METHODS OF
MATHEMATICAL PHYSICS

By R. COURANT and D. HILBERT

VOLUME 11

PARTIAL DIFFERENTIAL EQUATIONS
By R. Courant

Wiley-VCH Verlag GmbH & Co. KGaA



This Page Intentionally Left Blank



METHODS OF MATHEMATICAL PHYSICS
VOLUME I1



BOOKS BY R, COURANT
Differential and Integral Calculus. Second
Edition. Volumes 1 and 2.
Dirichlet's Principle, Conformal Mapping
and Minimal Surfaces (Pure and Applied
Mathematics, Volume 3)

BY R. COURANT AND F. JOHN
Calculus., Volume 1

BY R, COURANT AND K, O. FRIEDRICHS
Supersonic Flow and Shock Waves
(Pure and Applied Mathematics,
Volume 1)

BY R. COURANT AND D, HILBERT
Volume 1
Volume 2. Partial Differential Equations



METHODS OF
MATHEMATICAL PHYSICS

By R. COURANT and D. HILBERT

VOLUME 11

PARTIAL DIFFERENTIAL EQUATIONS
By R. Courant

Wiley-VCH Verlag GmbH & Co. KGaA



Copyright © 1962 by R. Courant.
All Rights Reserved

Reproductions or translations of any part of this work beyond that permitted by Sections 107
or 108 of the 1976 United States Copyright Act without the permission of the copyright
owner is unlawful. Requestsfor permission or further information should be addressed to the
Permission Department, WILEY-VCH GmbH & Co. KGaA

Library of Congress Card Number 53-7164

British Library Cataloging-in-Publication Data:
A catalogue record for this book is available from the British Library

Bibliographic information published by
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

Printed in Singapore
Printed on acid-free paper

Printing and Bookbinding
Markono Print Media Pte Ltd, Singapore

ISBN-13: 978-0-471-50439-9
ISBN-10: 0-471-50439-4



TO
KURT OTTO FRIEDRICHS




This Page Intentionally Left Blank



PREFACE

The present volume is concerned with the theory of partial dif-
ferential equations, in particular with parts of this wide field that are
related to concepts of physics and mechanics. Even with this restric-
tion, completeness seems unattainable; to a certain extent the ma-
terial selected corresponds to my personal experience and taste. The
intention is to make an important branch of mathematical analysis
more accessible by emphasizing concepts and methods rather than
presenting a collection of theorems and facts, and by leading from
an elementary level to key points on the frontiers of our knowledge

Almost forty years ago I discussed with David Hilbert the plan of a.
work on mathematical physics. Although Hilbert could not participate
in carrying out the plan, I hope the work, and in particular the present
volume, reflects his scientific ethos, which was always firmly directed
towards the relevant nucleus of a mathematical problem and averse to
merely formal generality. We shall introduce our topics by first con-
centrating on typical specific cases which are suggestive by their
concrete freshness and yet exhibit the core of the underlying abstract
situation. Individual phenomena are not relegated to the role of
special examples; rather, general theories emerge by steps as we reach
higher vantage points from which the details on a “lower level” can
be better viewed, unified, and mastered. Thus, corresponding to the
organic process of learning and teaching, an inductive approach is
favored, sometimes at the expense of the conciseness which can be
gained by a deductive, authoritarian mode of presentation.

This book is essentially self-contained; it corresponds to Volume 11
of the German edition of the ‘“Methoden der Mathematischen Physik”
which appeared in 1937. The original work was subsequently sup-
pressed by the Ministry of Culture in Nazi Germany ; later my loyal
friend Ferdinand Springer was forced out as the head of his famous
publishing house. The reprinting by Interscience Publishers under
license of the United States government (1943) secured the survival of

vii



viil PREFACE

the book. Ever since, a completely new version in the English language
has been in preparation. During this long period, knowledge in the
field has advanced considerably, and I too have been struggling
towards more comprehensive understanding. Naturally the book
reflects these developments to the extent to which I have shared in
them as an active and as a learning participant.

