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PREFACE 

Systems that can be modeled by nonlinear algebraic and/or nonlin- 
ear differential equations are called nonlinear systems. Examples of 
such systems occur in many disciplines of engineering and science. In 
this book, we deal with the dynamics of nonlinear systems. PoincarC 
(1899) studied nonlinear dynamics in the context of the n-body prob- 
lem in celestial mechanics. Besides developing and illustrating the use 
of perturbation methods, PoincarC presented a geometrically inspired 
qualitative point of view. 

In the nineteenth and twentieth centuries, many pioneering contri- 
butions were made to nonlinear dynamics. A partial list includes those 
due to Rayleigh, Duffing, van der Pol, Lyapunov, Birkhoff, Krylov, 
Bogoliubov, Mitropolski, Levinson, Kolomogorov, Andronov, Arnold, 
Pontryagin, Cartwright, Littlewood, Smale, Bowen, Piexoto, Ruelle, 
Takens, Hale, Moser, and Lorenz. While studying forced oscillations of 
the van der Pol oscillator, Cartwright and Littlewood (1945) observed 
a constrained random-like behavior, which is now called chaos. Sub- 
sequently, Lorenz (1963) studied a deterministic, third-order system in 
the context of weather dynamics and showed through numerical simu- 
lations that this deterministic system displayed random-like behavior 
too. Unaware of Lorenz’s work, Smale (19G7) introduced the horseshoe 
map as an abstract prototype to explain chaos-like behavior. No doubt 
PoincarC knew about chaos too, but it is only through numerical simula- 
tions on modern computers and experiments with physical system that 
the presence of chaos has been discovered to be pervasive in many dy- 
namical systems of physical interest. The observation of Poincar6 that 
small differences in the initial conditions may produce great changes in 
the final phenomena is now known to be a characteristic of systems that 

xiii 
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exhibit chaotic behavior. The phenomenon of chaos, which has become 
very popular now, rejuvenated interest in nonlinear dynamics. The 
growing numbers of books and research papers published in the last two 
decades reflect a strong interest in nonlinear dynamics at the present 
time. The many important contributions that have been made through 
analytical, experimental, and numerical studies have been documented 
through many books, including those by Collet and Eckmann (1980), 
Mees (1981), Sparrow (1982), Guckenheimer and Holmes (1983), Licht- 
enberg and Lieberman (1983, 1992), Bergd, Pomeau, and Vidal (1984), 
Holden (1986), Kaneko (1986), Thompson and Stewart (1986), Moon 
(1987, 1992), Arnold (1988), Barnsley (1988), Schuster (1988), Seydel 
(1988), Wiggins (1988, 1990), Devaney (1989), Jackson (1989, 1990), 
Nicolis and Prigogine (1989), Parker and Chua (1989), Ruelle (1989a, 
1989b), Tabor (1989), Arrowsmith and Place (1990), Baker and Gollub 
(1990), El Naschie (1990), Rasband (1990), Hale and Kocak (1991), 
Schroeder (1991), Troger and Steindl (1991), Drazin (1992), Kim and 
Stringer (1992), Medvdd (1992), Tufillaro, Abbott, and Reilly (1992), 
Ueda (1992), Mullin (1993), Ott (1993), Palis and Takens (1993), and 
Ott ,  Sauer, and Yorke (1994). 

We are of the opinion that the books on nonlinear dynamics pub- 
lished thus far have a strong bias toward analytical methods, or exper- 
imental methods, or numerical methods. As these methods are com- 
plementary to each other, a person being taught nonlinear dynamics 
should be provided with a flavor of all the different methods. This is 
one of the intentions in writing this book. Another intention was to 
include some of the recent developments in the area of control of non- 
linear dynamics of systems. In Chapter 1 ,  we introduce dynamical sys- 
tems. In Chapters 2-5, we address equilibrium solutions, periodic and 
quasiperiodic solutions, and chaos. We present some relevant theorems 
and their implications in Chapters 2 and 3. Proofs are not provided 
in this book, but references that provide them are included. Further, 
these chapters are not written within a mathematically rigorous frame- 
work. Continuation methods for equilibrium and periodic solutions are 
also presented in some detail in Chapter 6. We examine the different 
tools that can be used to characterize nonlinear motions in Chapter 7. 
In Chapter 8, w e  discuss methods for bifurcation control, chaos control, 
and synchronization to chaos. 
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Chapter 1 

INTRODUCTION 

A dynamical system is one whose state evolves (changes) with time 
t. The evolution is governed by a set of rules (not necessarily equations) 
that specifies the state of the system for either discrete or continuous 
values of t .  A discrete-time evolution is usually described by 
a system of algebraic equations (map), while a continuous-time 
evolution is usually described by a system of differential equations. 

