Paul M. S. Monk, Roger J. Mortimer, David R. Rosseinsky

# **Electrochromism:** Fundamentals and Applications



Weinheim • New York • Basel • Cambridge • Tokyo

This Page Intentionally Left Blank

Paul M. S. Monk, Roger J. Mortimer, David R. Rosseinsky

**Electrochromism:** Fundamentals and Applications



# **Further Titles of Interest by VCH**

#### H. Gerischer, C. W. Tobias (Eds.) Advances in Electrochemical Science and Engineering

Volume 1 ISBN 3-527-27884-2 Volume 2 ISBN 3-527-28273-4 Volume 3 ISBN 3-527-29002-8 Volume 4 ISBN 3-527-29205-5

#### J. Lipkowski, Ph. N. Ross (Eds.) Frontiers of Electrochemistry

Volume 3. Electrochemistry of Novel Materials

ISBN 0-89573-788-4

### J. Wang Analytical Electrochemistry

ISBN 1-56081-575-2

© VCH Verlagsgesellschaft mbH. D-69451 Weinheim (Federal Republic of Germany), 1995

Distribution: VCH, P. O. Box 10 11 61, D-69451 Weinheim (Federal Republic of Germany) Switzerland: VCH, P. O. Box, CH-4020 Basel (Switzerland) United Kingdom and Ireland: VCH (UK) Ltd., 8 Wellington Court, Cambridge CB1 1HZ (England) USA and Canada: VCH, 220 East 23rd Street, New York, NY 10010-4606 (USA) Japan: VCH, Eikow Building, 10–9 Hongo 1-chome, Bunkyo-ku, Tokyo 113 (Japan)

ISBN 3-527-29063-X

Paul M. S. Monk, Roger J. Mortimer, David R. Rosseinsky

# **Electrochromism:** Fundamentals and Applications



Weinheim • New York • Basel • Cambridge • Tokyo

Dr. P. M.S. Monk Department of Chemistry Manchester Metropolitan University Chester St. Manchester M1 5GD UK Dr. R. J. Mortimer Department of Chemistry Loughborough University of Technology Loughborough Leicestershire LE11 3TU UK Dr. D. R. Rosseinsky Department of Chemistry University of Exeter Stocker Road, Exeter Devon, EX4 4QD UK

This book was carefully produced. Nevertheless, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Published jointly by VCH Verlagsgesellschaft mbH, Weinheim (Federal Republic of Germany) VCH Publishers, Inc., New York, NY (USA)

Editorial Directors: Dr. Peter Gregory, Dr. Ute Anton Production Manager: Dipl.-Ing. (FH) Hans Jörg Maier

Cover illustration: The image of a building is formed by electrochromic heptylviologen on a 1 inch (2.54 cm) square, 64 x 64 pixel, silicon electrode. (D. J. Barclay and D. H. Martin in E. R. Howells (ed.), *Technology of Chemicals and Materials for the Electronics Industry*, Ellis Horwood, Chichester **1984**, Chapter 15. Used with the kind permission of E. R. Howells. The electrochromic rearview mirror for a car was kindly supplied by Dr. H. Byker, Gentex Corporation, Zeeland, MI, USA.

Library of Congress Card No. applied for.

A catalogue record for this book is available from the British Library.

Deutsche Bibliothek Cataloguing-in-Publication Data: Monk, Paul M. S.: Elektrochromism : fundamentals and applications / Paul M. S. Monk ; Roger J. Mortimer ; David R. Rosseinsky. - Weinheim ; New York ; Basel ; Cambridge ; Tokyo : VCH, 1995 ISBN 3-527-29063-X

NE: Mortimer, Roger J .:; Rosseinsky, David R .:

© VCH Verlagsgesellschaft mbH. D-69451 Weinheim (Federal Republic of Germany), 1995 Printed on acid-free and chlorine-free paper.

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printing: betz-druck gmbh, D-64291 Darmstadt. Cover design: Graphik & Text Studio Zettlmeier-Kammerer, D-93164 Laaber-Waldetzenberg.

Printed in the Federal Republic of Germany.

#### Preface

The field of electrochromism has changed much since the idea of an electrochromic display was first suggested in 1969. The introduction of liquid-crystal displays has necessitated a sharp change of focus. The applications originally envisaged for electrochromic devices (ECDs) usually relied on a rapid response in for example high definition television or optical computers. Applications at present considered suitable for ECDs are large-area displays, such as notice boards for traffic or for transport termini, the electrochrome being utilised against a reflective background; other light modulators act in a transmissive sense and will comprise, for example, a thin electrochromic device covering one side of a whole window. This latter aim, the construction of the so-called 'smart window', is a major technological goal.

