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The fate of a substance in the environment is determined by physical, chemical and 
biological processes. These processes take place simultaneously and are closely interlocked. 
Environmental systems do not conform with manmade distinctions between different 
branches of sciences. 

Therefore environmental fate modelling demands an interdisciplinary approach. This concerns 
not only interdisciplinarity between different disciplines such as soil physics, mathematics, 
soil chemistry and biology, but also interdisciplinarity within a discipline. Mathematics may 
serve as an example. Kinetic processes, if they are mediated by biological processes, are 
nonlinear. They are modelled by sets of nonlinear ordinary differential equations, which, in 
general, are not amenable to analytical solutions. The understanding of the dynamics of such 
equations is based on knowledge of dynamical systems theory and on numerical methods for 
obtaining approximate solutions. Coupling kinetics with transport leads to systems of partial 
differential equations. Furthermore, these processes are imbedded into a random environment. 
Soils are by no means homogeneous media. As a consequence variability itself has to be 
modeled by stochastic approaches based on modern geostatistical theory. All the methods 
mentioned above stem from different fields within the realm of mathematics. 

Models cannot be derived from first principles alone. Models summarize experimental 
knowledge at the abstract level of mathematics. Therefore, many experimental data are 
necessary at various stages of model development. In the beginning experimental knowledge 
guides us in the conception of models and in later stages, thoroughly designed experiments 
serve to identify model parameters and to validate models. Parameter estimation techniques 
both in ordinary and in partial differential equations are therefore necessary tools to provide 
the link between models and experiments. These techniques combine aspects of numerical 
mathematics and statistics. 

Model parameters such as sorption constants, degradation rates and diffusion coefficients are 
all closely related to soil properties. The translation of models across scales, from the 
laboratory scale to field and catchment scales, therefore demands first the mapping of geo- 
referenced soil information to model parameters. This is mediated by so-called pedotransfer 
functions. The link between spatial information and pesticide environmental fate models can 
best be achieved in the frame of a geographical information system. 

If processes are only vaguely known, fuzzy-theory provides a promising new concept to deal 
with uncertainty. At the end of the book, a simple fuzzy-expert system is presented apt to 
predict decay modes and half-lives of a herbicide. 

It is the objective of this book, to bring together many different aspects of environmental fate 
modelling of pesticides comprising such diverse subjects as 

- linear compartment theory 
- nonlinear biological degradation models 
- biological temperature and humidity response of degradation 
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- herbicide dynamics, i.e. modelling toxicity 
- parameter identification in ordinary and partial differential equations 
- parameter estimation in sparse data situations 
- coupled reaction and diffusion processes in form of coupled 

- coupling of physical and biological processes 
- transport processes in random environments 
- pedotransfer functions 
- coupling of random soil parameter fields and reactive transport models 
- the translation of models across scales 
- coupling of geographical information systems with models 
- fuzzy approaches 

partial differential equations 

This book has several origins. Part of the material is based on a course on environmental 
modelling for environmental science students of the new course "Geoecology" at 
Braunschweig University. More advanced parts and many experimental data are due to the 
activities of the Collaborative Research Program 179 "Water and Matter Dynamics in Agro- 
Ecosystems", which was established in 1986 at the Technical University of Braunschweig, 
Germany, sponsored by the Deutsche Forschungsgemeinschaft. Part of the research program 
was the development and validation of physically, chemically and biologically based transport 
and reaction models for pesticides in soils. The subprojects "Integrated Site and Catchment 
Models", "The Dynamics of Herbicides", "Investigations on Pesticide Residues and 
corresponding Metabolites" deserve special mention. Furthermore, the research was sponsored 
by BASF, where several kinetic studies were carried out by PhD students. 
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1 Introduction 

Environmental Fate of Pesticides 

If one regards the environmental fate of a substance such as a pesticide one is intrigued by 
the number of interacting processes. Let us follow a pesticide in the plant soil system after 
spraying. Fig. 1.1 depicts the main processes. Before it reaches the soil, the substance may 
undergo decay by photodecomposition, it may be transported in the air and it may adsorb to 
plant leaves. Once it enters the soil, it is subject to various transformation processes. It may 
decay by a simple chemical process, e.g. by hydrolysis. Most important, it may be 
transformed by biochemical reactions mediated by microorganisms. These reactions are called 
metabolic if microorganisms are able to use the substance as C-source, otherwise they are 
called cometabolic. The latter notation expresses the fact that degradation is connected to 
microbial activity for instance by the release of hydrolytic enzymes. Degradation processes 
mostly take place in the liquid phase. In the soil the substance partitions between the liquid 
phase, the solid phase and the gaseous phase. Furthermore it is sorbed to binding sites with 
different strength of binding. 