The asymptotic behavior of a dynamical system as t -+ 00 is 
called the steady state of the system. Often, this steady state may 
correspond to a bounded set, which may be either a static solution 
or a dynamic solution. The behavior of the dynamical system prior 
to reaching the steady state is called the transient state, and the 
corresponding solution of the dynamical system is called the transient 
solution. 

A solution of a dynamical system can be either constant or time 
varying. Fixed points, equilibrium solutions, and stationary 
solutions are other names for constant solutions, while dynamic 
solutions is another name for time-varying solutions. We explore 
equilibrium solutions in Chapter 2 and dynamic solutions in Chapters 
3-5. In Sections 1.1 and 1.2, we explain the notion of a dynamical 
system. In Section 1.3, we discuss attracting sets, and in Sections 1.4 
and 1.5, we examine the concepts of stability and attractors. 



2 INTRODUCTION 

1.1 DISCRETE-TIME SYSTEMS 

A discrete-time evolution is governed by 

Xktl = F ( X k )  (1.1.1) 

where x is a finitedimensional vector. At the discrete times t k  and t k t l l  

xk and xktl represent the states of the system, respectively. Let the 
dimension of the finite-dimensional state vector be n. Then, we need 
n real numbers to specify the state of the system. Formally, the state 
vector x E R" and the time t E R, where the symbol E means belongs 
to and the symbol R" refers to an n-dimensional Euclidean space; 
that is, a real-number space equipped with the Euclidean norm 

where the 2; are the scalar components of x. If the discrete values 
of time correspond to integers rather than real numbers, we say that 
t E 2, where 2 is the set of all integers. We note that the evolution 
of a dynamical system may also be studied in other spaces, such as 
cylindrical, toroidal, and spherical spaces. In these cases, one or 
more state variables are angular coordinates. However, according to 
topological concepts, local regions of these spaces have the structure of 
a Euclidean space. 

Equation (1.1.1) is a transformation or a map that transforms 
the current state of the system to the subsequent state. In the 
literature, the words map, mapping, and function are often used 
interchangeably. To a certain extent, the words set and space are also 
used interchangeably. Formally, a map F from points in a region M to 
points in a region N is represented by F : A4 --t N. We note that M 
and N are contained in R". Formally, M c R" and N c R", where the 
symbol c is called the subset operator and means inclusion. The 
map F is said to map M onto N if for every point y E N there exists 
at least one point x E M that is mapped to y by F. Furthermore, F is 
said to be one-to-one if no two points in M map to the same point in 
N. A map that is oneto-one and onto is invertible (e.g., Dugundji, 
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1966, Chapter I); that is, given xk+l, we can solve (1.1.1) to determine 
xk uniquely. Denoting the inverse of F in (1.1.1) by F-', we have 

The map F-' is also onto and one-to-one. A map F that is not 
invertible is called a noninvertible map. 

When each of the scalar components of F is r times continuously 
differentiable with respect to the scalar components of x, F is said 
to be a C' function. When each of the scalar components of F is 
continuous with respect to the scalar components of x , F  is said to be 
a Co function. For r 2 1, the map F is called a differentiable map. 
The map F is called a homeomorphism if it is invertible and both 
F and F-' are continuous; that is, F is Co. If both F and F-' are C' 
functions where r 2 1, then we call the map a C' diffeomorphism. 
In subsequent chapters, we discuss what are called Poincare maps. 
These maps, which are discretized versions of associated systems of 
ordinary-differential equations, are diffeomorphisms. In one discretized 
version, a Poincari map describes the evolution of a system for discrete 
values of time. The other cases are discussed in detail in Chapters 3, 
4, 5 ,  and 7. 

An orbit of an invertible map initiated at x = xg is made up of 
the discrete points 

where rn E 2+ and 2+ is the set of all positive integers. When k > 0, 
Fk means the kth successive application of the map F. Similarly, when 
k < 0, Fk means the kth successive application of the map F-'. An 
orbit of a noninvertible map initiated at  x = x,-, is made up of the 
discrete points 

Successive applications of F are also referred to as the forward 
iterates of the corresponding map. 
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With reference to ( l . l . l ) ,  we note that F is also called an evolution 
operator. Sometimes, we wish to study the evolution as we change or 
control a certain set of parameters M. To make this explicit, we write 
the map as 

xk+i = F(w; M) (1.1.3) 

where M is the vector of control parameters. 