There have been many previous reviews of electrochromism. Such works either tackle the topic from a more-or-less applied angle, for example covering one type of application, or concentrating on a single electrochrome. There has not hitherto been a monograph dedicated solely to the whole subject of electrochromism. The present work, while not intended to include all citations – there are many thousand – is the first to give a complete overview of the whole subject. Because of the size of the literature, in compiling this monograph almost arbitrary selections were required, and a cut-off date of late summer 1994 became inevitable. In our view, any treatment of electrochromism must include the underlying science, some of which might, at first sight, be considered rather special: however, such basic treatments have generally proven invaluable in the understanding of electrochromic phenomena. We have also, where suitable, included 'hands on' detail not found elsewhere, which may be useful to those entering the field.

Most of the science underlying electrochromism here is presented from a chemical viewpoint since electrochromism is an electrochemically-induced colour change. We have, however, endeavoured to make the exposition accessible to physicists or materials scientists and engineers. Thus, most chapters contain a few references imparting general background information if needed, but we have nevertheless probably erred by assuming either too little or too much prior knowledge.

This work is divided into three sections. Part I provides a general background for readers perhaps unfamiliar with the field. We include elementary definitions such as that for colouration efficiency, which are well known to the electrochromism community but for which an actual definition is rather hard to come by. Some basic electrochemical theory is included also. Part I concludes with a section on the construction of ECDs.

Part II describes both inorganic and organic chemical systems being considered at present for use in electrochromic applications. Chemical systems are presented approximately alphabetically.

Part III presents recent elaborations of electrochromism in some present-day research. The elaborations comprise polyelectrochromism and photoelectrochromism (including a discussion of electrochromic printing). The production of a work such as this relies on the help and goodwill of many, and we wish to acknowledge the help and support of the following. First, we thank Dr Ute Anton of VCH for her editorial expertise and advice. We thank Manju Merjara of the Chemistry Department, MMU, for typing some of the original manuscript.

Besides providing extensive computer know-how and type-setting expertise, Joe Russell of the MMU helped reproduce many of the figures.

Figures have been reproduced by kind permission of the copyright holders, as follows: Butterworths (Fig. 4.4), Chapman and Hall (Fig. 12.1), The Electrochemical Society (Fig. 4.1), Dr E.R. Howells (Fig. 8.5), Elsevier (4.3 and 8.3), The Royal Society of Chemistry (Figs. 6.2, 8.2, 12.4 and 12.5) and the Society of Applied Spectroscopy (for Fig. 8.4).

We have had many helpful and stimulating discussions with other workers in the electrochromism community, in particular with Dr John Duffy, Dr Richard Hann, Professor Malcolm Ingram, the late Dr J. Brian Jackson, and Dr Robert Janes, Dr Poopathy Kathirgamanathan and Dr Andrew Soutar.

While the above have helped in producing this book, any errors remaining are ours.

| P.M.S.M.   | R.J.M.       | D.R.R. |
|------------|--------------|--------|
| Manchester | Loughborough | Exeter |

1995



**Paul M. S. Monk** is a lecturer in Physical Chemistry at the Manchester Metropolitan University. In 1990, he received his Ph.D. in chemistry from the University of Exeter having studied the electrochemistry of bipyridilium redox species. He then held a post-doctoral fellowship at the University of Aberdeen (1989–1991) performing research on rapidresponse electrochromic devices based on tungstentrioxide. His present research interests are mixed-metal oxide thin films for electrochromic purposes, novel (chiral) polyanilines and the effects of charge-transfer complexation on electron-transfer rates.



**Roger J. Mortimer** is a lecturer in Physical Chemistry at Loughborough University of Technology. In 1980, he received his Ph.D. from Imperial College having studied heterogeneous catalysis at the solid-liquid interface. He then held a post-doctoral fellowship at the California Institute of Technology performing research on polymer-modified electrodes. After a demonstratorship at the University of Exeter and lecturing positions in Cambridge and Sheffield, he took up his present post in 1989. His present research interests include electrochromism, electrochemical and optical sensors, and electrocatalysts for fuel cells. David R. Rosseinsky has been reader in Physical Chemistry at the University of Exeter for as long as he can remember ('in the midst of life, we are in Exeter'). After M.Sc. research (Rhodes, South Africa) on electrolyte conductivities, a Ph.D. (Manchester) on aquo ion electron transfer, and a postdoctorate (University of Pennsylvania) effecting unintended siloxane-based explosions, two year's lecturing slog at the University of the Witwatersrand, South Africa, followed. Eyed up by Exeter during a further 3 year's postdoc (I.C.I. and Leverhulme), he was ultimately deemed fit for human consumption and appointed lecturer. He employs electrochemical probes in a wide variety of charge transfer processes: electron transfer rates in mixed valent solids, electrochemical photovoltaism, electrochromism, colloid electrodeposition, electropolymerisation, zinc-oxide electrophotography, composite electrostatic-charge acquisition, and high-temperature superconductors probed by liquid-phase electrochemistry around 100 K.