Volatillsatbn 
Photodecomposiuon 

I v S L  I Runoff 

Root 
zone 

, Zoneof high 
Mologlcal acltvity 

Plough pan 

&horizon 

Fig. 1.1: Main processes in the plant soil system. 



2 1 Introduction 

Solute transport through soil is mediated by water flow and is strongly influenced by solute 
sorption. To complicate matters, soil structures are heterogeneous. There are wormholes, 
cracks and complex soil structures caused by e.g. glacial processes (cf. Fig. 1.2) giving rise 
to preferential flow facilitating the transport of pollutants into the subsoil. All these processes 
are embedded in a spatio-temporal hierarchy (cf. Tabs. 1.1 and 1.2). If one considers all these 
processes in detail it does not seem feasible to devise mathematical models able to cope with 
this sort of complexity. However, the experience of systems at the laboratory scale - 
continuously stirred reactors, soil columns and lysimeters - show that in spite of this apparent 
complexity decay curves and breakthrough curves can well be described by mathematical 
models with different degree of sophistication. 

Fig. 1.2: Preferential flow paths in a highly variable soil of a push moraine. The flow region is colored 
by Rhodamine applied during a tracer experiment. 
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TEMPERATURE 
1:. \ .. ... 10% XZO'C X 30% 

~ ~~ 

Simple Mathematical Models 

Notations 

Y : concentration [m31 
yo : initial concentration [ m 3 1  
t : time [TI 
T 
k : rate constant [1/T] 
R 
AE : activation energy [J/mol] 

: temperature ["C, resp. K] 

: gas constant = 8.314 JK-' mol" 

The simplest kinetics encountered is the mono-exponential decay with an Arrhenius law for 
the dependence of the rate constant on temperature. Figure 1.3 shows decay curves for 
several temperature values obtained in the laboratory. 

0.6 - 

g 
K 
5 0.4- 
W 
0 z 

0.2 - 
8 

' . .  . '.. , 

.*. . . . , 

0 20 40 60 80 

TIME [day.] 

Fig 1.3: Decay curves for several temperature values obtained in the laboratory. 

Assuming that the rate of decay is proportional to the amount of pesticide present the 
adequate model in differential form is 

= - k y  with y ( t - 0 )  = yo dY - 
dt 

which is easily integrated to yield (cf. section 2.1) 

- k t  
Y ( t )  = Yoe 

The Arrhenius law establishes the following dependence of the rate constant k on 
temperature T 

- A E  
R T  
- 

k ( T )  = koe 



4 1 Introduction 

This is one of the simplest models. There are no nonlinear effects such as lag times or other 
forms of non-mono-exponential kinetics. If one wants to apply this model to time varying 
temperatures T(t), one has to start from the underlying differential equation Eq. (1.1) 
introducing a time dependent rate constant: 

- dY = - k(T( t ) ) y  with y ( t=O)  = yo ( 1.4) 
dt 

Integration of this differential equation yields (cf. section 2.1) 

j - k ( T ( l ) d r  

Y ( 0  = YoeO 

This example demonstrates, that it is possible to apply a model, which has been derived from 
simple experimental conditions, to a more complex situation. However, care has to be taken, 
if one is leaving the range of those experimental conditions which served to establish the 
temperature law. If degradation is mediated by microorganisms, the validity of the Arrhenius 
law is confined to only a small temperature range (cf. section 3.4.1). 

However, simple mono-exponential models do not always apply. Frequently, one is faced 
with significant deviations from this simple kinetic behavior due to nonlinear effects at the 
microbial level. Figure 1.4 shows decay curves of 2,4-D (2,4-dichlorophenoxyacetic acid), 
which obviously cannot be described by a mono-exponential model, because it is not capable 
of simulating lag-phases. Effects like this pose a challenge to model builders and render 
environmental fate models interesting from the mathematical point of view. 

