

Karola Rück-Braun, Horst Kunz

Chiral Auxiliaries in Cycloadditions

 WILEY-VCH

Weinheim · New York · Chichester
Brisbane · Singapore · Toronto

This Page Intentionally Left Blank

Karola Rück-Braun, Horst Kunz

Chiral Auxiliaries in Cycloadditions

Further Titels of Interest

F. Diederich, P. J. Stang (Eds.)
Metal-catalyzed Cross-coupling Reactions
1998, ISBN 3-527-29421-X

J. Mulzer, H. Waldmann (Eds.)
Organic Synthesis Highlights III
1998, 3-527-29500-5

M. Beller, C. Bolm
Transition Metals for Organic Synthesis
Building Blocks and Fine Chemicals, 2 Vol.
1998, ISBN 3-527-29501-1

A. Togni, R. L. Haltermann
Metallocenes, 2 Vol.
1998, 3-527-29539-9

Karola Rück-Braun, Horst Kunz

Chiral Auxiliaries in Cycloadditions

 WILEY-VCH

Weinheim · New York · Chichester
Brisbane · Singapore · Toronto

Dr. K. Rück-Braun, Prof. Dr. H. Kunz
Institut für Organische Chemie der Universität
Postfach 3980
D-55099 Mainz
Germany

This book was carefully produced. Nevertheless, authors, editors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No. applied for.

A catalogue record for this book is available from the British Library.

Deutsche Bibliothek Cataloguing-in-Publication Data:

Rück-Braun, Karola:

Chiral auxiliaries in cycloadditions / Karola Rück-Braun ; Horst Kunz. -
Weinheim ; New York ; Chichester ; Brisbane ; Singapore ; Toronto : WILEY-VCH, 1999
ISBN 3-527-29386-8

© WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 1999
Printed on acid-free and chlorine-free paper.

All rights reserved (including those of translation in other languages). No part of this book
may be reproduced in any form - by photoprinting, microfilm, or any other means - nor
transmitted or translated into machine language without written permission from the
publishers. Registered names, trademarks, etc. used in this book, even when not specifically
marked as such, are not to be considered unprotected by law.

Printing: betz-druck gmbh, D-64291 Darmstadt.

Bookbinding: J. Schäffer GmbH & Co. KG., D-67269 Grünstadt.

Printed in the Federal Republic of Germany.

Preface

This book is considered to be a handbook about the application of chiral auxiliaries in selected areas of cycloaddition reactions. We hope it will serve as a useful tool for those working in the field of organic synthesis, e.g. the stereoselective synthesis of cycloalkanes and heterocycles.

A discussion of the theoretical background of diastereoselective synthesis is not included. In the chapters 1 to 5 the reader will find brief introductions to the reactions and examples chosen. For most of the selected reactions reviews and references dealing with the mechanism, stereoselectivity and applications are especially addressed. Considerable effort was made to give the presentation of the data collected in tables a uniform design despite the diversity of the reactions covered. It was not our intention to indicate in detail the absolute stereochemistry or the substitution pattern of the products formed for each given auxiliary. This information can easily be gathered from the cited literature. Where it seemed reasonable, detailed information about the removal of the chiral auxiliaries or the reaction conditions, e.g. Lewis acids, is provided. Auxiliaries of broader applicability or those displaying unique structural features of general interest are assigned a number in the tables and compiled in chapter 6. In this chapter cross-reference to other chapters and references guiding the reader to the synthesis of the compounds are given.

The vast amount of data was collected to the best of our knowledge. But we are well aware and regret that possibly not all contributions in the field are included. Of course, we would appreciate comments from the readers to rectify omissions in future editions.

K. R.-B. is deeply grateful to Matthias Braun for his support to complete this book.

We wish to thank Georg Fuchs (Chapter 5), Ingo Ganz (Chapter 2), Arnulf Lauterbach (Chapter 1), Mark Mikulás (Chapter 6) and Markus Weymann (Chapter 3 and Chapter 4) for their assistance in gathering the literature.

