reasons 
for their success because it offers linear, elastic couplings among bending, extension, 
torsion, and shearing motions, thereby making it possible to satisfy sophisticated 
design criteria, such as aeroelastic tailoring. For example, the extension-twisting 
coupling produces different twist distributions along the rotors of a two-speed heli- 
copter when the system rotates at different speeds. Moreover, the bending-twisting 
coupling produces a pitch-flap stability of helicopter rotor blades. 

Flutter of aircraft wings occurs because the speed of flow affects the amplitude 
ratios and phase shifts between bending and torsional motions of the wing in such a 
way that energy can be absorbed by the wings from the airstream passing by, resulting 
in self-excited or self-sustained oscillations. Moreover, experiments (Fung, 1969) on 
cantilever wings show that the flexural movements at all points across the span are 
approximately in phase with one another, and likewise the torsional movements are all 
approximately in phase, but the flexure is considerably out of phase of the torsional 
movement. This phase difference is apparently the main factor that is responsible 
for the occurrence of flutter. Hence, the bending-torsion coupling characteristics 
of composite beams can be used to suppress flutter because bending and torsional 
vibrations of a composite beam with bending-twisting coupling are forced to be in 
phase by the fiber-matrix mechanism. One well known example of using the bending- 
twisting coupling effect is the X-29 demonstrator aircraft; the composite skin of its 
forward-swept wing has a built-in structural and aerodynamic stability. 

However, nonclassical structural effects, such as shear deformations, transverse 
normal stresses (peeling stresses), warping restraint effects, and boundary-layer ef- 
fects, can be very significant in composite materials although they are usually neg- 
ligible in isotropic materials. Because composite structures exhibit relatively weak 
rigidity in the transverse shear, shear deformations are significant in such materials 
and need to be included in the study of free vibrations of moderately thick plates, 
forced vibration amplitudes and stress distributions. high-frequency responses, short- 
wavelength waves, and localized impacts. Also, peeling stresses can be significant 
because of non-uniform distributions of Poisson’s ratios. Moreover, St. Venant’s 
principle is usually assumed to be valid in the analysis of isotmpic structures. This 
principle states that stresses at a point that is at a sufficient distance from the loading 
end depend only on the magnitude of the applied load and are practically independent 
of the manner in which the load is distributed over the end. It also implies that a 
system of loads having zero resultant forces and moments (i.e., a self-equilibrating 
stress system) produces a strain field that is negligible at a point that is away from 
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the loading end (Iesan, 1987). But, for highly anisotropic and heterogeneous mate- 
rials, such a self-equilibrating stress system can result in nontrivial strains with long 
decay lengths, which are the so-called boundary-layer solutions. To study these non- 
classical effects, one requires new, refined structural theories. However, to include 
these nonclassical effects in the modeling of composite structures is not an easy task, 
especially if geometric nonlinearities are also involved. Moreover, elastic couplings 
make it difficult or even impossible to obtain exact linear solutions for some simple 
structural problems. 

In the analysis of composite structures, a macromechanics approach is conven- 
tionally used. In this approach perfect bonding between the fibers and matrices is 
assumed, the material is assumed to be uniform, and the mechanical properties are 
obtained by taking the average of the properties of the constituent fibers and matrices. 
However, for real composite structures, there are many problems, which include im- 
perfect bonding, nonuniform distributions of fibers, initially crooked fibers that make 
the structure behave like a hardening-type material, the existence of gas bubbles at 
the interfaces of fibers and matrices, local stress concentrations, local elastic-plastic 
behaviors, cracks, delamination, etc. Hence, one needs to use a micromechanics anal- 
ysis to obtain valid material and structural properties, or even a statistical approach 
to account for variations in the many unknown factors and manufacturing processes. 

The fundamental mechanics of composite materials can be found in the books by 
Jones (1975), Christensen (1979), Tsai and Hahn (1980). Whitney (1987), Vinson 
and Sierakowski (1986). and Reddy (1997,2003). 

