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PREFACE 

This book has had a long gestation period. While it simmered on the back 
burner, we pursued research in various aspects of Monte Carlo methods 
and their application to the simulation of physical systems. Out of this 
diversity we believe we see a basic way of looking at the field. 

It is unfortunate that some observers and even some specialists of 
Monte Carlo methods seem to regard Monte Carlo as a bag of mis- 
cellaneous devices. Often it comes across that way when applied. It is true 
that like many other technical endeavors, especially those with as intensely 
practical an outlook as Monte Carlo methods, a body of ingenious tricks 
has arisen, awaiting invocation as needed. But we believe-and hope that 
our book is successful in conveying both in a general and a practical 
sense-that there are a number of unifying ideas that underlie the study 
and use of good Monte Carlo methods. 

The first is the importance of random walks-on the one hand as they 
occur in natural stochastic systems, and on the other, in their relation to 
integral and differential equations. 

The other basic theme is that of variance reduction and, above all, of 
importance sampling as a technical means of achieving variance reduc- 
tion. Importance sampling is the transformation of a basically straight- 
forward random sampling method by changing variables or, what amounts 
to the same thing, by changing the underlying probability distribution 
while leaving a required mean unchanged. It is by no means the only 
method, nor in particular cases the best method, for variance reduction. 
But it offers a coherent point of view about variance reduction. In 
important cases it offers the theoretical possibility of zero variance. The 
use of approximations to variance minimizing transformations is a power- 
ful technique for the introduction of a priori knowledge based on 
experience or approximate solution of the problem at hand into a still 
exact numerical treatment based on Monte Carlo methods. 
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v i  PREFACE 

We believe that these ideas have stood us well in our research in 
radiation transport, in statistical physics, and in quantum mechanics and 
have served to unify them intellectually. We offer them to our readers in 
the hope that our point of view will make the theory and practice of Monte 
Carlo more interesting and more effective. 

This book is a distillation of some years of practice and thought about 
Monte Carlo methods. As such it has benefited from the ideas and 
suggestions of many friends and colleagues, too numerous to list in full. It 
would be remiss not to mention some of them, however, starting with 
Gerald Goertzel, who first introduced one of us (MHK) to the mixed joys 
of Monte Carlo on primitive computers, and to many of the basic ideas 
expressed in our book. Others from whom we have learned include 
particularly Harry Soodak, Eugene Troubetzkoy, Herbert Steinberg, 
Loup Verlet, Robert Coveyou, Phillip Mittleman, Herbert Goldstein, 
David Ceperley, Kevin Schmidt, and Geoffrey Chester. Notes of early 
lectures taken by Jacob Celnik were very helpful. 

We gratefully acknowledge the help and encouragement of our many 
colleagues and students during the time this book was being written. We 
especially thank David Ceperley for giving the original lecture on which 
Chapter 5 was based. Youqin Zhong and John Halton gave numerous 
suggestions for improving earlier versions of the manuscript. We thank 
them for their efforts and hope the final book lives up to their expectations. 

MALVIN H. KALOS 
PAULA A. WHITLOCK 

New York, New York 
August 1986 
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1 WHAT IS MONTE CARL02 

1.1. INTRODUCTION 

The name Monte Curlo was applied to a class of mathematical methods 
first by scientists working on the development of nuclear weapons in Los 
Alamos in the 1940s. The essence of the method is the invention of 
games of chance whose behavior and outcome can be used to study some 
interesting phenomena. While there is no essential link to computers, the 
effectiveness of numerical or simulated gambling as a serious scientific 
pursuit is enormously enhanced by the availability of modern digital 
computers. 

It is interesting, and may strike some as remarkable, that carrying out 
games of chance or random sampling will produce anything worthwhile. 
Indeed some authors have claimed that Monte Carlo will never be a 
method of choice for other than rough estimates of numerical quantities. 

Before asserting the contrary, we shall give a few examples of what we 
mean and do not mean by Monte Carlo calculations. 

Consider a circle and its circumscribed square. The ratio of the area of 
the circle to the area of the square is m/4. It is plausible that if points 
were placed at random in the square, a fraction m/4 would also lie inside 
the circle. If that is true (and we shall prove later that in a certain sense it 
is), then one could measure m/4 by putting a round cake pan with 
diameter L inside a square cake pan with side L and collecting rain in 
both. It is also possible to program a computer to generate random pairs 
of Cartesian coordinates to represent random points in the square and 
count the fraction that lie in the circle. This fraction as determined from 
many experiments should be close to m/4, and the fraction would be 
called an estimate for m/4. In 1,000,000 experiments it is very likely 
(95% chance) that the number of points inside the circle would range 
between 784,600 and 786,200, yielding estimates of 7r/4 that are be- 
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2 WHAT IS MONTE CARLO? 

