APPLIED NONLINEAR DYNAMICS

Analytical, Computational, and Experimental Methods

Ali H. Nayfeh
Virginia Polytechnic Institute and State University
Balakumar Balachandran
University of Maryland

WILEY-VCH Verlag GmbH \& Co. KGaA

This Page Intentionally Left Blank

APPLIED NONLINEAR DYNAMICS

WILEY SERIES IN NONLINEAR SCIENCE

Series Editors:	ALL H. NAYFEH, Virginia Tech
	ARUN V. HOLDEN, University of Leeds
Abdullaev	Theory of Solitons in Inhomogeneous Media
Bolotin	Stability Problems in Fracture Mechanics
Jackson	Exploring Nature's Dynamics
Kahn and Zarmi	Nonlinear Dynamics: Exploration through
	Normal Forms
Moon (ed.)	Dynamics and Chaos in Manufacturing Processes
Nayfeh	Method of Normal Forms
Nayfeh	Nonlinear Interactions: Analytical, Computational,
	and Experimental Methods
Nayfeh and Balachandran	Applied Nonlinear Dynamics
Nayfeh and Pai	Linear and Nonlinear Structural Mechanics
Ott, Sauer, and Yorke	Coping with Chaos
Pfeiffer and Glocker	Multibody Dynamics with Unilateral Contacts
Qu	Robust Control of Nonlinear Uncertain Systems
Vakakis et al.	Normal Modes and Localization in Nonlinear Systems
Yamamoto and Ishida	Linear and Nonlinear Rotordynamics: A Modern
	Treatment with Applications

APPLIED NONLINEAR DYNAMICS

Analytical, Computational, and Experimental Methods

Ali H. Nayfeh
Virginia Polytechnic Institute and State University
Balakumar Balachandran
University of Maryland

WILEY-VCH Verlag GmbH \& Co. KGaA

All books published by Wiley-VCH are carefully produced.
Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors.
Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:

Applied for

British Library Cataloging-in-Publication Data:

A catalogue record for this book is available from the British Library

Bibliographic information published by

Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de.
© 1995 by John Wiley \& Sons, Inc.
© 2004 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages).
No part of this book may be reproduced in any form - nor transmitted or translated into machine language without written permission from the publishe i. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Printing and Bookbinding buch bücher dd ag, Birkach