Example 1.1. For illustration, we consider the one-dimensional map 

where 0 5 fk 5 1 and 0 < a 5 1.  For a = 0.50, the orbit of the map 
initiated at xo = 0.25 is 

(0.25, 0.375, 0.46875, * * a }  

Equation (1.1.4) is the famous logistic map, which has been the 
subject of many studies (e.g., May, 1976). This map is a noninvertible 
map because it is not a one-to-one map. In fact, this map is a two- 
to-one map because it maps the two points x and ( 1  -x) to the same 
point 4 0 4  1 -x). Further, (1.1.4) is an example of a differentiable map. 

Example 1.2. We consider the HCnon map (Hdnon, 1976) 

xk+i = 1 + Yk - (1.1.5) 

Yk+l  = Pxk (1.1.6) 

where a and p are scalar parameters. When /3 = 0, (1.1.5) and (1.1.6) 
reduce to the one-dimensional map 

Zk+l = 1 - ask 2 

which is noninvertible. It is called the quadratic map. However, when 
/3 # 0, the map (1.1.5) and (1.1.6) is invertible. The inverse is 
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a 2  
Yk = Zktl - 1 + ,Yk+, 

We note that (28 yt}= uniquely determines {zk+l yktl}T and vice 
versa. Further, because both F and F-’ are differentiable, the H6non 
map is a difftmmorphisrn when p # 0. For a = 0.2 and f l  = 0.3, the 
orbit of the map initiated at  

{ ;: } = { ::: } 
is 

0.97 { :::}’{ :::}){ ::;:}’{ 0 . 3 5 } ’ * * ‘ }  

In Figure 1.1.1, we show some of the discrete points that make up the 
orbit of (20, yo). 

Figure 1.1.1: Some of the discrete points that make up the orbit of ( 1 , O )  of 
the HQnon map for a = 0.2 and /3 = 0.3. The index k associated with each 
point is also shown. 
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We note that the dynamics of many PoincarC maps show qualitative 
similarities to the dynamics of the logistic and HCnon maps. 

1.2 CONTINUOUS-TIME SYSTEMS 

For continuous values of time, the evolution of a system is governed 
by either an autonomous or a nonautonomous system of differential 
equations. 

1.2.1 Nonautonomous Systems 

In the nonautonomous case, the equations are of the form 

x = F(x, t )  (1.2.1) 

where x is finite dimensional, x E R", 2 E R, and F explicitly depends 
on t. The vector F is often referred to as vector field, the vector x is 
called a state vector because it describes the state of the system, and 
the space 72" in which x evolves is called a state space. A state space 
is called a phase space when one-half of the states are displacements 
and the other one-half are velocities. The (n + 1)-dimensional space 
R" x R', where the additional dimension corresponds to t ,  is often 
referred to as an extended state space. In (1.2.1), if F is a linear 
function of x it is called a linear vector field, and if F is a nonlinear 
function of x it is called a nonlinear vector field. 

Let the initial state of the system at time to be a, and let I 
represent a time interval that includes to. Then one can think of a 
solution of (1.2.1) as a map from different points in I into different 
points in the n-dimensional state space R". A graph of a solution of 
(1.2.1) in the extended state space is known as an integral curve. On 
an integral curve, the vector function F specifies the tangent vector 
(velocity vector) at every point (x, t). A geometric interpretation of a 
vector field is that it is a collection of tangent vectors on different 
integral curves. 

In general, a projection of a solution x(2, t o , % )  of (1.2.1) onto the 
n-dimensional state space is referred to as a t ra jectory or an orbit  
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of the system through the point x = xo. In other words, the solution 
could be thought of as a point that  moves along a trajectory, occupying 
different positions a t  different times similar to the way a planet moves 
through space. We use the symbol r(xo) or r to denote an orbit. The 
orbit obtained for times t 2 0 passing through the point xo a t  t = 0 is 
called a positive orbit and is denoted by yt(xo); the orbit obtained 
for times t 5 0 is called a negative orbit and is denoted by y-(xo). 
Also, r = y(xo) = -y+(xo) Uy-(xo), where the symbol U stands for the 
union operator. 