tween 0.7846 and 0.7862, compared with the true value of 0.785398. . . . 
The example illustrates that random sampling may be used to solve a 

mathematical problem, in this case, evaluation of a definite integral, 

I =  J'Jrndxdy. 0 0  (1.1) 

The answers obtained are statistical in nature and subject to the laws of 
chance. This aspect of Monte Carlo is a drawback, but not a fatal one 
since one can determine how accurate the answer is, and obtain a more 
accurate answer, if needed, by conducting more experiments. Sometimes, 
in spite of the random character of the answer, it is the most accurate 
answer that can be obtained for a given investment of computer time. 
The determination of the value of 7r can of course be done faster and 
more accurately by non-Monte Carlo methods. In many dimensions, 
however, Monte Carlo methods are often the only effective means of 
evaluating integrals. 

A second and complementary example of a Monte Carlo calculation is 
one that S. Ulam' cited in his autobiography. Suppose one wished to 
estimate the chances of winning at solitaire, assuming the deck is 
perfectly shuffled before laying out the cards. Once we have chosen a 
particular strategy for placing one pile of cards on another, the problem 
is a straightforward one in elementary probability theory. It is also a very 
tedious one. It would not be difficult to program a computer to ran- 
domize lists representing the 52 cards of a deck, prepare lists represent- 
ing the different piles, and then simulate the playing of the game to 
completion. Observation over many repetitions would lead to a Monte 
Carlo estimate of the chance of success. This method would in fact be 
the easiest way of making any such estimate. We can regard the com- 
puter gambling as a faithful simulation of the real random process, 
namely, the card shuffting. 

Random numbers are used in many ways associated with computers 
nowadays. These include, for example, computer games and generation 
of synthetic data for testing. These are of course interesting, but not what 
we consider Monte Carlo, since they do not produce numerical results. A 
definition of a Monte Carlo method would be one t'lat involves deli- 
berate use of random numbers in a calculation that has the structure of a 
stochastic process. By stochastic process we mean a sequence of states 
whose evolution is determined by random events. In a computer, these 
are generated by random numbers. 

A distinction is sometimes made between simulation and Monte Carlo. 
In this view, simulation is a rather direct transcription into computing 
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terms of a natural stochastic process (as in the example of solitaire). 
Monte Carlo, by contrast, is the solution by probabilistic methods of 
nonprobabilistic problems (as in the example of w). The distinction is 
somewhat useful, but often impossible to maintain. The emission of 
radiation from atoms and its interaction with matter is an example of a 
natural stochastic process since each event is to some degree un- 
predictible (cf. Chapter 6). It lends itself very well to a rather straight- 
forward stochastic simulation. But the average behavior of such radiation 
can also be described by mathematical equations whose numerical solu- 
tion can be obtained using Monte Carlo methods. Indeed the same 
computer code can be viewed simultaneously as a “natural simulation’’ 
or as a solution of the equations by random sampling. As we shall also 
see, the latter point of view is essential in formulating efficient schemes. 
The main point we wish to stress here is that the same techniques yield 
directly both powerful and expressive simulation and powerful and 
efficient numerical methods for a wide class of problems. 

We should like to return to the issue of whether Monte Carlo cal- 
culations are in fact worth carrying out. This can be answered in a very 
pragmatic way: many people do them and they have become an accepted 
part of scientific practice in many fields. The reasons do not always 
depend on pure computational economy. As in our solitaire example, 
convenience, ease, directness, and expressiveness of the method are 
important assets, increasingly so as pure computational power becomes 
cheaper. In addition, as asserted in discussing T, Monte Carlo methods 
are in fact computationally effective, compared with deterministic 
methods when treating many dimensional problems. That is partly why 
their use is so widespread in operations research, in radiation transport 
(where problems in up to seven dimensions must be dealt with), and 
especially in statistical physics and chemistry (where systems of hundreds 
or thousands of particles can now be treated quite routinely). An exciting 
development of the past few years is the use of Monte Carlo methods to 
evaluate path integrals associated with field theories as in quantum 
chromod ynamics. 

1.2. TOPICS TO BE COVERED 

The organization of the book is into several major areas. The first topic 
addressed is a review of some simple probability ideas with emphasis on 
concepts central to Monte Carlo theory. For more rigorous information 
on probability theory, references to standard texts will be given. The next 
chapters deal with the crucial question of how random events (or 
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reasonable facsimiles) are programmed on a computer. The techniques 
for sampling complicated distributions are necessary for applications and, 
equally important, serve as a basis for illustrating the concepts of 
probability theory that are used throughout. 

Then we consider quadratures in finite-dimensional spaces. Attention 
is paid to the important and interesting case of singular integrands, 
especially those for which the variance of a straightforward estimate does 
not exist so that the usual central limit theorems do not apply. These are 
cases for which variance reduction methods have an immediate and 
direct payoff. 