ISBN-13: 978-0-471-59348-5
ISBN-10: 0-471-59348-6

To our wives

Samirah and Sundari

This Page Intentionally Left Blank

CONTENTS

PREFACE xiii
1 INTRODUCTION 1
1.1 DISCRETE-TIME SYSTEMS 2
1.2 CONTINUOUS-TIME SYSTEMS 6
1.2.1 Nonautonomous Systems 6
1.2.2 Autonomous Systems 11
1.2.3 Phase Portraits and Flows 13
1.3 ATTRACTING SETS 15
1.4 CONCEPTS OF STABILITY 20
1.4.1 Lyapunov Stability 20
1.4.2 Asymptotic Stability 23
1.4.3 Poincaré Stability 25
1.4.4 Lagrange Stability (Bounded Stability) 27
1.4.5 Stability Through Lyapunov Function 27
1.5 ATTRACTORS 29
1.6 COMMENTS 31
1.7 EXERCISES 31
2 EQUILIBRIUM SOLUTIONS 35
2.1 CONTINUOUS-TIME SYSTEMS 35
2.1.1 Linearization Near an Equilibrium Solution 36
2.1.2 Classification and Stability of Equilibrium Solu- tions 39
2.1.3 Eigenspaces and Invariant Manifolds 47
2.1.4 Analytical Construction of Stable and Unstable Manifolds 58
2.2 FIXED POINTS OF MAPS 61
2.3 BIFURCATIONS OF CONTINUOUS SYSTEMS 68
2.3.1 Local Bifurcations of Fixed Points 70
2.3.2 Normal Forms for Bifurcations 81
2.3.3 Bifurcation Diagrams and Sets 83
2.3.4 Center Manifold Reduction 96
2.3.5 The Lyapunov-Schmidt Method 108
2.3.6 The Method of Multiple Scales 108
2.3.7 Structural Stability 115
2.3.8 Stability of Bifurcations to Perturbations 116
2.3.9 Codimension of a Bifurcation 119
2.3.10 Global Bifurcations 121
2.4 BIFURCATIONS OF MAPS 121
2.5 EXERCISES 128
3 PERIODIC SOLUTIONS 147
3.1 PERIODIC SOLUTIONS 147
3.1.1 Autonomous Systems 148
3.1.2 Nonautonomous Systems 156
3.1.3 Comments 158
3.2 FLOQUET THEORY 158
3.2.1 Autonomous Systems 159
3.2.2 Nonautonomous Systems 169
3.2.3 Comments on the Monodromy Matrix 171
3.2.4 Manifolds of a Periodic Solution 172
3.3 POINCARE MAPS 172
3.3.1 Nonautonomous Systems 176
3.3.2 Autonomous Systems 181
3.4 BIFURCATIONS 187
3.4.1 Symmetry-Breaking Bifurcation 189
3.4.2 Cyclic-Fold Bifurcation 195
3.4.3 Period-Doubling or Flip Bifurcation 200
3.4.4 Transcritical Bifurcation 204
3.4.5 Secondary Hopf or Neimark Bifurcation 205
3.5 ANALYTICAL CONSTRUCTIONS 208
3.5.1 Method of Multiple Scales 209
3.5.2 Center Manifold Reduction 212
3.5.3 General Case 217
3.6 EXERCISES 219
4 QUASIPERIODIC SOLUTIONS 231
4.1 POINCARÉ MAPS 233
4.1.1 Winding Time and Rotation Number 238
4.1.2 Second-Order Poincaré Map 240
4.1.3 Comments 241
4.2 CIRCLE MAP 242
4.3 CONSTRUCTIONS 248
4.3.1 Method of Multiple Scales 249
4.3.2 Spectral Balance Method 251
4.3.3 Poincaré Map Method 253
4.4 STABILITY 254
4.5 SYNCHRONIZATION 255
4.6 EXERCISES 269
5 CHAOS 277
5.1 MAPS 278
5.2 CONTINUOUS-TIME SYSTEMS 288
5.3 PERIOD-DOUBLING SCENARIO 295
5.4 INTERMITTENCY MECHANISMS 296
5.4.1 Type I Intermittency 300
5.4.2 Type III Intermittency 305
5.4.3 Type II Intermittency 311
5.5 QUASIPERIODIC ROUTES 314
5.5.1 Ruelle-Takens Scenario 315
5.5.2 Torus Breakdown 317
5.5.3 Torus Doubling 331
5.6 CRISES 334
5.7 MELNIKOV THEORY 356
5.7.1 Homoclinic Tangles 356
5.7.2 Heteroclinic Tangles 359
5.7.3 Numerical Prediction of Manifold Intersections 363
5.7.4 Analytical Prediction of Manifold Intersections 366
5.7.5 Application of Melnikov's Method 374
5.7.6 Comments 390
5.8 BIFURCATIONS OF HOMOCLINIC ORBITS 390
5.8.1 Planar Systems 391
5.8.2 Orbits Homoclinic to a Saddle 397
5.8.3 Orbits Homoclinic to a Saddle Focus 402
5.8.4 Comments 407
5.9 EXERCISES 410
6 NUMERICAL METHODS 423
6.1 CONTINUATION OF FIXED POINTS 423
6.1.1 Sequential Continuation 425
6.1.2 Davidenko-Newton-Raphson Continuation 428
6.1.3 Arclength Continuation 428
6.1.4 Pseudo-Arclength Continuation 432
6.1.5 Comments 435
6.2 SIMPLE TURNING AND BRANCH POINTS 436
6.3 HOPF BIFURCATION POINTS 438
6.4 HOMOTOPY ALGORITHMS 441
6.5 CONSTRUCTION OF PERIODIC SOLUTIONS 445
6.5.1 Finite-Difference Method 446
6.5.2 Shooting Method 449
6.5.3 Poincaré Map Method 455
6.6 CONTINUATION OF PERIODIC SOLUTIONS 455
6.6.1 Sequential Continuation 456
6.6.2 Arclength Continuation 456
6.6.3 Pseudo-Arclength Continuation 458
6.6.4 Comments 460
7 TOOLS TO ANALYZE MOTIONS 461
7.1 INTRODUCTION 462
7.2 TIME HISTORIES 465
7.3 STATE SPACE 472
7.4 PSEUDO-STATE SPACE 478
7.4.1 Choosing the Embedding Dimension 483
7.4.2 Choosing the Time Delay 495
7.4.3 Two or More Measured Signals 500
7.5 FOURIER SPECTRA 502
7.6 POINCARÉ SECTIONS AND MAPS 514
7.6.1 Systems of Equations 514
7.6.2 Experiments 516
7.6.3 Higher-Order Poincaré Sections 519
7.6.4 Comments 519
7.7 AUTOCORRELATION FUNCTIONS 520
7.8 LYAPUNOV EXPONENTS 525
7.8.1 Concept of Lyapunov Exponents 525
7.8.2 Autonomous Systems 529
7.8.3 Maps 531
7.8.4 Reconstructed Space 534
7.8.5 Comments 537
7.9 DIMENSION CALCULATIONS 538
7.9.1 Capacity Dimension 538
7.9.2 Pointwise Dimension 541
7.9.3 Information Dimension 545
7.9.4 Correlation Dimension 547
7.9.5 Generalized Correlation Dimension 548
7.9.6 Lyapunov Dimension 549
7.9.7 Comments 549
7.10 HIGHER-ORDER SPECTRA 550
7.11 EXERCISES 557
8 CONTROL 563
8.1 CONTROL OF BIFURCATIONS 563
8.1.1 Static Feedback Control 564
8.1.2 Dynamic Feedback Control 568
8.1.3 Comments 571
8.2 CHAOS CONTROL 571
8.2.1 The OGY Scheme 572
8.2.2 Implementation of the OGY Scheme 577
8.2.3 Pole Placement Technique 580
8.2.4 Traditional Control Methods 582
8.3 SYNCHRONIZATION 584
BIBLIOGRAPHY 589
SUBJECT INDEX 663