1.4 DAMPING 

Damping arises from the removal of energy by dissipation or radiation. Dissipative 
forces in structures can be the result of either internal or external damping. External 
damping includes aerodynamic and hydrodynamic drag and dissipation in the supports 
of structures. The drag may be linear or nonlinear. Aerodynamic damping was found 
to be significant for high-amplitude vibrations of beams of low damping and high 
modulus of elasticity. Anderson, Nayfeh, and Balachandran (1996) experimentally 
found the nonlinear aerodynamic damping to be significant for large-amplitude first- 
mode vibrations of slender parametrically excited beams. Internal damping is usually 
studied by modeling the mechanisms of energy dissipation in materials. Internal 
damping mechanisms include thermoelastic, hysteretic, Coulombic, magnetoelastic, 
and dislocation unpinning and grain boundary relaxation of metals and alloys. For 
most structural metals. such as steel and aluminum, the energy dissipated per cycle is 
independent of the frequency over a wide frequency range and is proportional to the 
square of the amplitude of vibration, and the shape of the hysteretic curve remains 
unchanged with amplitude and is independent of the strain rate. Internal damping, 
which fits this classification, is called solid or structural damping and its equivalent 
linear viscous damping is proportional to the inverse of the frequency of vibration 
(Thomson, 1981). However, the damping ratios of some structures may exhibit both 
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frequency and amplitude dependence. Moreover, the aerodynamic and hydrodynamic 
drag is not easily modeled because of structure-fluid interactions. 

Although damping forces are small in comparison with the elastic and inertia 
forces in many applications of structural vibration and wave theory and the influence 
of damping on structural mode shapes is usually small, damping can be important 
in controlling the amplitudes of vibration under conditions of steady-state resonance 
and stationary random excitations. Damping has significant influence on the response 
amplitudes and phases near resonance and plays a crucial role in fixing the borderline 
between stability and instability in many dynamical systems. Moreover, damping can 
significantly affect structural nonlinear responses. 

The damping ratios of composite materials, especially nonmetal composites, are 
much higher than those of structural steels. All damping ratios in the experimental 
results of Schultz and Tsai (1968) and Ray and Bert (1969) are in the range 0.02% to 
2.8%. Using the modified Kennedy-Pancu method (Pendered and Bishop, 1963), Siu 
and Bert (1974) obtained analytically the damping ratios of laminated boron-epoxy 
plates with free edges and various orientation angles. The obtained damping ratios 
are in the range 0.09% to 3.31%. For isotropic materials, the experimental results 
(e.g., Schultz andTsai, 1968; Baz and Poh, 1989) usually show that modal dampings 
decrease with mode number. But for composite beams, the damping ratios may 
increase with mode number (Schultz andTsai, 1968). Adams and Bacon (1973) found 
that the damping ratio of composite materials can be as high as 5.5%. The highest 
experimentally determined damping ratio of boron-epoxy plates is 5.3% (Clary, 1972). 
Adams et al. (1969) indicated that the damping capacity of composites under torsion 
is higher than that under flexure. A comprehensive mathematical technique was 
developed by Ni and Adams (1984) for predicting the damping of laminated composite 
beams. They showed that the torsional motion induced by bending-twisting coupling 
may result in high modal damping ratios for flexural vibrations. Experimental results 
obtained by Adams and Bacon (1973) show that the damping ratios of composite 
materials increase with temperature. 

Saravanos and Chamis (1990a,b, 1991) showed that damping of composites de- 
pends on an array of micromechanics and laminate parameters, including constituent 
material properties, fiber volume ratios, ply angles, ply thicknesses, ply stacking se- 
quences, temperature, moisture, and existing damage. Damping in composites is also 
anisotropic, but it exhibits an anisotropy trend that is opposite to that of the stiffness 
and strength, being minimum in the direction of the fibers and maximum in the trans- 
verse direction and in shear. Moreover, metal matrix composites can also undergo 
energy dissipation at the fibedmatrix interface due to interfacial slip, microplasticity 
of the matrix, dislocation breakaway, and microcracking at or near the fiber/matrix 
interface. 