Example 1.3. For illustration, we consider the following periodically 
forced linear oscillator: 

x + 2 p i  -t w2x = Fcos(Rt)  

Letting 2 = 21 and j. = 5 2 ,  we express this second-order equation as 
a system of two first-order equations in terms of the state variables 5 1  

and x 2 .  The result is 

5 1  = 5 2  (1.2.2) 

i 2  = --w 5 1  - 2px2 + Fcos(Rt) (1.2.3) 2 

For w2 = 8, p = 2, F = 10, and R = 2, the solution of (1.2.2) and 
(1.2.3) is 

x1 = ebPt  [acos(2t) + bsin(2t)J + 0.5cos(2t) + sin(2t) 

x 2  = -2e-2' [(u - 6) cos(2t) + ( u  + 6) sin(2t)l - sin(2t) + 2 cos(2t) 

where the constants a and b are determined by the initial condition 
(x10,z20). We note that as t -t 00, the exponential term decays 
to zero. Therefore, the steady state does not depend oil the initial 
condition. In Figure 1.2.la, we show an integral curve initiated at  
( Z I O , Z Z O , ~ O )  = (1,0,0) in the ( 5 1 , 2 2 , t )  space for 0 5 t 5 10. The 
arrows on the curve indicate the direction of evolution for positive 
times. The tangent vector is also shown a t  two different locations on 
the integral curve. It should be noted that the apparent intersections 
in Figure 1.2.la are a consequence of the chosen viewing angle. In 
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Figure 1.2.1: Solution of (1.2.2) and (1.2.3) initiated from (1 ,O)  at t = 0 for 
w2 = 8, p = 2, F = 10, and st = 2: (a) integral curve and (b) positive orbit. 

Figure 1.2.lb, we show a projection of the integral curve onto the 
two-dimensional (q, z2) space. This projection is a positive orbit of 

Again, we remind the reader that besides Euclidean state spaces 
there are other state spaces, such as cylindrical, toroidal, axid spherical 
spaces. In Figure 1.2.2a, we show a cylindrical space. A motion 
evolving in this space is described by two Cartesian coordinates arid 
an angular coordinate 8. One of the Cartesian coordinates is defined 
along the cylinder's axis, while the other one is defined along the 
radius of its cross-section. This cylindrical space is represented by 
R2 x S'. The variable 8 belongs to the space S and is such that 
0 5 8 .c 27r; formally, 8 E [0,27r). A toroidal space is shown in Figure 
1.2.2b. Specifically, we call this object a two-torus, and a dynamical 
system evolving in this space is described by two angular coordinates 
O1 and 192. We represent this space by S' x S'. One would require n 
angular coordinates to describe the motion evolving on an n-torus. 
A spherical space is shown in Figure 1.2.2~. We need two angular 
coordinates to describe a motion evolving on the spherical surface. 

A local region of the cylindrical, toroidal, or spherical surface of 
Figure 1.2.2 has the appearance of a flat surface and can be treated as 
a two-dimensional Euclidean space. Smooth and continuous surfaces, 
such as those shown in Figure 1.2.2, are called manifolds. Manifolds 
can be thought of as generalized surfaces. (The reader is referred to 

(x10,x20) = ( L O ) .  
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C 

Figure 1.2.2: Different spaces: (a) cylindrical space, (b) toroidal space, and 
(c) spherical space. 

Guillemin and Pollack (1974) for a precise description of a manifold.) 
In a two-dimensional space, a smooth object, such as a circle, is an 
example of a manifold, but an object with sharp corners, such as a 
rectangle, is not an example of a manifold. Locally, the circle may be 
approximated by a tangent line. Similarly, local regions of toroidal and 
spherical surfaces can be approximated by tangent planes. We note 
that an open flat surface is also a manifold. 

Returning to (1.2.1), we note that this equation is also referred to 
as an evolution equation. Let the evolution of the system described 
by this equation be controlled by a set of parameters M. To make this 
parameter dependence explicit, we describe the evolution by 

X = F(x, t ;  M) (1.2.4) 

where M is a vector of control parameters. Formally, M E R", and 
the vector function F can be represented as F : R" x R' x R" --+ R". 

Next, we state some facts from the theory of ordinary-differential 
equations. If the scalar components of F are Co (i.e., continuous) in 
a domain D of (x,t) space, then a solution x(t,xo,to) satisfying the 
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condition x = xo at t = t o  exists in a small time interval around to in D. 
Moreover, if the scalar components of F are C' in D, then the solution 
x( t ,  xo, t o )  is unique in a small time interval around to .  The uniqueness 
of solutions is also assured in certain cases where F is Co (Coddington 
and Levinson, 1955, Chapter 1; Arnold, 1973, 1992, Chapters 2 and 
4). If the existence and uniqueness of solutions of a system of the form 
(1.2.4) are ensured, then this system is deterministic. This means 
that two integral curves starting from two different initial conditions 
cannot intersect each other in  the extended state space. However, the 
corresponding orbits may intersect each other in the corresponding state 
space. 