This Page Intentionally Left Blank

PREFACE

Systems that can be modeled by nonlinear algebraic and/or nonlinear differential equations are called nonlinear systems. Examples of such systems occur in many disciplines of engineering and science. In this book, we deal with the dynamics of nonlinear systems. Poincare (1899) studied nonlinear dynamics in the context of the n-body problem in celestial mechanics. Besides developing and illustrating the use of perturbation methods, Poincaré presented a geometrically inspired qualitative point of view.

In the nineteenth and twentieth centuries, many pioneering contributions were made to nonlinear dynamics. A partial list includes those due to Rayleigh, Duffing, van der Pol, Lyapunov, Birkhoff, Krylov, Bogoliubov, Mitropolski, Levinson, Kolomogorov, Andronov, Arnold, Pontryagin, Cartwright, Littlewood, Smale, Bowen, Piexoto, Ruelle, Takens, Hale, Moser, and Lorenz. While studying forced oscillations of the van der Pol oscillator, Cartwright and Littlewood (1945) observed a constrained random-like behavior, which is now called chaos. Subsequently, Lorenz (1963) studied a deterministic, third-order system in the context of weather dynamics and showed through numerical simulations that this deterministic system displayed random-like behavior too. Unaware of Lorenz's work, Smale (1967) introduced the horseshoe map as an abstract prototype to explain chaos-like behavior. No doubt Poincaré knew about chaos too, but it is only through numerical simulations on modern computers and experiments with physical systems that the presence of chaos has been discovered to be pervasive in many dynamical systems of physical interest. The observation of Poincare that small differences in the initial conditions may produce great changes in the final phenomena is now known to be a characteristic of systems that
exhibit chaotic behavior. The phenomenon of chaos, which has become very popular now, rejuvenated interest in nonlinear dynamics. The growing numbers of books and research papers published in the last two decades reflect a strong interest in nonlinear dynamics at the present time. The many important contributions that have been made through analytical, experimental, and numerical studies have been documented through many books, including those by Collet and Eckmann (1980), Mees (1981), Sparrow (1982), Guckenheimer and Holmes (1983), Lichtenberg and Lieberman (1983, 1992), Bergé, Pomeau, and Vidal (1984), Holden (1986), Kaneko (1986), Thompson and Stewart (1986), Moon (1987, 1992), Arnold (1988), Barnsley (1988), Schuster (1988), Seydel (1988), Wiggins (1988, 1990), Devaney (1989), Jackson (1989, 1990), Nicolis and Prigogine (1989), Parker and Chua (1989), Ruelle (1989a, 1989b), Tabor (1989), Arrowsmith and Place (1990), Baker and Gollub (1990), El Naschie (1990), Rasband (1990), Hale and Kocak (1991), Schroeder (1991), Troger and Steindl (1991), Drazin (1992), Kim and Stringer (1992), Medvéd (1992), Tufillaro, Abbott, and Reilly (1992), Ueda (1992), Mullin (1993), Ott (1993), Palis and Takens (1993), and Ott, Sauer, and Yorke (1994).

We are of the opinion that the books on nonlinear dynamics published thus far have a strong bias toward analytical methods, or experimental methods, or numerical methods. As these methods are complementary to each other, a person being taught nonlinear dynamics should be provided with a flavor of all the different methods. This is one of the intentions in writing this book. Another intention was to include some of the recent developments in the area of control of nonlinear dynamics of systems. In Chapter 1, we introduce dynamical systems. In Chapters 2-5, we address equilibrium solutions, periodic and quasiperiodic solutions, and chaos. We present some relevant theorems and their implications in Chapters 2 and 3. Proofs are not provided in this book, but references that provide them are included. Further, these chapters are not written within a mathematically rigorous framework. Continuation methods for equilibrium and periodic solutions are also presented in some detail in Chapter 6. We examine the different tools that can be used to characterize nonlinear motions in Chapter 7. In Chapter 8, we discuss methods for bifurcation control, chaos control, and synchronization to chaos.

The authors are deeply indebted to several colleagues for helpful comments and criticisms, including, in particular, Professor Sherif Noah and his students, Dr. Marwan Bikdash, Mr. Haider Arafat, Mr. Samir A. Nayfeh, Mr. Ghaleb Abdallah, Professors Jose Baltezar, Anil Bajaj, Eyad Abed, Dean Mook, and Muhammad Hajj. One of us (BB) would like to thank Professors Davinder Anand and Patrick Cunniff of the University of Maryland for their encouragement and support during the final stages of preparation of this book. We wish to thank Dr. Char-Ming Chin for generating many of the figures dealing with crises, intermittency, and Shilnikov chaos. Thanks are due also to fifteen year old Nader Nayfeh for scanning, editing, and preparing the eps files for all the illustrations in this book. Last but not least, we wish to thank Mrs. Sally G. Shrader for her patient typing of the drafts of the manuscript and fine preparation of the final camera-ready copy of this book.