# Contents

| List of Tables            | XV  |
|---------------------------|-----|
| Symbols and Abbreviations | IXX |

# Part I Introduction

| 1         | Electrochromism: Terminology, Scope, Colouration                     |    |
|-----------|----------------------------------------------------------------------|----|
| 1.1       | What is Electrochromism?                                             | 3  |
| 1.2       | Existing Technologies                                                | 4  |
| 1.3       | Electrochromic Displays and Shutters                                 | 5  |
| 1.4       | Terminology of Electrochromism                                       | 8  |
| 1.4.1     | Primary and Secondary Electrochromism                                | 8  |
| 1.4.2     | Colour and Contrast Ratio                                            | 9  |
| 1.4.3     | Colouration Efficiency                                               | 14 |
| 1.4.4     | Write-erase Efficiency                                               | 16 |
| 1.4.5     | Response Time                                                        | 17 |
| 1.4.6     | Cycle Life                                                           | 17 |
| 1.4.7     | The Insertion Coefficient                                            | 18 |
| 1.4.8     | ECD Appearance                                                       | 18 |
| Reference | xes                                                                  | 18 |
|           |                                                                      |    |
| 2         | Electrochromic Systems: Electrochemistry, Kinetics and               |    |
|           | Mechanism                                                            |    |
| 2.1       | Introduction                                                         | 22 |
| 2.2       | Equilibrium Electrochemistry                                         | 22 |
| 2.3       | Electrochromic Operation Exemplified                                 | 25 |
| 2.4       | Voltammetry                                                          | 28 |
| 2.4.1     | Introduction to Dynamic Electrochemistry:                            |    |
|           | The Three-Electrode Configuration                                    | 28 |
| 2.4.2     | The Use of Voltammetry; Cyclic Voltammetry                           | 30 |
| 2.5       | Charge Transfer and Charge Transport                                 | 32 |
| 2.5.1     | The Kinetics of Electron Transfer                                    | 32 |
| 2.5.2     | The Use of Semiconducting Electrodes                                 | 33 |
| 2.5.3     | The Rate of Mass Transport                                           | 33 |
| 2.5.3.1   | Migration                                                            | 34 |
| 2.5.3.2   | Diffusion                                                            | 34 |
| 2.6       | AC or RF Electrochemistry: Impedance or Complex Permittivity Studies | 36 |
| 2.7       | Electrodes: Classification of Electrochrome Type                     | 37 |
| 2.7.1     | Type 1 Electrochromes: Always in Solution                            | 37 |

| 2.7.2   | Type 2 Electrochromes: Solution-to-Solid                         | 38 |
|---------|------------------------------------------------------------------|----|
| 2.7.3   | Type 3 Electrochromes: All-Solid Systems                         | 38 |
| Referen | nces                                                             | 40 |
| 3       | Construction of Electrochromic Devices                           |    |
| 3.1     | Introduction                                                     | 42 |
| 3.2     | All-Solid Cells with Reflective Operation                        | 42 |
| 3.3     | All-Solid Cells with Transmissive Operation                      | 43 |
| 3.4     | Solid Electrolytes                                               | 44 |
| 3.5     | The Preparation of Solid Electrochromic Films                    | 47 |
| 3.6     | Liquid Electrolytes                                              | 49 |
| 3.7     | Self-Darkening Electrochromic Rearview Mirror for Cars Employing |    |
|         | Type 1 (Solution-phase) Electrochromes                           | 49 |
| Refere  |                                                                  | 50 |
|         |                                                                  |    |

#### Part II Electrochromic Systems

| General Introduction | 57 |
|----------------------|----|
| References           | 58 |

## A Inorganic Systems

| 4     | Metal Oxides                                         |    |
|-------|------------------------------------------------------|----|
| 4.1   | Introduction – Colour in Mixed-valence Systems       | 59 |
| 4.2   | Cobalt Oxide                                         | 60 |
| 4.3   | Indium Tin Oxide                                     | 61 |
| 4.4   | Iridium Oxide                                        | 62 |
| 4.5   | Molybdenum Trioxide                                  | 64 |
| 4.6   | Nickel Oxide                                         | 65 |
| 4.7   | Tungsten Trioxide                                    | 67 |
| 4.7.1 | Operation of WO <sub>3</sub> ECDs                    | 67 |
| 4.7.2 | Structure, Preparation and Diffusion Characteristics | 69 |
| 4.7.3 | Spectroscopic and Optical Effects                    | 71 |
| 4.8   | Vanadium Pentoxide                                   | 74 |
| 4.9   | Other Metal Oxides                                   | 76 |
| 4.9.1 | Cerium Oxide                                         | 76 |
| 4.9.2 | Iron Oxide                                           | 76 |
| 4.9.3 | Manganese Oxide                                      | 76 |
| 4.9.4 | Niobium Pentoxide                                    | 77 |
| 4.9.5 | Palladium Oxide                                      | 77 |
| 4.9.6 | Rhodium Oxide                                        | 77 |
|       |                                                      |    |