Mainz, Oktober 1998

Karola Rück-Braun

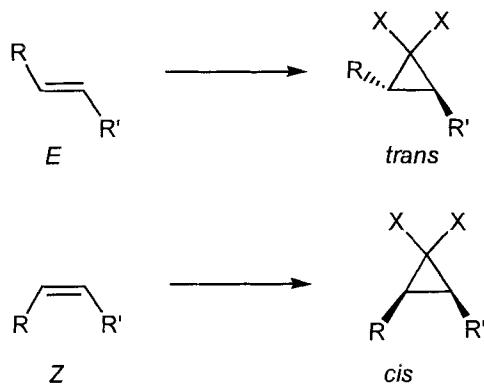
Horst Kunz

This Page Intentionally Left Blank

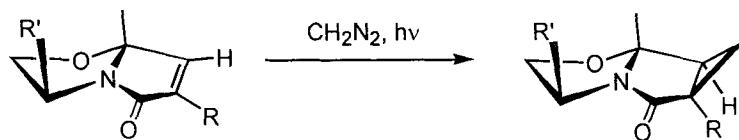
Table of Contents

1	[2+1] Cycloadditions (Cyclopropanations)	1
1.1	Simmons-Smith Reactions	2
1.2	Cyclopropanations with Carbene Equivalents.....	6
1.3	Cyclopropanations with Ylide Reagents	7
1.3.1	Chiral Ylide Reagents	7
1.3.2	Chiral Alkenes	8
1.4	Transition Metal-Catalyzed Reactions of Diazo Compounds	9
1.5	References.....	11
2	[2+2] Cycloadditions	13
2.1	Reactions of Imines with Ketenes (Staudinger Reaction)	13
2.1.1	Chiral Ketenes.....	14
2.1.2	Chiral Imines.....	15
2.2	Reactions of Keteniminium Salts with Alkenes	16
2.3	Reactions of Ketenes with Electronrich Alkenes	17
2.3.1	Chiral Ketenes.....	17
2.3.2	Chiral Vinyl ethers	18
2.3.3	Miscellaneous Reactions.....	19
2.4	Reactions of Isocyanates with Alkenes	20
2.5	Photochemically Induced [2+2] Cycloadditions	21
2.5.1	Paterno-Büchi Reactions.....	24
2.5.2	Application of Chromium Carbene Complexes	26
2.6	References.....	28
3	[4+2] Cycloadditions (Diels-Alder Reactions)	30
3.1	Thermal Reactions	32
3.1.1	Reactions of Chiral Dienophiles	32
3.1.2	Reactions of Achiral Dienophiles with Chiral Dienes.....	39
3.2	Lewis Acid-Catalyzed Reactions	50
3.2.1	Reactions of Chiral Dienophiles	50
3.2.2	Reactions of Achiral Dienophiles with Chiral Dienes.....	61
3.3	Intramolecular [4+2] Cycloadditions	64
3.3.1	Thermal Reactions	64
3.3.2	Lewis Acid-Catalyzed Reactions	65
3.4	References.....	66
4	Hetero [4+2] Cycloadditions	72
4.1	Reactions of Hetero-Dienophiles with Dienes	73
4.1.1	Reactions of Activated Carbonyl Dienophiles/Aldehydes	73
4.1.1.1	Reactions of Chiral Carbonyl Dienophiles with Achiral Dienes	73