The table of contents indicates the scope of the present book. It
differs in almost every important detail from the German original.
For example, the theory of characteristics and their role for the theory
of wave propagation is now treated much more adequately than was
possible twenty-five years ago. Also the concept of weak solutions of
differential equations, clarified by Sobolev and Friedrichs and already
contained in the German edition, now appears in the context of the
theory of ideal functions which, introduced and called “distributions”
by Laurent Schwartz, have become an indispensable tool of advanced
calculus. An appendix to Chapter VI contains an elementary pres-
entation of this theory. On the other hand, the material of the last
chapter of the German edition, in particular the discussion of existence
of solutions of elliptic differential equations, did not find room in this
volume. A short third volume on the construction of solutions will
treat these topics, including an account of recent mathematics.

The book as now submitted to the public is certainly uneven in
style, completeness and level of difficulty. Still, I hope that it will be
useful to my fellow students, whether they are beginners, scholars,
mathematicians, other scientists or engineers. Possibly the presence
of various levels in the book might make the terrain all the more
accessible by way of the lower regions.

I am apologetically conscious of the fact that some of the progress
achieved outside of my own sphere may have been inadequately re-
ported or even overlooked in this book. Some of these shortcomings
will be remedied by other publications in the foreseeable future such
as a forthcoming book by Gérding and Leray about their fascinating
work.

The present publication would have been impossible without the
sustained unselfish cooperation given to me by friends. Throughout all
my career I have had the rare fortune to work with younger people
who were successively my students, scientific companions and in-
structors. Many of them have long since attained high prominence
and yet have continued their helpful attitude. Kurt O. Friedrichs
and Fritz John, whose scientific association with me began more
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than thirty years ago, are still actively interested in this work on
mathematical physics.—That this volume is dedicated to K. O.
Friedrichs is a natural acknowledgment of a lasting scientific and
personal friendship.

To the cooperation of Peter D. Lax and Louis Nirenberg I owe
much more than can be expressed by quoting specific details. Peter
Ungar has greatly helped me with productive suggestions and criti-
cisms. Also, Lipman Bers has rendered most valuable help and, more-
over, has contributed an important appendix to Chapter 1V.

Among younger assistants I must particularly mention Donald
Ludwig whose active and spontaneous participation has led to a num-
ber of significant contributions.

Critical revision of parts of the manuscript in different stages was
undertaken by Konrad Jérgens, Herbert Kranzer, Anneli Lax, Hanan
Rubin. Proofs were read by Natascha Brunswick, Susan Hahn,
Reuben Hersh, Alan Jeffrey, Peter Rejto, Brigitte Rellich, Leonard
Sarason, Alan Solomon and others. Jane Richtmyer assisted in pre-
paring the list of references and in many other aspects of the produc-
tion. A great deal of the editing was done by Lori Berkowitz.

Most of the technical preparation was in the hands of Ruth Murray,
who typed and retyped thousands of pages of manuscript, drew the
figures and altogether was most instrumental in the exasperating
process of transforming hardly legible drafts into the present book.

To all these helpers and to others, whose names may have been
omitted, I wish to extend my profound thanks.

Thanks are also due to my patient friend Eric S. Proskauer of Inter-
science.

Finally I wish to thank the Office of Naval Research and the Na-
tional Science Foundation, in particular F. Joachim Weyl and Arthur
Grad, for the effective and understanding support given in the
preparation of this book.

New Rochelle, New York R. CouraNT
November 1961
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The present volume, essentially independent of the first, treats the
theory of partial differential equations from the point of view of
mathematical physics. A shorter third volume will be concerned
with existence proofs and with the construction of solutions by fi-
nite difference methods and other procedures.