| 4.9.7   | Ruthenium Dioxide                                             | 78  |
|---------|---------------------------------------------------------------|-----|
| 4.9.8   | Titanium Oxide                                                | 78  |
| 4.10    | Mixed Metal Oxides                                            | 78  |
| 4.10.1  | Cobalt Oxide Mixtures                                         | 79  |
| 4.10.2  | Molybdenum Trioxide Mixtures                                  | 79  |
| 4.10.3  | Nickel Oxide Mixtures                                         | 80  |
| 4.10.4  | Tungsten Trioxide Mixtures                                    | 80  |
| 4.10.5  | Vanadium Oxide Mixtures                                       | 81  |
| 4.10.6  | Miscellaneous Metal Oxide Mixtures                            | 81  |
| 4.10.7  | Ternary Oxide Mixtures                                        | 81  |
| 4.11    | Metal Oxide – Organic Mixtures                                | 82  |
| Referen | ces                                                           | 82  |
| 5       | Phthalocyanine Compounds                                      |     |
| 5.1     | Introduction                                                  | 93  |
| 5.2     | Lutetium bis(Phthalocyanine)                                  | 93  |
| 5.3     | Other Metal Phthalocyanines                                   | 96  |
| 5.4     | Related Species                                               | 97  |
| Referen | ces                                                           | 98  |
| 6       | Prussian Blue: Its Systems and Analogues                      |     |
| 6.1     | Introduction: Historical and Bulk Properties                  | 101 |
| 6.2     | Preparation of Prussian Blue Thin Films                       | 102 |
| 6.3     | Prussian Blue Electrochromic Films:                           |     |
|         | Cyclic voltammetry, In Situ Spectroscopy and Characterisation | 103 |
| 6.4     | Prussian Blue ECDs                                            | 107 |
| 6.4.1   | ECDs with Prussian Blue as Sole Electrochrome                 | 107 |
| 6.4.2   | Prussian-Blue – Tungsten-Trioxide ECDs                        | 109 |
| 6.4.3   | Prussian-Blue – Polyaniline ECDs                              | 111 |
| 6.4.4   | A Prussian-Blue – Ytterbium Bis(phthalocyanine) ECD           | 112 |
| 6.5     | Prussian Blue Analogues                                       | 112 |
| 6.5.1   | Ruthenium Purple and Osmium Purple                            | 112 |
| 6.5.2   | Vanadium Hexacyanoferrate                                     | 113 |
| 6.5.3   | Nickel Hexacyanoferrate                                       | 113 |
| 6.5.4   | Copper Hexacyanoferrate                                       | 114 |
| 6.5.5   | Miscellaneous Metal Hexacyanometallates                       | 115 |
| 6.5.6   | Mixed Metal Hexacyanoferrates                                 | 115 |
| Referen | ces                                                           | 116 |

References

#### 7 Other Inorganic Systems

| •          |                                  |     |
|------------|----------------------------------|-----|
| 7.1        | Deposition of Metals             | 120 |
| 7.2        | Deposition of Colloidal Material | 120 |
| 7.3        | Intercalation Layers             | 120 |
| 7.4        | Inclusion and Polymetric Systems | 121 |
| 7.5        | Miscellaneous                    | 122 |
| References |                                  | 122 |

#### **B** Organic Systems

#### 8 **Bipyridilium** Systems 124 8.1 Introduction 125 8.2 **Bipyridilium Redox Chemistry** 127 **Bipyridilium Species for Inclusion Within ECDs** 8.3 127 Derivatised Electrodes for ECD Inclusion 8.3.1 129 8.3.2 Immobilised Bipyridilium Electrochromes for ECD Inclusion Soluble-to-Insoluble Bipyridilium Electrochromes for ECD Inclusion 129 8.3.3 129 8.3.3.1 Devices 129 8.3.3.2 The Effect of the Electrode Substrate 8.3.3.3 The Effect of the Counter Ion 131 131 8.3.3.4 Kinetics and Mechanism 135 8.3.3.5 The Write-erase Efficiency 138 **Recent Developments** 8.4 138 8.4.1 Modulated Light Scattering 138 8.4.2 **Pulsed Potentials** 138 8.4.3 Polyelectrochromism 139 References