Ali H. Nayfeh
Blacksburg, Virginia
Balakumar Balachandran
College Park, Maryland
October 1994

This Page Intentionally Left Blank

Chapter 1

INTRODUCTION

A dynamical system is one whose state evolves (changes) with time t. The evolution is governed by a set of rules (not necessarily equations) that specifies the state of the system for either discrete or continuous values of t. A discrete-time evolution is usually described by a system of algebraic equations (map), while a continuous-time evolution is usually described by a system of differential equations.

The asymptotic behavior of a dynamical system as $t \rightarrow \infty$ is called the steady state of the system. Often, this steady state may correspond to a bounded set, which may be either a static solution or a dynamic solution. The behavior of the dynamical system prior to reaching the steady state is called the transient state, and the corresponding solution of the dynamical system is called the transient solution.

A solution of a dynamical system can be either constant or time varying. Fixed points, equilibrium solutions, and stationary solutions are other names for constant solutions, while dynamic solutions is another name for time-varying solutions. We explore equilibrium solutions in Chapter 2 and dynamic solutions in Chapters 3-5. In Sections 1.1 and 1.2, we explain the notion of a dynamical system. In Section 1.3, we discuss attracting sets, and in Sections 1.4 and 1.5 , we examine the concepts of stability and attractors.

1.1 DISCRETE-TIME SYSTEMS

A discrete-time evolution is governed by

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{F}\left(\mathbf{x}_{k}\right) \tag{1.1.1}
\end{equation*}
$$

where \mathbf{x} is a finite-dimensional vector. At the discrete times t_{k} and t_{k+1}, \mathbf{x}_{k} and \mathbf{x}_{k+1} represent the states of the system, respectively. Let the dimension of the finite-dimensional state vector be n. Then, we need n real numbers to specify the state of the system. Formally, the state vector $\mathrm{x} \in \mathcal{R}^{n}$ and the time $t \in \mathcal{R}$, where the symbol \in means belongs to and the symbol \mathcal{R}^{n} refers to an n-dimensional Euclidean space; that is, a real-number space equipped with the Euclidean norm

$$
\begin{equation*}
\|\mathbf{x}\|=\sqrt{\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)} \tag{1.1.2}
\end{equation*}
$$

where the x_{i} are the scalar components of x. If the discrete values of time correspond to integers rather than real numbers, we say that $t \in \mathcal{Z}$, where \mathcal{Z} is the set of all integers. We note that the evolution of a dynamical system may also be studied in other spaces, such as cylindrical, toroidal, and spherical spaces. In these cases, one or more state variables are angular coordinates. However, according to topological concepts, local regions of these spaces have the structure of a Euclidean space.

Equation (1.1.1) is a transformation or a map that transforms the current state of the system to the subsequent state. In the literature, the words map, mapping, and function are often used interchangeably. To a certain extent, the words set and space are also used interchangeably. Formally, a map \mathbf{F} from points in a region M to points in a region N is represented by $\mathbf{F}: M \rightarrow N$. We note that M and N are contained in \mathcal{R}^{n}. Formally, $M \subset \mathcal{R}^{n}$ and $N \subset \mathcal{R}^{n}$, where the symbol C is called the subset operator and means inclusion. The map \mathbf{F} is said to map M onto N if for every point $\mathbf{y} \in N$ there exists at least one point $\mathbf{x} \in M$ that is mapped to \mathbf{y} by \mathbf{F}. Furthermore, \mathbf{F} is said to be one-to-one if no two points in M map to the same point in N. A map that is one-to-one and onto is invertible (e.g., Dugundji,

1966, Chapter I); that is, given \mathbf{x}_{k+1}, we can solve (1.1.1) to determine \mathbf{x}_{k} uniquely. Denoting the inverse of \mathbf{F} in (1.1.1) by \mathbf{F}^{-1}, we have

$$
\mathbf{x}_{k}=\mathbf{F}^{-1}\left(\mathbf{x}_{k+1}\right)
$$

The map \mathbf{F}^{-1} is also onto and one-to-one. A map \mathbf{F} that is not invertible is called a noninvertible map.