The final chapters deal with applications of Monte Carlo methods. An 
introduction and survey of current uses in statistical physics is given. The 
simulation of a simple example of radiation transport is developed, and 
this naturally leads to the solution of integral equations by Monte Carlo. 
The ideas are then used as a framework upon which to construct a 
relationship between random walks and integral equations and to intro- 
duce the fundamentals of variance reduction for simulation of random 
walks. 

1.3. A SHORT HISTORY OF MONTE CARLO 

Perhaps the earliest documented use of random sampling to find the 
solution to an integral is that of Comte de Buffon.’ In 1777 he described 
the following experiment. A needle of length L is thrown at random onto 
a horizontal plane ruled with straight lines a distance d ( d  > L) apart. 
What is the probability P that the needle will intersect one of these lines? 
Comte de Buff on performed the experiment of throwing the needle many 
times to determine P. He also carried out the mathematical analysis of 
the problem and showed that 

2 L  p = -  
md ’ 

Some years later, Laplace3 suggested that this idea could be used to 
evaluate 7r from throws of the needle. This is indeed a Monte Carlo 
determination of T ;  however, as in the first example of this chapter, the 
rate of convergence is slow. It is very much in the spirit of inverting a 
probabilistic result to get a stochastic computation. We would call it an 
analog computation now day^.^ 

Lord Kelvin’ appears to have used random sampling to aid in evaluat- 
ing some time integrals of the kinetic energy that appear in the kinetic 
theory of gases. His random sampling consisted of drawing numbered 
pieces of paper from a bowl. He worried about the bias introduced by 
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insufficient mixing of the papers and by static electricity. W. S. Gossett 
(as “Student”6) used similar random sampling to assist in his discovery of 
the distribution of the correlation coefficient. 

Many advances were being made in probability theory and the theory 
of random walks that would be used in the foundations of Monte Carlo 
theory. For example, Courant, Friedrichs, and Lewy’ showed the 
equivalence of the behavior of certain random walks to solutions of 
certain partial differential equations. In the 1930s Enrico Fenni made 
some numerical experiments that would now be called Monte Carlo 
calculations.* In studying the behavior of the newly discovered neutron, 
he carried out sampling experiments about how a neutral particle might 
be expected to interact with condensed matter. These led to substantial 
physical insight and to the more analytical theory of neutron diffusion 
and transport. 

During the Second World War, the bringing together of such people 
as Von Neumann, Fermi, Ulam, and Metropolis and the beginnings of 
modern digital computers gave a strong impetus to the advancement of 
Monte Carlo. In the late 1940s and early 50s there was a surge of interest. 
Papers appeared that described the new method and how it could be used 
to solve problems in statistical mechanics, radiation transport, economic 
modeling, and other fields.’ Unfortunately, the computers of the time 
were not really adequate to carry out more than pilot studies in many 
areas. The later growth of computer power made it possible to carry 
through more and more ambitious calculations and to learn from failures. 

At the same time, theoretical advances and putting into practice 
powerful error-reduction methods meant that applications advanced far 
faster than implied by sheer computing speed and memory size. The two 
most influential developments of that kind were the improvements in 
methods for the transport equation, especially reliable methods of “im- 
portance sampling”’ and the invention of the algorithm of Metropolis et 
a1.I’ The resulting successes have borne out the optimistic expectations 
of the pioneers of the 1940s. 
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2 A BIT OF PROBABILITY 
THEORY 

2.1. RANDOM EVENTS 

As explained in Chapter 1, a Monte Carlo calculation is a numerical 
stochastic process; that is, it is a sequence of random events. While we 
shall not discuss the philosophical question of what random events’ are, 
we shall assume that they do exist and that it is possible and useful to 
organize a computer program to produce effective equivalents of natural 
random events. 

We must distinguish between elementary and composite events. Ele- 
mentary events are those that we cannot (or do not choose to) analyze 
into still simpler events. Normally the result (head or tail) of flipping a 
coin or the result (1-6) of rolling a die are thought of as elementary 
events. In the case of a die, however, we might interest ourselves only in 
whether the number was even or odd, in which case there are two 
outcomes. Composite events are those defined from a number of ele- 
mentary events. Examples include flipping a coin twice (with four out- 
comes, head-head, head-tail, tail-head, tail-tail). It is sometimes useful 
to talk of this pair as a single “event.” 

As far as one knows, random events occur in nature; for example, 
the physical outcome of the scattering of an electron by an atom 
cannot be predicted with certainty. It is difficult to analyze with an 
assurance which natural random events are “elementary,” although we 
shall have occasion to simplify our models of physical processes by 
treating a scattering event as elementary, and on that basis build up 
composite events. The distinction between an elementary random event 
and others depends on one’s state of knowledge and the depth of the 
analysis given to the problem. Thus, one important kind of event, 
“compound elastic scattering” of neutrons, is usefully analyzed into a 
sequence of three elementary random events. O n  the other hand, “simple 
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