#### 9 Electroactive Conducting Polymers

| 9.1   | Introduction                                 | 143 |
|-------|----------------------------------------------|-----|
| 9.2   | Polyaniline Electrochromes                   | 144 |
| 9.2.1 | Polymers Derived from Substituted Anilines   | 147 |
| 9.2.2 | Polymers Derived from Other Aromatic Amines  | 148 |
| 9.2.3 | Composite Polyaniline Materials              | 148 |
| 9.3   | Polypyrrole Electrochromes                   | 149 |
| 9.3.1 | Polymers Derived from Substituted Pyrroles   | 151 |
| 9.3.2 | Polymers Derived from Pyrrole Analogues      | 152 |
| 9.3.3 | Composite Polypyrrole Electrochromes         | 152 |
| 9.4   | Polythiophene Electrochromes                 | 153 |
| 9.4.1 | Polymers Derived from Thiophene              | 153 |
| 9.4.2 | Polymers Derived from Substituted Thiophenes | 154 |

| 9.4.3      | Polymers Derived from Oligothiophenes            | 157 |
|------------|--------------------------------------------------|-----|
| 9.4.4      | Polymers Derived from bis(2-Thienyl) Species     | 160 |
| 9.4.5      | Polymers Derived from Fused-ring Thiophenes      | 162 |
| 9.4.6      | Polythiophene Copolymers and Composite Materials | 163 |
| 9.5        | Poly(carbazole)                                  | 164 |
| 9.6        | Miscellaneous Polymeric Electrochromes           | 164 |
| 9.7        | Recent Developments                              | 165 |
| References |                                                  | 165 |

#### 10 Other Organic Electrochromes

| Monomeric Species                              | 172                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carbazoles                                     | 172                                                                                                                                                                                                                                                                                                         |
| Methoxybiphenyl Compounds                      | 172                                                                                                                                                                                                                                                                                                         |
| Quinones                                       | 175                                                                                                                                                                                                                                                                                                         |
| Diphenylamine and Phenylene Diamines           | 176                                                                                                                                                                                                                                                                                                         |
| Miscellaneous Monomeric Electrochromes         | 177                                                                                                                                                                                                                                                                                                         |
| Tethered Electrochromic Species                | 177                                                                                                                                                                                                                                                                                                         |
| Pyrazolines                                    | 177                                                                                                                                                                                                                                                                                                         |
| Tetracyanoquinonedimethane (TCNQ)              | 178                                                                                                                                                                                                                                                                                                         |
| Tetrathiafulvalene (TTF)                       | 179                                                                                                                                                                                                                                                                                                         |
| Electrochromes Immobilised by Viscous Solvents | 180                                                                                                                                                                                                                                                                                                         |
| ces                                            | 181                                                                                                                                                                                                                                                                                                         |
|                                                | Carbazoles<br>Methox ybiphenyl Compounds<br>Quinones<br>Diphenylamine and Phenylene Diamines<br>Miscellaneous Monomeric Electrochromes<br>Tethered Electrochromic Species<br>Pyrazolines<br>Tetracyanoquinonedimethane (TCNQ)<br>Tetrathiafulvalene (TTF)<br>Electrochromes Immobilised by Viscous Solvents |

### Part III Elaborations

| 11             | Polyelectrochromism                                    |     |
|----------------|--------------------------------------------------------|-----|
| 11.1           | Introduction                                           | 185 |
| 11.2           | Studies of Polyelectrochromic Systems                  | 186 |
| 11.2.1         | Bipyridiliums                                          | 186 |
| 11.2.2         | Polybipyridyl Systems                                  | 186 |
| 11.2.3         | Metal Hexacyanometallates                              | 188 |
| <b>₽</b> 1.2.4 | Phthalocyanines                                        | 189 |
| 11.2.5         | Tris(dicarboxyester-2,2'-bipyridine) Ruthenium Systems | 189 |
| 11.2.6         | Mixed Systems                                          | 189 |
| Referen        | ces                                                    | 191 |
| 12             | Photoelectrochromism and Electrochromic Printing       |     |
| 12.1           | Introduction and Definitions                           | 192 |
| 12.1.1         | Mode of Operation                                      | 192 |

| 12.1.1 | Mode of Operation | 192 |
|--------|-------------------|-----|
| 12.1.2 | Direction of Beam | 192 |
| 12.2   | Device Types      | 192 |

| 12.2.1     | Devices Containing a Photocell                     | 192 |
|------------|----------------------------------------------------|-----|
| 12.2.2     | Devices Containing Photoconductive Layers          | 193 |
| 12.2.3     | Cells Containing Photovoltaic Materials            | 195 |
| 12.2.4     | Cells Containing Photogalvanic Materials           | 195 |
| 12.2.5     | Electrochemically Fixed Photochromic Systems       | 196 |
| 12.3       | Electrochromic Printing or Electrochromography     | 198 |
| 12.3.1     | Introduction: Monochrome Printing                  | 198 |
| 12.3.2     | Polyelectrochromic Printing: Single Electrochromes | 199 |
| 12.3.3     | Four-colour Printing with Mixed Electrochromes     | 199 |
| References |                                                    | 200 |
|            |                                                    |     |