F 
S 
z 
0 

a 

5 
E 
8 
f 

Ly 
0 
2 

0 

60 
SOIL 

Moot8 H Oxbow X Molfott 

10 - 

0 10 20 30 40 

TIME [daya] 

Fig. 1.4: Decay curves of 2,4-D. This example will be discussed in section 4.4. 

Spatial and Temporal Scales 

Once released pesticides become part of agricultural ecosystems. Therefore it is important to 
study the scales involved in agricultural ecosystems first and then to see how pesticides fit 
into this scheme. Table 1.1 summarizes some basic processes in an agricultural ecosystem 
and their characteristic times. 
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Process 

enzymatic reactions, e.g. 
the hexo-kinase reaction 

growth of a microbial 
population 

nitrification and 
denitrification 

short-term population 
dynamics of pests and 
diseases 

long-term population 
dynamics of pests and 
diseases 

crop growth 

long-term population- 
dynamics of weeds 

water transport in the soil 

matter transport and 
degradation in the 
unsaturated zone 

evolutionary processes 
induced by agriculture: 
enhanced biodegradation of 
pesticides, emergence of 
resistance 

change in biodiversity, 
dying back of species, 
immigration of species 
(e .g. weeds) 

Tab. 1.1: Processes in (agricultural) ecosystems and their characteristic times. 

State variables Characteristic time 

glucose (substrate) and minutes 
glucose-6-phosphate 
(product) 

biomass in C units, 
N-content, activity 

NHq', NOg-, N20, N2, 
microbial activity 

density of eggs, larvae and 
adults 2 - 7 weeks 

30 minutes 

1 day - several weeks 

1 week (eggs) 

(adults) 

period of crop rotations, density of eggs, larvae and 
adults several years 

biomass of shoot and root, 
N-content, leaf area index, 
yield 

seedbank, density 

several weeks 

vegetation period to years 

1 h to several days 

weeks to several years 

water content, water 
potential 

concentration in liquid, 
solid and gaseous phase 

biodegradation rates, 
response to pesticides 

-1 to 10 years 

number and abundance of 
species 

-1 to several 100  years 

In dealing with pesticides one has to consider in addition various levels of experimentation. 
Following Blackburn (1989) one can distinguish the continuously stirred tank reactor level, 
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the column reactor level, the field-scale and last the catchment or aquifer-scale. It is 
important to note that there are long-term processes associated with periodic applications of 
pesticides at the evolutionary level of microbial populations and the target populations. 
Enhanced biodegradation has been frequently observed, although the molecular and genetic 
mechanisms for this effect are still being investigated. Figure 1.5 shows enhanced 
degradation of EPTC as measured by Obrigawitch et al. (1983). 

-MODEL 

DATA 

I I 
I I 

I I 

0 25 50 75 100 

TIME [days] 

Fig. 1.5: Degradation of EPTC as measured by Obrigawitch et al. (1983). This example will be 
duscussed in section 3.3.3. 

Target populations may eventually become resistant against the pesticide. These biological 
long-term effects pose a major problem for the conception of deterministic fate models. In 
chapter 3 some possible modeling approaches are presented. 

Dealing with Spatial Heterogeneity 

If one proceeds from the laboratory level to higher spatial scales one has to include the 
dependence of rate constants on soil properties. The spatial distribution of soil properties has 
both, a deterministic (soil type) and a random component. The random component has to be 
modeled explicitly. This implies that in addition to deterministic process models for 
laboratory conditions one has to devise stochastic models for the spatial distribution of 
parameters. In the simplest case these are probability density functions. If three-dimensional 
transport in a soil is considered, the models are spatial stochastic processes yielding 
realizations of parameter fields (cf. section 7.3). By combination of stochastic models for soil 
parameters and deterministic models for the kinetics one is able to tackle the problem of 
spatial heterogeneity. A key concept is the notion of ecotope. An ecotope is defined as the 
intersection of a pedological unit and the landuse pattern. At the catchment scale the 
landscape is composed of a large number of ecotopes each with characteristic soil properties 
(cf. section 7.5). Table 1.2 summarizes spatial scales and possible model approaches taking 
into account spatial heterogeneity. 
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Tab. 1.2: Model approaches on different scales. 