When each of the scalar components of \mathbf{F} is r times continuously differentiable with respect to the scalar components of \mathbf{x}, \mathbf{F} is said to be a \mathcal{C}^{r} function. When each of the scalar components of \mathbf{F} is continuous with respect to the scalar components of \mathbf{x}, \mathbf{F} is said to be a \mathcal{C}^{0} function. For $r \geq 1$, the map \mathbf{F} is called a differentiable map. The map \mathbf{F} is called a homeomorphism if it is invertible and both \mathbf{F} and \mathbf{F}^{-1} are continuous; that is, \mathbf{F} is \mathcal{C}^{0}. If both \mathbf{F} and \mathbf{F}^{-1} are \mathcal{C}^{r} functions where $r \geq 1$, then we call the map a \mathcal{C}^{r} diffeomorphism. In subsequent chapters, we discuss what are called Poincaré maps. These maps, which are discretized versions of associated systems of ordinary-differential equations, are diffeomorphisms. In one discretized version, a Poincaré map describes the evolution of a system for discrete values of time. The other cases are discussed in detail in Chapters 3, 4,5 , and 7 .

An orbit of an invertible map initiated at $\mathbf{x}=\mathbf{x}_{0}$ is made up of the discrete points

$$
\begin{gathered}
\left\{\cdots, \mathbf{F}^{-m}\left(\mathbf{x}_{0}\right), \cdots, \mathbf{F}^{-2}\left(\mathbf{x}_{0}\right), \mathbf{F}^{-1}\left(\mathbf{x}_{0}\right),\right. \\
\left.\mathbf{x}_{0}, \mathbf{F}\left(\mathbf{x}_{0}\right), \mathbf{F}^{2}\left(\mathbf{x}_{0}\right), \cdots, \mathbf{F}^{m}\left(\mathbf{x}_{0}\right), \cdots\right\}
\end{gathered}
$$

where $m \in \mathcal{Z}^{+}$and \mathcal{Z}^{+}is the set of all positive integers. When $k>0$, \mathbf{F}^{k} means the k th successive application of the map \mathbf{F}. Similarly, when $k<0, \mathbf{F}^{k}$ means the k th successive application of the map \mathbf{F}^{-1}. An orbit of a noninvertible map initiated at $\mathbf{x}=\mathbf{x}_{0}$ is made up of the discrete points

$$
\left\{\mathbf{x}_{0}, \mathbf{F}\left(\mathbf{x}_{0}\right), \mathbf{F}^{2}\left(\mathbf{x}_{0}\right), \cdots, \mathbf{F}^{m}\left(\mathbf{x}_{0}\right), \cdots\right\}
$$

Successive applications of \mathbf{F} are also referred to as the forward iterates of the corresponding map.

With reference to (1.1.1), we note that \mathbf{F} is also called an evolution operator. Sometimes, we wish to study the evolution as we change or control a certain set of parameters \mathbf{M}. To make this explicit, we write the map as

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{F}\left(\mathbf{x}_{k} ; \mathbf{M}\right) \tag{1.1.3}
\end{equation*}
$$

where \mathbf{M} is the vector of control parameters.

Example 1.1. For illustration, we consider the one-dimensional map

$$
\begin{equation*}
x_{k+1}=4 \alpha x_{k}\left(1-x_{k}\right) \tag{1.1.4}
\end{equation*}
$$

where $0 \leq x_{k} \leq 1$ and $0<\alpha \leq 1$. For $\alpha=0.50$, the orbit of the map initiated at $x_{0}=0.25$ is

$$
\{0.25,0.375,0.46875, \cdots\}
$$

Equation (1.1.4) is the famous logistic map, which has been the subject of many studies (e.g., May, 1976). This map is a noninvertible map because it is not a one-to-one map. In fact, this map is a two-to-one map because it maps the two points x and $(1-x)$ to the same point $4 \alpha x(1-x)$. Further, (1.1.4) is an example of a differentiable map.

Example 1.2. We consider the Hénon map (Hénon, 1976)

$$
\begin{align*}
& x_{k+1}=1+y_{k}-\alpha x_{k}^{2} \tag{1.1.5}\\
& y_{k+1}=\beta x_{k} \tag{1.1.6}
\end{align*}
$$

where α and β are scalar parameters. When $\beta=0$, (1.1.5) and (1.1.6) reduce to the one-dimensional map

$$
x_{k+1}=1-\alpha x_{k}^{2}
$$

which is noninvertible. It is called the quadratic map. However, when $\beta \neq 0$, the map (1.1.5) and (1.1.6) is invertible. The inverse is

$$
x_{k}=\frac{1}{\beta} y_{k+1}
$$

$$
y_{k}=x_{k+1}-1+\frac{\alpha}{\beta^{2}} y_{k+1}^{2}
$$

We note that $\left\{x_{k} y_{k}\right\}^{T}$ uniquely determines $\left\{\begin{array}{ll}x_{k+1} & y_{k+1}\end{array}\right\}^{T}$ and vice versa. Further, because both \mathbf{F} and \mathbf{F}^{-1} are differentiable, the Hénon map is a diffeomorphism when $\beta \neq 0$. For $\alpha=0.2$ and $\beta=0.3$, the orbit of the map initiated at

$$
\left\{\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right\}=\left\{\begin{array}{c}
1.0 \\
0.0
\end{array}\right\}
$$

is

$$
\begin{aligned}
& \left\{\cdots,\left\{\begin{array}{r}
-3.33 \\
1.22
\end{array}\right\},\left\{\begin{array}{r}
0.0 \\
-1.0
\end{array}\right\},\left\{\begin{array}{l}
0.0 \\
0.0
\end{array}\right\},\right. \\
& \left.\left\{\begin{array}{l}
1.0 \\
0.0
\end{array}\right\},\left\{\begin{array}{l}
0.8 \\
0.3
\end{array}\right\},\left\{\begin{array}{c}
1.17 \\
0.24
\end{array}\right\},\left\{\begin{array}{l}
0.97 \\
0.35
\end{array}\right\}, \cdots\right\}
\end{aligned}
$$