#### Index

203

### List of Tables

| Table 1.1           Wavelength and Energy Ranges for Perceived Colours of Emitted Light                                                                                                                  | 9        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Table 1.2Values of the Colouration Efficiency $\eta$ for Thin Films of Metal Oxide Electrochrome                                                                                                         | e 15     |
| Table 2.1         Diffusion Coefficients D of Various Electrochromic Species                                                                                                                             | 39       |
| Table 3.1         Solid or Solid-like Organic Electrolytes for Use in Electrochromic Devices                                                                                                             | 45       |
| Table 3.2         3.2           Solid Inorganic Electrolytes for Use in Electrochromic Devices                                                                                                           | 46       |
| <ul> <li>Table 4.1</li> <li>(a) Diffusion Coefficients D of Lithium Ions in WO<sub>3</sub>, as Li<sub>x</sub>WO<sub>3</sub>.</li> <li>(b) Diffusion Coefficients of Protons in WO<sub>3</sub></li> </ul> | 70<br>70 |
| Table 5.1         Colours, Wavelength Maxima and Suggested Composition of Lutetium         bis(phthalocyanine) Redox States as Solid Films                                                               | 95       |
| Table 5.2         Colours, Wavelength Maxima and Suggested Composition of Lutetium         bis(phthalocyanine) Redox States in Solution                                                                  | 95       |
| Table 6.1           A Partial List of Tungsten-oxide-PB Complementary ECDs                                                                                                                               | 110      |
| Table         8.1           Optical Data for Some Bipyridilium Radical Cations                                                                                                                           | 126      |
| Table       8.2         Symmetrical Viologens: The Effect of Varying the Alkyl Chain Length on Radical         Cation Film Stability                                                                     | 130      |
| Table       8.3         The Effect of Supporting Electrolyte Anion, and of Electrode Substrate, on         the Reduction Potentials of Heptyl Viologen                                                   | 132      |

| Table 9.1Colours, Wavelength Maxima and Potential Range in Which PolyanilineRedox Species are Observed                          | 146 |
|---------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 9.2Wavelength Maxima of the Base Forms of Poly(Substituted Aniline)in DMF Solution                                        | 147 |
| Table 9.3         Examples of Composite Electrochromes Based on Polyaniline or Poly(o-phenylenediamine)                         | 149 |
| Table 9.4           Properties of Pyrrole-based Polymers Formed Electrochemically from MeCN solution                            |     |
| (a) Electrochemical Properties from CVs Obtained at a Scan Rate of 100 mV s <sup><math>-1</math></sup>                          | 151 |
| (b) Electrochromic Properties (TBAT in MeCN)                                                                                    | 151 |
| Table 9.5         Examples of Composite Electrochromes Based on Polypyrrole or Poly(dithienopyrrole)                            | 152 |
| Table 9.6Polythiophenes: The Effect of Anion on Wavelength Maxima and<br>Oxidation Potential                                    | 154 |
| Table 9.7           Properties of Thiophene-based Polymers Formed Electrochemically from MeCN Solution                          |     |
| (a) Electrochemical Properties at a Scan Rate of 100 mV s <sup>-1</sup>                                                         | 155 |
| (b) Electrochromic Properties (TEAT/MeCN)                                                                                       | 155 |
| Table 9.8Effect of Chain Length on Optical and Electrochemical Properties ofPolymers Derived from 3-Alkylsubstituted Thiophenes | 156 |
| Table 9.9Wavelength Maxima and Oxidation Potentials of Polymers Derived fromOligothiophenes                                     | 157 |
| Table 9.10           Colours of Polymers Derived from Oligomers Based on 3-Methylthiophene                                      | 158 |
|                                                                                                                                 |     |