Soil Heterogeneity 

homogeneous 

Scale Model 

kinetic models in form of 
ordinary differential 
equations 

continuously stirred tank 
reactor 

large deterministic 
structures (several 
pedological units) with 
random soil properties 

column reactor 

pedotransfer functions plus 
stochastic model plus 
deterministic model 

field scale (intersection of 
pedological unit and 
landuse) 

continuously stirred tank 
reactor 

column reactor level 

experimental plot 

experimental field 

experimental farm 

catchment scale 

high temporal resolution 

high temporal resolution 

high temporal and spatial 
resolution interval scale level, low 

interval scale level 

interval scale level 

detailed measurements at 

spatial variability 

detailed measurements at 
interval and ordinal scale 
level, spatial variability 

detailed measurements at 
interval scale and ordinal 
scale level, increasing 
spatial variability 

reduced temporal and 
spatial resolution 

reduced temporal and 
spatial resolution 

only few measurements 

almost homogeneous 
microscale variation 

qualitative information 
(linguistic level, fuzzy 
information) 

kinetic models coupled 
with one-dimensional 
transport models in form 
of partial differential 
equations 

~~ ~ 

random soil properties stochastic models for soil 
properties plus 
deterministic model 

Tab. 1.3: Information hierarchy associated with spatial scales. 

Scale I Information Density I Information Quality 

ordinary farm, catchments 
and landscapes 
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Information Hierarchy 

The various approaches mentioned above to cope with spatial heterogeneity all demand large 
data bases. In order to identify the parameters of a spatial random process one has to collect 
data with a high spatial resolution by nesting grids of different mesh sizes. This method is 
referred to as "nested sampling design". Such extensive experimental efforts are only possible 
in the frame of a large collaborative research program. One can state that an information 
hierarchy is associated with the hierarchy of spatial scales. Table 1.3 illustrates the relation 
between spatial scales and information density and information quality. This is one of the 
major issues in environmental fate modelling: the translation of models across spatial and 
temporal scales in view of this information hierarchy. We will address this problem in 
chapter 7, but we admit that here many questions still remain open. 



2 Mathematical Preliminaries 

2.1 Ordinary Differential Equations 

In this book, ordinary differential equations are applied to the dynamics of chemical reaction 
systems. They are modeled by systems of simultaneous first-order differential equations of 
the general form 

The yi  are the state variables, which are unknown functions of time t. In our applications the 
y i  will denote concentrations of chemicals in various phases, e.g. liquid phase and solid phase 
pesticide concentrations. The system is of first order, because only the first derivative of the 
yi  with respect to time t appears in the equations. The system behavior is specified by the 
initial conditions of the state variables: 

y1( t=O)  = y10,  y2( t=O) = y20 , . . . I  y,( t=O) = YnO (2.2) 

The mathematical problem to solve the equation system (Eq. (2.1)) together with the initial 
conditions (Eq. (2.2)) is referred to as an initial value problem. In physical applications, one 
is frequently lead to second order differential equations, because the basic physical laws 
involve second derivatives with respect to time. E.g., the differential equation for the motion 
of a damped mass-spring system is 

(2.3) d 2 x  dx 

d t 2  dt 
rn- + r -  + k x  = O  

Here, x means the displacement of the mass, m the mass, r the coefficient of friction and k 
the spring constant. However, it is always possible to write a higher order equation as a 
system of coupled first-order equations. Consider the above example. By the introduction of 
the auxiliary variable v = dx/dt, which has the meaning of a velocity, the first order equation 
is replaced by the system 
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A system is defined to be linear if the functions on the right hand side (r.h.s.) of Eq. (2.1) 
are all linear functions of the state variables y i .  The number of equations is referred to as the 
dimension of the system. The constants appearing in the equations, e.g. m, r and k in 
Eq. (2.3) are referred to as parameters. They reflect the material properties of the system to 
be modeled. We consider now simple first order systems, which are amenable to analytical 
solutions, i.e. solutions in closed form, by elementary methods. The simplest model of a 
chemical reaction is based on the assumption, that the reaction rate is proportional to the 
actual mass or concentration. 