The damping mechanisms of most structures are unknown because the sources 
of energy loss are too complicated. Practicing structural engineers usually use the 
concepts of modal damping and proportional damping obtained experimentally from 
modal testing (Ewins, 1984). 
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1.5 DYNAMIC CHARACTERISTICS OF LINEAR DISCRETE SYSTEMS 

Linear systems are those for which the principle of superposition holds. In linear 
equations of motion, there are no terms containing products of different dependent 
variables or powers of any dependent variable. Discrete systems are governed by 
ordinary-differential equations. 

A linear single-degree-of-freedom system is characterized by its natural frequency 
and damping ratio. A linear multi-degree-of-freedom system is characterized by its 
natural frequencies, modal damping ratios, and mode shapes. Moreover, the response 
frequency under a single harmonic excitation is the same as the excitation frequency, 
and the response amplitude is unique and independent of the initial conditions. 

1.5.1 One-Degree-of-Freedom Systems 

In Figure 1.5.1, we show a typical single-degree-of-freedom spring-mass-damper 
system, where z(t)  denotes the displacement of the mass m from its static equilibrium 
position, k denotes the spring constant, c denotes the damping coefficient, and F and 
R denote the forcing amplitude and frequency, respectively. Using Newton’s second 
law, we obtain the governing equation as 

mx + ci + kx = FsinRt  (1.5.1) 

We take the initial conditions in the form 

x ( 0 )  = XO, k(0) = so (1.5.2) 

When m, c, and k are constants, the system is referred to as time-invariant. 
The solution of (1.5.1) consists of a particular solution xp (i.e., the steady-state 

solution) and a complementary function x, (i.e., the transient solution), which is 
the solution of the homogeneous part of (1.5.1). To determine the complementary 
function zc(t), we substitute 

2, = ,st (1.5.3) 

I lx(t) 
F sin(0t) 

Fig. 1.5.1 A one-degree-of-freedom spring-mass-damper system. 
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into (1 5 1 )  with F = 0 and obtain 

(ms2 + cs + k)esf  = 0 (1.5.4) 

Since est is time varying, we have 

ms2 + cs + k = 0 (1.5.5) 

which is called the characteristic equation. Hence, 

-c f &?=xz 
2m s1,2 = (1 S.6) 

We consider the case of positive damping; that is, c > 0. There are two types 
of solutions depending on the sign of the discriminant D f 2 - 4mk. When D is 
positive, s1 and 92 are negative real numbers because m and k are positive, and hence 
x, is an exponentially decaying function. In this case, one speaks of an overdamped 
system. When D is negative, s1 and s2 are complex conjugate with negative real part. 
Hence, x, oscillates while it decaysexponentially. When D = 0, s1 = s2 = -c/2m, 
and hence z, decays exponentially, and one speaks of a critically damped system. 
The value c, of c that renders D = 0 is referred to as the critical damping coefficient. 
It is given by 

c, = 2& (1.5.7) 

Because smctural materials usually have small dampings, we only consider the case 
D = C? - 4mk < 0.  In this case, one speaks of an underdamped system. 

Next, we define two linear free-oscillation frequencies: undamped and damped 
natural frequencies. When c = 0, (1.5.6) reduces to 

where i = G. Hence, zc is a harmonically oscillatory function with the fiequency m, which is called the undamped natural frequency w,,, where 

When c # 0, we rewrite (1.5.6) as 

(1.5.8a) 

(1.5.8b) 

The absolute value of the imaginary part of s1 and s2 is usually referred to as the 
damped natural frequency Wd; that is, 

(1.5.8~) 