In Figure 1.1.1, we show some of the discrete points that make up the orbit of $\left(x_{0}, y_{0}\right)$.

Figure 1.1.1: Some of the discrete points that make up the orbit of $(1,0)$ of the Hénon map for $\alpha=0.2$ and $\beta=0.3$. The index k associated with each point is also shown.

We note that the dynamics of many Poincaré maps show qualitative similarities to the dynamics of the logistic and Hénon maps.

1.2 CONTINUOUS-TIME SYSTEMS

For continuous values of time, the evolution of a system is governed by either an autonomous or a nonautonomous system of differential equations.

1.2.1 Nonautonomous Systems

In the nonautonomous case, the equations are of the form

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x}, t) \tag{1.2.1}
\end{equation*}
$$

where \mathbf{x} is finite dimensional, $\mathbf{x} \in \mathcal{R}^{n}, t \in \mathcal{R}$, and \mathbf{F} explicitly depends on t. The vector \mathbf{F} is often referred to as vector field, the vector \mathbf{x} is called a state vector because it describes the state of the system, and the space \mathcal{R}^{n} in which \mathbf{x} evolves is called a state space. A state space is called a phase space when one-half of the states are displacements and the other one-half are velocities. The ($n+1$)-dimensional space $\mathcal{R}^{n} \times \mathcal{R}^{1}$, where the additional dimension corresponds to t, is often referred to as an extended state space. In (1.2.1), if \mathbf{F} is a linear function of \mathbf{x} it is called a linear vector field, and if F is a nonlinear function of x it is called a nonlinear vector field.

Let the initial state of the system at time t_{0} be x_{0}, and let I represent a time interval that includes t_{0}. Then one can think of a solution of (1.2.1) as a map from different points in I into different points in the n-dimensional state space \mathcal{R}^{n}. A graph of a solution of (1.2.1) in the extended state space is known as an integral curve. On an integral curve, the vector function \mathbf{F} specifies the tangent vector (velocity vector) at every point (\mathbf{x}, t). A geometric interpretation of a vector field is that it is a collection of tangent vectors on different integral curves.

In general, a projection of a solution $\mathbf{x}\left(t, t_{0}, \mathbf{x}_{0}\right)$ of (1.2.1) onto the n-dimensional state space is referred to as a trajectory or an orbit
of the system through the point $\mathbf{x}=\mathbf{x}_{0}$. In other words, the solution could be thought of as a point that moves along a trajectory, occupying different positions at different times similar to the way a planet moves through space. We use the symbol $\gamma\left(\mathrm{x}_{0}\right)$ or Γ to denote an orbit. The orbit obtained for times $t \geq 0$ passing through the point \mathbf{x}_{0} at $t=0$ is called a positive orbit and is denoted by $\gamma^{+}\left(\mathrm{x}_{0}\right)$; the orbit obtained for times $t \leq 0$ is called a negative orbit and is denoted by $\gamma^{-}\left(\mathrm{x}_{0}\right)$. Also, $\Gamma=\gamma\left(\mathrm{x}_{0}\right)=\gamma^{+}\left(\mathrm{x}_{0}\right) \cup \gamma^{-}\left(\mathrm{x}_{0}\right)$, where the symbol \cup stands for the union operator.

Example 1.3. For illustration, we consider the following periodically forced linear oscillator:

$$
\ddot{x}+2 \mu \dot{x}+\omega^{2} x=F \cos (\Omega t)
$$

Letting $x=x_{1}$ and $\dot{x}=x_{2}$, we express this second-order equation as a system of two first-order equations in terms of the state variables x_{1} and x_{2}. The result is

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \tag{1.2.2}\\
& \dot{x}_{2}=-\omega^{2} x_{1}-2 \mu x_{2}+F \cos (\Omega t) \tag{1.2.3}
\end{align*}
$$