CHAPTER 1

Introductory Remarks

We begin with an introductory chapter describing basic con-
cepts, problems, and lines of approach to their solution,
A partial differential equation is given as a relation of the form

(]) F(xayy“')uauz,uu’"')uu)uzu;"')=Os
where F is a function of the variables z, y, -+, u, Uz, u,, -,
Ugz , Uzy, - ; & function u(z, y, ---) of the independent variables
z, y, -+ is sought such that equation (1) is identically satisfied in
these independent variables if u(x, y, - - -) and its partial derivatives
S VSN VR
* oz’ v ey’ !
"o = o*u I d*u
= ax?? * dzoy’ ’

.................................

are substituted in F.

Such a function u(x, y, ---) is called a solution of the partial
differential equation (1). We shall not only look for a single ‘“‘par-
ticular’ solution but investigate the totality of solutions and, in par-
ticular, characterize individual solutions by further conditions which
may be imposed in addition to (1).

The partial differential equation (1) becomes an ordinary differential
equation if the number of independent variables is one.

The order of the highest derivative occurring in a differential equa-
tion is called the order of the differential equation.

Frequently we shall restrict the independent variables z, y, --- to
a specific region of the z, y, - - --space; similarly, we shall consider F

1



2 1. INTRODUCTORY REMARKS

only in a restricted part of the z, y, --- , u, uz, u,, - --space. This
restriction means that we admit only those functions u(z, y, ---) of
the basic region in the z, y, ----space which satisfy the conditions

imposed on the corresponding arguments of . Once and for all we
stipulate that all our considerations refer to regions chosen sufficiently
small. Similarly, we shall assume that, unless the contrary is specifically
stated, all occurring functions F, u, - - - are continuous and have continu-
ous derivatives of all occurring orders.'

The differential equation is called linear if F is linear in the vari-
ables u, u;, Uy, * -, Uz, Usy , - -+ With coefficients depending only
on the independent variables z, y, - -+ . If F is linear in the highest
order derivatives (say the n-th), with coefficients depending upon
z, y, --- and possibly upon u and its derivatives up to order n — 1,
then the differential equation is called quasi-linear.

We shall deal mainly with either linear or quasi-linear differential
equations; more general differential equations will usually be re-
duced to equations of this type.

In the case of merely two independent variables z, y, the solution
u(z, y) of the differential equation (1) is visualized geometrically as a
surface, an ‘““¢ntegral surface’ in the z, y, u-space.

§1. General Information about the Variety of Solutions

1. Examples. For an ordinary differential equation of n-th order,
the totality of solutions (except possible ‘“singular’ solutions) is a
function of the independent variable x which also depends on =
arbitrary integration constants ¢, ¢, -+, ¢.. Conversely, for
every n-parameter family of functions

u=¢<x;01,62, "')cn):

there is an n-th order differential equation with the solution u = ¢

obtained by eliminating the parametersc,,cs, - -+ , ¢, from the equa-
tionu = ¢(zx; 61, e, -+, €a) and from the n equations
!
u = ¢’($;Cl,62, e ,Cn),
() g,
u = ¢ (IE,Cl,C2, ,C,.)

! Also, when systems of equations are inverted, we will always consider a
neighborhood of a point in which the corresponding Jacobian does not vanish.
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For partial differential equations the situation is more complicated.
Here too, one may seek the totality of solutions or the “‘general solu-
tton’’; i.e., one may seek a solution which, after certain “arbitrary’’
elements are fixed, represents every individual solution (again with
the possible exception of certain ‘‘singular’’ solutions). In the case
of partial differential equations such arbitrary elements ean no longer
occur in the form of constants of integration, but must involve arbi-
trary functions; in general, the number of these arbitrary functions
is equal to the order of the differential equation. These arbitrary
functions depend on one independent variable less than the solution
. A more precise statement of the situation is implied in the exist-
ence theorem of §7. In the present section however, we merely col-
lect information by studying a few examples.

1) The differential equation

w, = 0
for a function u(z, y) states that v does not depend on y; hence,
u = w(r),
where w(x) is an arbitrary function of z.
2) For the equation
Uzy = 0,
one immediately obtains the general solution
u = w(x) + v{y).