4.1.1.2	Reactions of Achiral Carbonyl Dienophiles with Chiral Heteroatom-substituted Dienes	75
4.1.2	Reactions of Imines.....	77
4.1.2.1	Reactions of Chiral Imines with Dienes	77
4.1.2.2	Reactions of Chiral Imines with Heteroatom-substituted Dienes	81
4.1.2.3	Reactions of Achiral Imines with Chiral Heteroatom-substituted Dienes	83
4.1.3	Reactions of Nitroso Compounds	84
4.1.3.1	Reactions of Chloronitroso Compounds	84
4.1.4	Reactions of <i>N</i> -Acylnitroso Compounds.....	85
4.1.4.1	Reactions of Chiral <i>N</i> -Acylnitroso Compounds with Dienes	85
4.1.4.2	Reactions of Achiral <i>N</i> -Acylnitroso Compounds with Achiral Dienes	87
4.1.5	Reactions of <i>N</i> -Sulfinyl Dienophiles.....	88
4.1.6	Reactions of <i>N</i> = <i>N</i> Dienophiles	88
4.2	Reactions of Hetero-Dienes with Dienophiles	90
4.2.1	Reactions of Oxabutadienes.....	90
4.2.1.1	Reactions of Chiral Oxabutadienes with Achiral Vinyl ethers	90
4.2.1.2	Reactions of Achiral Oxabutadienes with Chiral Vinyl ethers	93
4.2.2	Reactions of Achiral Nitroso Compounds.....	95
4.2.3	Reactions of Nitroalkenes	97
4.2.4	Reactions of 1-Aza-1,3-dienes	99
4.2.5	Reactions of 2-Aza-1,3-dienes	101
4.2.6	Reactions of Chiral <i>N</i> -Acyl-Imines	103
4.2.7	Reactions of Thiabutadienes	105
4.2.8	Intramolecular Hetero [4+2] Cycloadditions	107
4.3	References.....	109
5	[3+2] Cycloadditions.....	113
5.1	Chiral Dipolarophiles.....	113
5.1.1	Reactions of Nitrile Oxides.....	113
5.1.2	Reactions of Nitrile Imines	119
5.1.3	Reactions of Nitrones.....	120
5.1.4	Reactions of Nitronates.....	124
5.1.5	Reactions of Azomethine Ylides.....	125
5.1.5.1	Reactions of Azomethine Ylides Derived from Aldimines	125
5.1.5.2	Reactions of Azomethine Ylides Derived from Aziridines	127
5.1.6	Reactions of Diazoalkanes	129
5.2	Chiral Dipolars.....	131
5.2.1	Reactions of Chiral Nitrones.....	131
5.2.1.1	Reactions of Nitrones with Chiral Nitrogen-Substituents	131
5.2.1.2	Reactions of Nitrones with Chiral Carbon-Substituents.....	133
5.2.1.3	Reactions of Chiral Cyclic Nitrones.....	133
5.2.2	Reactions of Chiral Azomethine Ylides.....	135
5.3	References.....	139


6	Chiral Auxiliaries.....	144
6.1	Alcohols	144
6.1.1	Cinchona Alkaloid Derivatives	144
6.1.2	Camphor-based Alcohols	144
6.1.3	Cyclohexyl-based Alcohols.....	147
6.1.4	Miscellaneous Alcohols	150
6.1.5	Carbohydrate-derived Alcohols	152
6.2	1,2 Amino Alcohols	155
6.2.1	Ephedrine and Norephedrine Derivatives	155
6.2.2	Amino Acids and Derivatives	156
6.2.3	Aminoalcohols with Bicyclo[2.2.1]heptane Skeleton	157
6.3	Primary Amines	158
6.4	Secondary Amines	160
6.4.1	Pyrrolidines.....	161
6.4.2	C ₂ -Symmetric Pyrrolidines	163
6.4.3	1,2 Diamines	166
6.5	Carboxylic Acids	167
6.6	Diols.....	168
6.7	Oxazolidinones	171
6.8	Sultams.....	172
6.9	Miscellaneous Compounds	174
6.9.1	Sulfonates and Sulfoxides.....	174
6.9.2	Hydrazines	174
	Subject Index	175