For $\omega^{2}=8, \mu=2, F=10$, and $\Omega=2$, the solution of (1.2.2) and (1.2.3) is

$$
\begin{gathered}
x_{1}=e^{-2 t}[a \cos (2 t)+b \sin (2 t)]+0.5 \cos (2 t)+\sin (2 t) \\
x_{2}=-2 e^{-2 t}[(a-b) \cos (2 t)+(a+b) \sin (2 t)]-\sin (2 t)+2 \cos (2 t)
\end{gathered}
$$

where the constants a and b are determined by the initial condition $\left(x_{10}, x_{20}\right)$. We note that as $t \rightarrow \infty$, the exponential term decays to zero. Therefore, the steady state does not depend on the initial condition. In Figure 1.2.1a, we show an integral curve initiated at $\left(x_{10}, x_{20}, t_{0}\right)=(1,0,0)$ in the $\left(x_{1}, x_{2}, t\right)$ space for $0 \leq t \leq 10$. The arrows on the curve indicate the direction of evolution for positive times. The tangent vector is also shown at two different locations on the integral curve. It should be noted that the apparent intersections in Figure 1.2.1a are a consequence of the chosen viewing angle. In

Figure 1.2.1: Solution of (1.2.2) and (1.2.3) initiated from (1,0) at $t=0$ for $\omega^{2}=8, \mu=2, F=10$, and $\Omega=2$: (a) integral curve and (b) positive orbit.

Figure 1.2.1b, we show a projection of the integral curve onto the two-dimensional (x_{1}, x_{2}) space. This projection is a positive orbit of $\left(x_{10}, x_{20}\right)=(1,0)$.

Again, we remind the reader that besides Euclidean state spaces there are other state spaces, such as cylindrical, toroidal, and spherical spaces. In Figure 1.2.2a, we show a cylindrical space. A motion evolving in this space is described by two Cartesian coordinates and an angular coordinate θ. One of the Cartesian coordinates is defined along the cylinder's axis, while the other one is defined along the radius of its cross-section. This cylindrical space is represented by $\mathcal{R}^{2} \times S^{1}$. The variable θ belongs to the space S and is such that $0 \leq \theta<2 \pi$; formally, $\theta \in[0,2 \pi)$. A toroidal space is shown in Figure 1.2.2b. Specifically, we call this object a two-torus, and a dynamical system evolving in this space is described by two angular coordinates θ_{1} and θ_{2}. We represent this space by $S^{1} \times S^{1}$. One would require n angular coordinates to describe the motion evolving on an n-torus. A spherical space is shown in Figure 1.2.2c. We need two angular coordinates to describe a motion evolving on the spherical surface.

A local region of the cylindrical, toroidal, or spherical surface of Figure 1.2.2 has the appearance of a flat surface and can be treated as a two-dimensional Euclidean space. Smooth and continuous surfaces, such as those shown in Figure 1.2.2, are called manifolds. Manifolds can be thought of as generalized surfaces. (The reader is referred to

Figure 1.2.2: Different spaces: (a) cylindrical space, (b) toroidal space, and (c) spherical space.

Guillemin and Pollack (1974) for a precise description of a manifold.) In a two-dimensional space, a smooth object, such as a circle, is an example of a manifold, but an object with sharp corners, such as a rectangle, is not an example of a manifold. Locally, the circle may be approximated by a tangent line. Similarly, local regions of toroidal and spherical surfaces can be approximated by tangent planes. We note that an open flat surface is also a manifold.

Returning to (1.2.1), we note that this equation is also referred to as an evolution equation. Let the evolution of the system described by this equation be controlled by a set of parameters \mathbf{M}. To make this parameter dependence explicit, we describe the evolution by

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x}, t ; \mathbf{M}) \tag{1.2.4}
\end{equation*}
$$

where \mathbf{M} is a vector of control parameters. Formally, $\mathbf{M} \in \mathcal{R}^{m}$, and the vector function \mathbf{F} can be represented as $\mathbf{F}: \mathcal{R}^{n} \times \mathcal{R}^{1} \times \mathcal{R}^{m} \rightarrow \mathcal{R}^{n}$.

Next, we state some facts from the theory of ordinary-differential equations. If the scalar components of \mathbf{F} are \mathcal{C}^{0} (i.e., continuous) in a domain D of ($\mathbf{x}, t)$ space, then a solution $\mathbf{x}\left(t, \mathbf{x}_{0}, t_{0}\right)$ satisfying the
condition $\mathbf{x}=\mathbf{x}_{0}$ at $t=t_{0}$ exists in a small time interval around t_{0} in D. Moreover, if the scalar components of \mathbf{F} are \mathcal{C}^{1} in D, then the solution $\mathbf{x}\left(t, \mathbf{x}_{0}, t_{0}\right)$ is unique in a small time interval around t_{0}. The uniqueness of solutions is also assured in certain cases where \mathbf{F} is \mathcal{C}^{0} (Coddington and Levinson, 1955, Chapter 1; Arnold, 1973, 1992, Chapters 2 and 4). If the existence and uniqueness of solutions of a system of the form (1.2.4) are ensured, then this system is deterministic. This means that two integral curves starting from two different initial conditions cannot intersect each other in the extended state space. However, the corresponding orbits may intersect each other in the corresponding state space.