3) Similarly, the solution of the nonhomogeneous differential equa-
tion

is Uzy = f(.B, ?/)
ulz, y) = f f” f(& m) dE dn + w(z) + v(y)

with arbitrary functions w and v and fixed values 2o, yo .

More generally, one may replace the integral by an area integral
if one takes, as the region of integration 4 , a “triangle” such as that
in Figure 1, whose curved boundary consists of a curve C: y = g(x)
or z = h(y) which is not intersected more than once by any of the
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Y4
y, hiy) X,y
C
xgb)
X
Figure 1

curves x = const. or y = const. Then,

ue, y) = [ 16 ) de dn + w(x) + o),
(2) 4
v ’ # ’
we= [ famdn+w@, w=[ [¢)d+o).
o(z) h(y)
The special solution of the differential equation for w(z) = v(y) = 0
satisfies the condition v = u, = u, = 0 for all points (z, ) on the

curve C.
4) The partial differential equation

U = Uy
is transformed into the equation
20, = 0
by the transformation of variables
$+!/=fy r—y=mn u(ziy);—w(E,")'

The “general solution” of the transformed equation is w = w(f);
therefore

u = wx + y).

Similarly, if & and 8 are constants, the general solution of the
differential equation

au, + fu, = 0
1s

u = w(Br — ay).
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5) According to elementary theorems of the differential calculus,
the partial differential equation

Usy — Uz = 0,

where g(z, y) is any given function of z, y states that the Jacobian
d(u, g)/9(z, y) of u, g with respect to z, y vanishes. This means that
u depends on g, i.e., that

(3) u = wig(z, ),

where w is an arbitrary function of the quantity g. Since, conversely,
every function u of the form (3) satisfies the differential equation
U0, — u,g. = 0, we obtain the totality of solutions by means of the
arbitrary function w.
It is noteworthy that the same result holds for the more general—
quasi-linear—differential equation
urgv(zr Y, u) - uu(]«:(x; Y, u) = O)

where g now depends explicitly not only on z, y but on the unknown
function u(z, y) as well. For, as one sees, the Jacobian of any solu-
tion u(z, y) and y(x, y) = ¢z, v, u(z, y)] vanishes since

UYy — UyYz = Usfy — UGz + UGuly — UpGulUy = 0.
Thus, even in this case, the solution is given by the relation
4 u(z, y) = Wig(z, y, w),

which is an implicit definition of « by means of the arbitrary function
w.

For instance, the solution u(z, y) of the differential equation
a(uu, — Bu)u, = 0
is implicitly defined by
(5) u = Wia(wy + B(u)z],

(or by a(u)y + B(u)xr = w(u)), so that u depends on the arbitrary
function W in a rather involved way. (An application will be given
in §7, 1.)

A special case of the differential equation a(u)u, — (u)u, = 0 is

uy, + uu, = 0;
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the solution is given implicitly by

where W is arbitrary. If u = u(z(y), y) is interpreted as the velocity
of a particle at a point 2 = z(y) moving with the time y, then the
differential equation states that the acceleration of all the particles
is zero.

6) The partial differential equation of second order

Upr — Uyy = 0
is transformed into
4o, = 0
by the transformation
z+y=¢ z—y=1  uxy = ).
Hence, according to example 2), its solutions are
u(z, y) = wix + y) + vl — y).
7) In a similar way the general solution of the differential equa-

tion

1
gy — 7 Uy = 0

for any value of the parameter ¢ is
u = w4 ty) + v(x — ty).
In particular, the functions

u=(z+ ty)"
and

w=(x — ty)"
are solutions; i.e.,

Uy — Uyy

vanishes for all z, ¥ and for all real ¢.
8) According to elementary algebra, if a polynomial in ¢ vanishes
for all real values of ¢, then it vanishes for all complex values of ¢ as