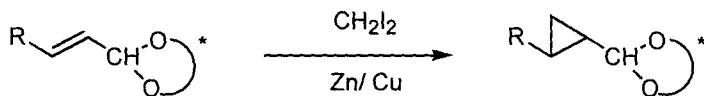
This Page Intentionally Left Blank


1 [2+1] Cycloadditions (Cyclopropanations)

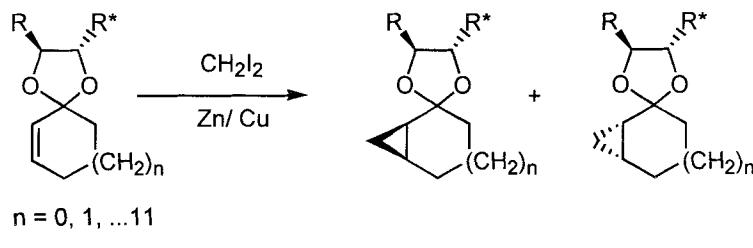
By stereoselective additions of carbenes or carbene equivalents to alkenes optically pure cyclopropanes are obtained.¹⁻⁷ In concerted [2+1] cycloadditions the stereochemistry of the alkene is conserved in the products. (*Z*)-configurated alkenes lead stereospecifically to *cis*-cyclopropanes. So far, compared to [2+1] cycloadditions involving alkenes bearing the chiral auxiliary, asymmetric reactions involving chiral carbene precursors proved to be less efficient.

Besides transition metal-catalyzed methylenations with diazomethane, diastereoselective Simmons-Smith cyclopropanations have been extensively studied.^{6,7}

In addition, cyclopropanes are accessible diastereoselectively by 1,3-dipolar cycloaddition of diazomethane followed by photodecomposition of the pyrazolidine intermediate as shown below for the bicyclic α,β -unsaturated γ -lactams developed by Meyers et al. as chiral inductors for asymmetric synthesis.⁸⁻¹⁰ Similarly, highly diastereoselective reactions of diketopiperazines have been reported in the literature.⁷

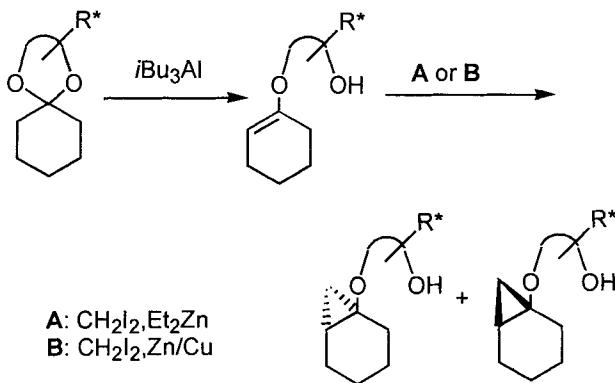


1.1 Simmons-Smith Reactions


Cyclopropanes are efficiently obtained from alkenes by Simmons-Smith reaction applying $\text{CH}_2\text{I}_2/\text{Zn-Cu}$ couple or $\text{CH}_2\text{I}_2/\text{Et}_2\text{Zn}$ as reagents.^{6,11} A variety of compounds bearing a chiral moiety have been studied, as for example α,β -unsaturated acetals and oxazolidines, enolethers, allylic alcohols, alkanylboronic esters as well as α,β -unsaturated carbonyl compounds.

Chiral Acetals and Ketals

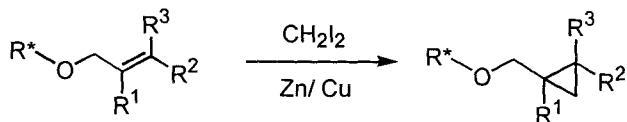
Easily accessible acetals and ketals of α,β -unsaturated aldehydes and ketones derived from C_2 -symmetric chiral 1,2-diols have been successfully used with Simmons-Smith reagents furnishing cyclopropane aldehydes with high selectivity and recovery of the auxiliary.¹² Thus, dialkyl tartrates proved to be superior compared to 1,2-diphenylethanediols as chiral auxiliaries in reactions of α,β -unsaturated aldehydes.