If the scalar components of F are C' functions of t and the scalar 
components of x and M, then a solution of (1.2.4) satisfying the initial 
condition x = ~0 at t = to is also a C' function of t ,  to,  xo, and M in a 
small interval around to. Moreover, if a solution of (1.2.4) originating 
at a certain initial condition exists for all times, then this solution can 
be extended indefinitely. If a solution exists and is defined only over a 
finite interval of time, then this solution starting from a location in  this 
interval can be extended up to the boundaries of this interval (A,!iold, 
1973, 1992, Chapters 2 and 4). 

Example 1.4. This system is an example of a deterministic dynamical 
system. The parameter values used to generate Figure 1.2.3 are the 
same as those used to generate Figure 1.2.1. In Figuxe 1.2.3, we 
graphically show the solutions of (1.2.2) and (1.2.3) initiated at t = 0 
from (1.0, 0.0) and (1.5, 0.0). From Figure 1.2.3a, we note that the 
corresponding integral curves do not intersect each other anywhere in 
the (z1,x2,t) space. As in Figure 1.2.1, the apparent intersections in 
Figure 1.2.3a are a consequence of the chosen viewing angle. From the 
previous discussion of Example 1.3, it is clear that as t -+ 00, both 
integral curves converge to the steady state 

q = 0.5 COS(2t) 4- sin(2t) 
21 = - sin(%!) + 2 cos(2t) 

Although the two integral curves coincide only at t = 00, on the scales of 
Figure 1.2.3a they are not distinguishable after about t = 2.5 units. In 
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Figure 1.2.3: Solutions of (1.2.2) and (1.2.3) initiated from (1.0,O.O) and 
(1.5,O.O) at 2 = 0 for u2 = 8, p = 2, F = 10, and R = 2: (a) integral curves 
and (b) positive orbits. I'l and r2 are the positive orbits of (1.0,O.O) and 
(1.5,0.0), respectively. 

Figure 1.2.3b, the positive orbits initiated from (1.0,O.O) and (1.5, 0.0) 
are shown. We note the presence of a transverse intersection close to 
(0.7, -2.0) in Figure 1.2.3b. 

1.2.2 Autonomous Systems 

In the case of an autoiiomous system, the equations are of the form 

X = F(x; M) (1.2.5) 

where x, F, and M are as defined before. Here, F does not explicitly 
depend on the independent variable t and can be represented by the 
map F : R" x R" -+ R". Hence, the system (1.2.5) is time invariant, 
time independent, or stationary. This means that if X(t) is a 
solution of (1.2.5)) then X(t + T )  is also a solution of (1.2.5) for any 
arbitrary 7 .  If the scalar components of F have continuous and bounded 
first partial derivatives with respect to the scalar components of x, then 
the system (1.2.5) has a unique solution for a given initial condition 
xo. As a consequence, no two trajectories or orbits of an autonomous 
system can intersect each other in the n-dimensional state space of the 
system. Moreover, if the vector field F is a C' function of x and M, 



12 INTRODUCTION 

-1 .5 0 1.5 
XI 

Figure 1.2.4: Positive orbits of (1.2.6) and (1.2.7) initiated at t = 0 from 
(l.O,l.O), (0.0,-1.2), (-1.0,-l.O), and (0.0,1.2) for w2 = 8 and p = 2. All 
four orbits approach the origin as 1 -+ 00. 

then the associated solution of (1.2.5) is also a C' function of t ,  x, and 
M (Arnold, 1973, 1992, Chapters 2 and 4).  

Example 1.5. We consider the following autonomous system: 

2 1  = 5 2  (1.2.6) 

x1=  -w 1 2 1  - 2px2 (1.2.7) 

In Figure 1.2.4, we show positive orbits of (1.2.G) and (1.2.7) initiated 
from four different initial conditions when w2 = 8 and p = 2. These 
orbits do not intersect each other anywhere in the plane as they 
approach the origin, where they all meet. The direction of the orbits 
in the (xl,za) space is given by 

-- dza -(w2z1 t 2 ~ x 2 )  
dz1 5 2  

- 

which is well defined everywhere except at the origin. Hence, we call 
(0,O) a singular point of (1.2.6) and (1.2.7). Such solutions are 
discussed at length in Chapter 2. 