| Table 9.11         Effect of the Dihedral Angle $\phi$ : Spectroscopic and Electrochemical         Characteristics of Poly(oligothiophene)s                                    | 159 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 9.12         The Effect of Varying the Heteroatom within a Polymer Derived from         2-Thieno-(2'-heterocycle)                                                        | 160 |
| Table 9.13         9.13           Examples of ECDs Utilising Mixed Organic–Inorganic Electrochromes                                                                            | 165 |
| Table 10.1           Colours and Electrode Potentials of Polymers derived from various Carbazoles in           MeCN solution                                                   | 172 |
| Table 10.2Colours, CV Peak Potentials and Spectral Properties for MethoxybiphenylSpecies Forming Solid Radical-Cation Films on Reduction in MeCN Solutions                     | 174 |
| Table 10.3Colours, CV Peak Potentials and Spectral Properties forMethoxybiphenyl Species Forming Only Soluble Radical-Cation onReduction in dichloromethane-TFA (5:1) solution | 174 |
| Table 10.4       Quinone Systems: Film-forming Properties, Colours, Wavelength Maxima, and Reduction Potentials                                                                | 175 |
| Table 10.5Half-Wave Potentials, Colours and Response Times $\tau$ for Tethered PyrazolineSpecies in MeCN containing 0.1 M TEAP electrolyte                                     | 178 |
| Table 10.6         Spectroscopic Data for TCNQ Redox Species in MeCN solution                                                                                                  | 178 |
| Table 10.7Half-wave Potentials, Colours, Wavelength Maxima and Response Times $\tau$ forTethered TTF Species                                                                   | 179 |
| Table 10.8         Spectroscopic Data for TTF Redox Species in MeCN Solution                                                                                                   | 180 |

# Symbols and Abbreviations

Symbols

| Symbols                                                    |                                                                               |
|------------------------------------------------------------|-------------------------------------------------------------------------------|
| Α                                                          | area of electrode                                                             |
| Α                                                          | absorbance ('optical density')                                                |
| Α                                                          | ampere                                                                        |
| С                                                          | Coulomb                                                                       |
| с                                                          | concentration of dissolved species                                            |
| CR                                                         | contrast ratio                                                                |
| D                                                          | diffusion coefficient; chemical diffusion coefficient                         |
| ( E                                                        | potential of electrode (either impressed potential or zero-current potential) |
| Eo                                                         | standard electrode potential                                                  |
| $\int E_{OC}$                                              | open-circuit (zero current) potential                                         |
| $\begin{cases} E_{OC} \\ E_{1/2} \\ E_{pa(m)} \end{cases}$ | half-wave potential                                                           |
| $E_{pa(m)}$                                                | potential of <i>m</i> th anodic peak in CV                                    |
| $C_{E_{pc(m)}}$                                            | potential of mth cathodic peak in CV                                          |
| F                                                          | Faraday constant                                                              |
| h                                                          | Planck constant                                                               |
| i                                                          | current                                                                       |
| Ι                                                          | intensity of transmitted light                                                |
| j                                                          | flux                                                                          |
| J                                                          | Joule                                                                         |
| k                                                          | rate constant                                                                 |
| k <sub>B</sub>                                             | Boltzmann constant                                                            |
| K                                                          | equilibrium constant                                                          |
| K <sub>sp</sub>                                            | solubility product                                                            |
| l                                                          | thickness                                                                     |
| L                                                          | the Avogadro constant                                                         |
| n                                                          | number of electrons involved in electron-transfer reaction                    |
| п                                                          | as subscript – a number of groups or atoms in a formula                       |
| Q                                                          | charge per unit area                                                          |
| R                                                          | gas constant                                                                  |
| S                                                          | second                                                                        |
| Т                                                          | thermodynamic temperature                                                     |
| Т                                                          | transmittance                                                                 |
| μ                                                          | ionic mobility                                                                |
|                                                            |                                                                               |

| υ                | velocity of ion                                                         |
|------------------|-------------------------------------------------------------------------|
| v                | volt                                                                    |
| x                | (as subscript) a number, often fractional, of atoms (ions) in a formula |
| x                | (on par) a number, often fractional, of atoms (ions) in a reaction      |
| x                | insertion coefficient (consistent with the above)                       |
| y, z             | (used as x, preceding)                                                  |
| z                | charge number on ion                                                    |
| (M               | abbreviation for the units mol $dm^{-3}$ )                              |
| α                | electrochemical transfer coefficient (symmetry factor)                  |
| ſα               | linear absorption coefficient (for optical absorption by solid species) |
| ]ε               | extinction coefficient (molar absorptivity for species in solution)     |
| φ                | F/RT                                                                    |
| (n               | colouration efficiency                                                  |
| $\int \eta_0$    | overall colouration efficiency of electrochromic device                 |
| $\eta_p$         | colouration efficiency of primary electrochrome                         |
| $\zeta_{\eta_s}$ | colouration efficiency of secondary electrochrome                       |
| v                | scan rate in cyclic voltammetry                                         |
| v                | frequency of light                                                      |
| τ                | response time; timescale                                                |
| λ                | wavelength                                                              |
| Ω                | Ohm                                                                     |