auxiliary	no.	d.r. or <i>de</i>	<i>ee</i>	yield	ref.
	58	87-94%		80-95% ¹³⁻¹⁵	

auxiliary	no.	d.r. or <i>de</i>	<i>ee</i>	yield	ref.
	60	67:33-95:5		37-98% ^{16,17}	
	54	> 93:7		66-90% ¹⁸	

Chiral Vinyl ethers

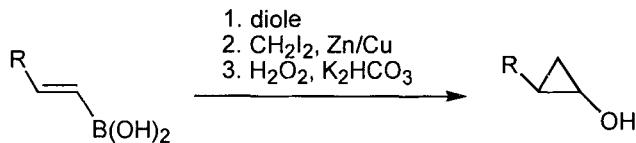
By treatment of acetals, obtained from chiral 1,3-diols and cyclic α,β -unsaturated ketones with *i*Bu₃Al, enolethers are obtained bearing an alcohol functionality, which proved to be necessary to obtain high diastereoselectivity.¹⁹



auxiliary	no.	method	d.r. or <i>de</i>	yield	ref.
	55		14-95%	56-70%	¹⁹
	56	A B	95-99%	59-86%	¹⁹
			53-69%	81-94%	

Similarly, allylethers with free alcohol functionalities in close proximity to the alkene moiety have been successfully examined as outlined below.

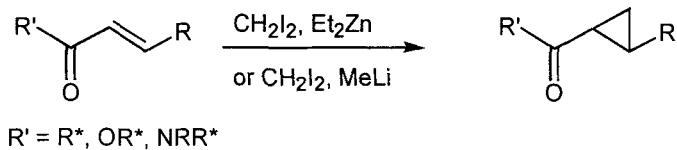
Chiral Allylethers


Besides monoallylethers of chiral alcohols, allylglycosides bearing a free alcohol functionality have been applied in asymmetric syntheses of enantiomerically pure cyclopropanemethanols with success.¹¹ The cleavage of the chiral carbohydrate-derived auxiliary was achieved by treatment of the cycloadducts with a. Tf_2O , pyridine; b. $\text{DMF}/\text{H}_2\text{O}$, pyridine, whereas for the compounds derived from **57** a. Tf_2O , Bu_4NI and b. $n\text{BuLi}$ were applied.

auxiliary	no.	d.r. or <i>de</i>	<i>ee</i>	yield	ref.
		> 98:2		>97%	²⁰
	57	> 15:1		68-97%	^{20,11}

Chiral Alkenylboronic Esters

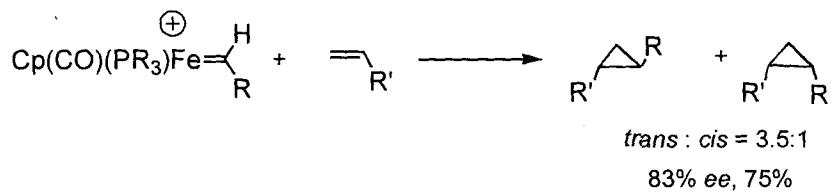
Chiral alkenylboronic esters are accessible *in situ* from the appropriate chiral diol and the desired alkenylboronic acid. Simmons-Smith reaction and subsequent treatment with $\text{H}_2\text{O}_2/\text{KHCO}_3$ lead to cyclopropanols with high selectivity.