- dy = - k y  
dt 

with y ( t = O )  = yo 

The negative sign of the r.h.s. means that a loss occurs because the rate of change is 
negative. This equation is linear. A famous example of a nonlinear equation is the differential 
equation of logistic growth. 

Population growth is limited by the parameter K, which is - in the context of population 
dynamics - referred to as environmental capacity. Both equations are of the general form 

where the parameter a is a constant. 

Method of Separation of Variables 

Equations of this type are solved by the method of separation of variables. This procedure 
implies the following steps. 

1. Step: separation of variables 

dY - = adt 
d Y )  

2. Step: integration 

Y t 

Y o  t0 
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3. Step: deriving the explicit form of the solution 

Y(t) = G-I[G(Yo) + a ( t  - ro>l (2.10) 

where G -' is the inverse function of G. In the following examples, ro is set equal to zero. 
For the initial value problem Eq. (2.5) these steps are: 
1. step: separation of variables 

dY - = - kdt 
Y 

(2.11) 

2. Step: integration 

(2.12) 

3. Step: deriving the explicit form of the solution 

ln(y) - In(y,) = - k r  

In the same way the solution of the initial value problem Eq. (2.6) is obtained as 

Kyo 
Y ( Q  = 

Yo - (Yo - +-" 

(2.13) 

(2.14) 

Even if an analytic expression of the integral of l/g(y) is known, it is not always possible to 
get an explicit solution as the following example shows. Consider the enzymatic degradation 
of a substance according to the Michaelis-Menten kinetic law (cf. section 3.2). 

- dY = - VY with y(r=O) = yo 
dr Y + K  

After separation of variables and integration one obtains 

- yo + -(lny K - inyo) = - t 
V 

This equation cannot be explicitly solved for y. 

Non-Autonomous Equations 

(2.15) 

(2.16) 

In the foregoing examples the r.h.s. does not explicitly depend on time t. Equations of this 
type are referred to as autonomous. If one considers for example the degradation of a 
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pesticide in the field, changing temperature conditions render the degradation "constant" time 
dependent. 

- dy = - k( t )y  
dt 

with y ( ? = O )  = Y O  

This equation is a special case of the general form 

dY - = f ( t ) g ( y )  with y( t=O) = yo 
dr 

(2.17) 

(2.18) 

Equations with explicit time dependency of the r.h.s. are called non-autonomous. Again, the 
solution of this initial value problem can be obtained by application of the method of 
separation of variables. 

1. Step: separation of variables 

dy = f ( t )d t  
g ( Y )  

2. Step: integration 

3. Step: deriving the explicit form of the solution 

Y ( O  = G [ G ( Y o )  + F ( 0  - F(t0)l 

(2.19) 

(2.20) 

(2.21) 

where G -' is the inverse function of G .  In the following example, to is set equal to zero. 

Consider the initial value problem Eq. (2.17) with a periodical time dependence of the 
degradation rate according to 

k = ko + asin(ot) (2.22) 

1. Step: separation of variables 

dY - = f (?)dt  
Y 

(2.23) 
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2. Step: integration 

V t 

3. Step: deriving the explicit form of the solution 

1 [- k o f  - $(' - cos(6It)) 
Y ( t )  = Yoe 

Inhomogeneous equations and the trick of the integrating factor 

We consider differential equations of the general form 

(2.24) 

(2.25) 

(2.26) 

Equations of this type model for example the situation that a substance, which decays with 
time dependent rate constant a(?), is entering the system with time dependent rate At). An 
equation of this type is called inhomogeneous. The first step of the solution procedure is the 
solution of the homogeneous equation 

dY - + a(t)y = 0 
dt 

Applying the method of separation of variables one obtains 

- A(?)  Y O )  = Yoe 
r 

A ( t )  - A ( t , )  = Ja(7)dT 
t0 

(2.27) 

(2.28) 

This solution can also be obtained by the following trick: the differential equation is 
multiplied by the "integrating factor" e A(t). One easily verifies that the 1.h.s. of the 
differential equation can be written as the derivative 

(2.29) 
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so that the homogeneous equation takes the form 

Integration yields the solution of the initial value problem Eq. (2.26). In the inhomogeneous 
case multiplication by the integrating factor leads to 

Integration and multiplication both sides by e -A(t) yields 

(2.3 I )  

(2.32) 

Consider the simple case that a(t) = const = k and thatflt) = const = v. The integrating factor 
is then given by e " and application of the general formula Eq. (2.32) yields the solution 
(to is set equal to zero) 

(2.33) 

Further examples will be given in the next chapter. 