#### Apparatus, Processes and Techniques

| Abs  | absorbance (optical density)         |
|------|--------------------------------------|
| AC   | alternating current                  |
| CE   | counter electrode                    |
| CRT  | cathode ray tube                     |
| CV   | cyclic voltammogram                  |
| CVD  | chemical vapour deposition           |
| СТ   | charge transfer                      |
| DC   | direct current                       |
| EBS  | electron beam sputtering             |
| EC   | electrochromic                       |
| ECD  | electrochromic device                |
| EDAX | energy dispersive analysis of X-rays |

| ESR  | electron-spin resonance                    |
|------|--------------------------------------------|
| ЕГ   | electron transfer                          |
| FTIR | Fourier-transform infra red                |
| IR   | infra red                                  |
| LCD  | liquid-crystal display                     |
| LED  | light-emitting diode                       |
| OTE  | optically-transparent electrode            |
| QCM  | quartz-crystal microbalance                |
| RE   | reference electrode                        |
| RF   | radio frequency                            |
| SCE  | saturated calomel electrode                |
| SEM  | scanning electron microscope or micrograph |
| SHE  | standard hydrogen electrode                |
| SIMS | secondary-ion mass spectrometry            |
| UV   | ultra violet                               |
| WE   | working electrode                          |
| XPS  | X-ray photoelectron spectroscopy           |
| XRD  | x-ray diffraction                          |
|      |                                            |

#### Materials

| anodically formed iridium oxide film<br>sputtered iridium oxide film |
|----------------------------------------------------------------------|
| 2-acrylamido-2-methylpropanesulphonic acid (polyAMPS is the derived  |
| polymer)                                                             |
| aquo ion                                                             |
| bipyridilium dication                                                |
| bipyridilium radical cation                                          |
| neutral bipyridilium-derived species                                 |
| cyanophenyl paraquat (1,1'-bis(p-cyanophenyl)-4,4'-bipyridilium)     |
| dimethylformamide                                                    |
| electron                                                             |
| ethanol                                                              |
| gaseous state [cf. (l) and (s)]                                      |
| glassy carbon                                                        |
| hexacyanoferrate                                                     |
|                                                                      |

|   | (HV   | hantel violance (1, 1) a diherter (1, 4) his widthing)       |
|---|-------|--------------------------------------------------------------|
|   | {     | heptyl viologen (1,1'- <i>n</i> -diheptyl-4,4'-bipyridilium) |
|   | (MV   | methyl viologen (1,1'-dimethyl-4,4'-bipyridilium)            |
|   | ITO   | indium tin oxide                                             |
|   | (1)   | liquid state [cf. (g) and (s)]                               |
|   | L     | ligand                                                       |
|   | М     | metal electrode; general metal or cation $M^+$ or $M^{Z+}$   |
|   | Me    | methyl                                                       |
|   | MeCN  | acetonitrile                                                 |
|   | MeOH  | methanol                                                     |
|   | MV    | methyl viologen (1,1'-dimethyl-4,4'-bipyridilium)            |
|   | n     | electron as negative charge carrier in solid                 |
|   | naph  | naphthalocyanine                                             |
|   | OP    | osmium purple (iron(III) hexacyano-osmate(II))               |
|   | р     | positive hole as charge carrier through solid                |
| ſ | PB    | Prussian blue                                                |
|   | s-PB  | 'soluble' Prussian blue                                      |
| J | i-PB  | 'insoluble' Prussian blue                                    |
| ٦ | PG    | Prussian green                                               |
|   | PW    | Prussian white                                               |
| l | -PX   | Prussian brown (yellow in thin-film form)                    |
|   | рс    | phthalocyanine                                               |
|   | PC    | propylene carbonate                                          |
|   | PEO   | poly(ethylene oxide)                                         |
|   | Ph    | phenyl                                                       |
|   | Pr    | propyl                                                       |
|   | PVP   | poly(vinyl pyrrolidone)                                      |
|   | Q     | quinone moiety                                               |
|   | R     | substituent                                                  |
|   | RP    | ruthenium purple (iron(III) hexacyanoruthenate(II))          |
|   | (s)   | solid state $[cf. (g) and (l)]$                              |
|   | SIROF | sputtered iridium oxide film                                 |
|   | TA    | thiazine                                                     |
|   | TEAP  | tetra-n-ethylammoniumperchlorate                             |
|   | TEAT  | tetra- <i>n</i> -ethylammonium tetrafluoroborate             |
|   | TPAP  | tetra-n-butylammonium perchlorate                            |
|   |       | · · ·····                                                    |

- TBATtetra-n-butylammonium tetrafluoroborateTCNQtetracyanoquinodimethaneTTFtetrathiafulvaleneTSpctetrasulphonated phthalocyanine
- X general anion