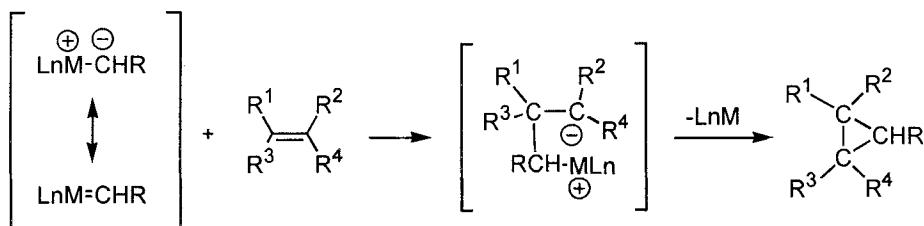
auxiliary	no.	ee	yield	ref.
	61	89-94%	46-48%	²¹

Chiral α,β -Unsaturated Carbonyl Compounds

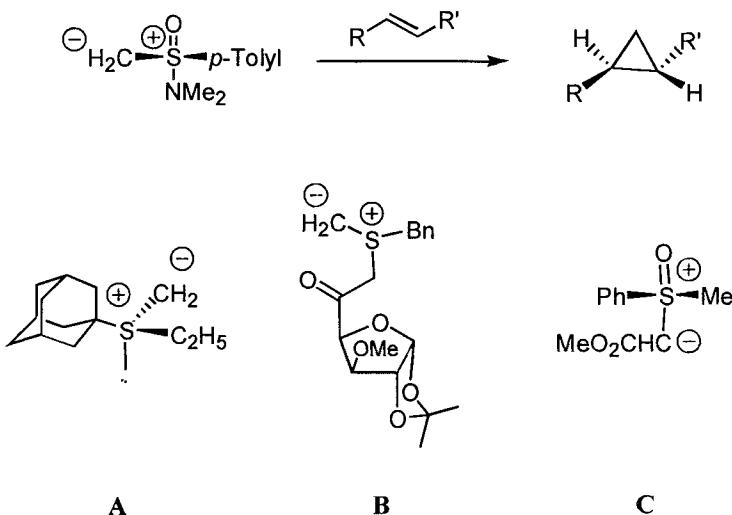
Considering α,β -unsaturated carbonyl compounds, the application of α,β -unsaturated chiral menthylesters proved to be less effective (<3% ee).²²


However, chiral α,β -unsaturated carbonyl compounds have been established successfully by Davies et al. in asymmetric syntheses of cyclopropanes.²³ α,β -Unsaturated acylcomplexes were reacted with $\text{CH}_2\text{I}_2/\text{ZnEt}_2$ or $\text{CH}_2\text{I}_2/\text{MeLi}$ to obtain cyclopropanecarboxylates in high selectivity.

auxiliary	no.	d.r. or <i>de</i>	<i>ee</i>	yield	ref.
		>91:9 - >98:2		61-85%	²³
		78:22-90:10		72-83%	²⁴
	29	90:10- >99:1		10-72%	²⁴


1.2 Cyclopropanations with Carbene Equivalents

Enantiomerically pure iron carbene complexes have been used for carbene transfer reactions to alkenes, e.g. vinyl acetate and styrene, at low temperature to furnish cyclopropanes with moderate *cis/trans* selectivity in high optical yield (75-95% *ee*). A two-step reaction mechanism has been proposed to explain the origin of enantioselectivity.²⁵


1.3 Cyclopropanations with Ylide Reagents

Asymmetric ylide cyclopropanations have been studied since 1960 and have been intensively discussed and documented in the literature.²⁶ Besides chiral aminosulfoxonium ylides, chiral sulfonium as well as chiral sulfoxonium ylides have been examined in reagent-controlled asymmetric cyclopropanations. However, asymmetric ylide cyclopropanations with alkenes bearing the chiral inductor proved to be more efficient.

1.3.1 Chiral Ylide Reagents

Chiral aminosulfoxonium ylides react with electron-deficient alkenes, e.g. α,β -unsaturated ketones and esters, to cyclopropanes in moderate to high yields (56-94%) and up to 34% ee.²⁷ The chiral sulfur ylides **A**,²⁸ **B**²⁹ and **C**^{30,31} were reacted with various Michael acceptors, whereby enantioselectivities up to 53% were achieved.