If the scalar components of F are \mathcal{C}^{r} functions of t and the scalar components of \mathbf{x} and \mathbf{M}, then a solution of (1.2.4) satisfying the initial condition $\mathbf{x}=\mathbf{x}_{0}$ at $t=t_{0}$ is also a \mathcal{C}^{r} function of t, t_{0}, \mathbf{x}_{0}, and M in a small interval around t_{0}. Moreover, if a solution of (1.2.4) originating at a certain initial condition exists for all times, then this solution can be extended indefinitely. If a solution exists and is defined only over a finite interval of time, then this solution starting from a location in this interval can be extended up to the boundaries of this interval (A.mold, 1973, 1992, Chapters 2 and 4).

Example 1.4. This system is an example of a deterministic dynamical system. The parameter values used to generate Figure 1.2 .3 are the same as those used to generate Figure 1.2.1. In Figure 1.2.3, we graphically show the solutions of (1.2.2) and (1.2.3) initiated at $t=0$ from (1.0, 0.0) and (1.5, 0.0). From Figure 1.2.3a, we note that the corresponding integral curves do not intersect each other anywhere in the (x_{1}, x_{2}, t) space. As in Figure 1.2.1, the apparent intersections in Figure 1.2.3a are a consequence of the chosen viewing angle. From the previous discussion of Example 1.3, it is clear that as $t \rightarrow \infty$, both integral curves converge to the steady state

$$
\begin{aligned}
& x_{1}=0.5 \cos (2 t)+\sin (2 t) \\
& x_{2}=-\sin (2 t)+2 \cos (2 t)
\end{aligned}
$$

Although the two integral curves coincide only at $t=\infty$, on the scales of Figure 1.2.3a they are not distinguishable after about $t=2.5$ units. In

Figure 1.2.3: Solutions of (1.2.2) and (1.2.3) initiated from (1.0,0.0) and $(1.5,0.0)$ at $t=0$ for $\omega^{2}=8, \mu=2, F=10$, and $\Omega=2$: (a) integral curves and (b) positive orbits. Γ_{1} and Γ_{2} are the positive orbits of (1.0,0.0) and $(1.5,0.0)$, respectively.

Figure 1.2 .3 b , the positive orbits initiated from ($1.0,0.0$) and $(1.5,0.0)$ are shown. We note the presence of a transverse intersection close to $(0.7,-2.0)$ in Figure 1.2.3b.

1.2.2 Autonomous Systems

In the case of an autonomous system, the equations are of the form

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x} ; \mathbf{M}) \tag{1.2.5}
\end{equation*}
$$

where \mathbf{x}, \mathbf{F}, and \mathbf{M} are as defined before. Here, \mathbf{F} does not explicitly depend on the independent variable t and can be represented by the $\operatorname{map} \mathbf{F}: \mathcal{R}^{n} \times \mathcal{R}^{m} \rightarrow \mathcal{R}^{n}$. Hence, the system (1.2.5) is time invariant, time independent, or stationary. This means that if $\mathbf{X}(t)$ is a solution of (1.2.5), then $\mathbf{X}(t+\tau)$ is also a solution of (1.2.5) for any arbitrary τ. If the scalar components of \mathbf{F} have continuous and bounded first partial derivatives with respect to the scalar components of x, then the system (1.2.5) has a unique solution for a given initial condition $\mathbf{x}_{\mathbf{0}}$. As a consequence, no two trajectories or orbits of an autonomous system can intersect each other in the n-dimensional state space of the system. Moreover, if the vector field \mathbf{F} is a \mathcal{C}^{r} function of \mathbf{x} and \mathbf{M},

Figure 1.2.4: Positive orbits of (1.2.6) and (1.2.7) initiated at $t=0$ from $(1.0,1.0),(0.0,-1.2),(-1.0,-1.0)$, and $(0.0,1.2)$ for $\omega^{2}=8$ and $\mu=2$. All four orbits approach the origin as $t \rightarrow \infty$.
then the associated solution of (1.2.5) is also a \mathcal{C}^{r} function of t, x, and M (Arnold, 1973, 1992, Chapters 2 and 4).

Example 1.5. We consider the following autonomous system:

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \tag{1.2.6}\\
& \dot{x}_{2}=-\omega^{2} x_{1}-2 \mu x_{2} \tag{1.2.7}
\end{align*}
$$

In Figure 1.2.4, we show positive orbits of (1.2.6) and (1.2.7) initiated from four different initial conditions when $\omega^{2}=8$ and $\mu=2$. These orbits do not intersect each other anywhere in the plane as they approach the origin, where they all meet. The direction of the orbits in the $\left(x_{1}, x_{2}\right)$ space is given by

$$
\frac{d x_{2}}{d x_{1}}=\frac{-\left(\omega^{2} x_{1}+2 \mu x_{2}\right)}{x_{2}}
$$

which is well defined everywhere except at the origin. Hence, we call $(0,0)$ a singular point of (1.2.6) and (1.2.7). Such solutions are discussed at length in Chapter 2.