Remarks on Existence and Uniqueness of the Solutions 

The fundamental theorem of Picard-Lindelof ensures that the solution of the initial value 
problem 

- dY = m y )  with y ( t = O )  = y o  (2.34) 
dt 

exists and is unique, if the r.h.s. of the differential equation is Lipschitz-continuous. 

Def.: flr,y) is called Lipschitz-continuous with respect to y ,  if there exists a positive constant 
L such that 

(2.35) 
If(t,Y) - f ( C Y  * ) I  5 L IY - Y * I  

This condition is always fulfilled for the class of kinetic equations encountered in this book. 
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2.2 Partial Differential Equations 

Modelling Processes by Partial Differential Equations 

Ordinary differential equations (ODEs) have only one independent variable, which is in the 
context of our applications, the time. They are thus lacking any spatial component. The 
application of ODEs to dynamic systems makes only sense, if the compartments of the 
system under study are spatially homogeneous. This is for instance realized for reaction 
systems in a "well stirred'' medium in a laboratory. However, if the fate of a substance in the 
environment is considered, transport processes in inhomogeneous soils prevail. Therefore 
models are needed, which contain explicitly spatial coordinates and which yield the evolution 
in time of the concentration field, i.e. the concentration as function of time and space. The 
resulting differential equation therefore contains also derivatives of the state variables with 
respect to the space coordinates. Such an equation is called a partial differential equation 
(PDE) . 

Derivation of the Continuity Equation 

The basic equation for the derivation of transport models is the mass balance equation for a 
volume element. Although the shape of the elements is arbitrary, we consider, for ease of 
presentation, a rectangular box centered at P(x,y,z) with dimensions Ax, Ay and Az 
(cf. Fig. 2.1). Imagine that this box is placed into a flow field .?. This is also referred to as 
control volume or control box. Let c denote the mass of a substance (or any other extensive 
property) in a volume element AV. Then the rate of change of c in AV is the excess of inflow 
over outflow during a time interval At. Summing up the flows in x ,  y and z direction through 
the surfaces of the control box yields the conservation equation 

Fig. 2.1: Flux balance for a control volume. 
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Under the assumption that the flow field is continuous, the value of J a t  the surfaces can be 
derived from the flow at the center by a Taylor expansion 

so that the excess of inflow over outflow in x-direction is given by 

Summing up the excess in all three directions gives the expression 
/ \ 

aJx aJy ay aZ 
-hAyL\z Ac = - + - + - k A Y k  
At 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

In the limit AV + 0 and At + 0 one finally obtains the fundamental conservation equation 
/ \ 

By use of the gradient operator 

this equation is written in condensed form as 

ac 
at 
- + v.3 = 0 

The second term is the scalar product of the vectors V and J': 

(2.41) 

(2.42) 

(2.43) 

'"A differential operator is something hungry to differentiate something" (The Feynman 
Lectures on Physics) 
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If there are any sources or sinks in the control volume, i.e. any processes creating or 
consuming the substance, the mass balance is completed by a sink or source term Q: 

ac + 
- + V - J  = Q 
at 

This equation can also be derived from a famous theorem of vector analysis. Let V denote 
any volume and <the unit vector normal to the surface. For this volume the mass balance 
equation is 

(2.45) 

stating that the rate of change of c in V equals the integral over the flow over the surfaces of 
V (cf. Fig. 2.2). By application of Gauss' divergence theorem 

the mass balance equation is written as 

This is the fundamental mass balance equation in integral 
obtained by letting V + 0. 

(2.46) 

(2.47) 

form, from which Eq. (2.44) is 

Fig. 2.2: The total rate of change of the quantity c within the volume V equals the integral over the 
fluxes across the surface. n' is the outward normal vector to the surface element du. and J is the flux 
vector across du. 


