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Preface 

An inherent property of condensation polymers, in contrast to polyolefins, 
is their ability to react with each other. Regardless of the mechanism of 
the chemical reactions during polymer synthesis, the presence of groups of 
ester, amide, urethane, and other similar types, as well as carboxylic, amine, 
etc., groups in the macromolecules makes the post reactions possible. 

The practical importance of these reactions was first recognised by 
Flory, who got his patent in 1939 for molecular weight upgrading of 
polyamide 6 by means of solid state post-condensation. In his fundamen- 
tal book, he analysed for the first time the constructive and destructive 
reactions in condensation polymers and their blends. Later, the attention 
of polymer chemists and physicists was focused on much more attractive 
problems of polymer science. For the chemists the additional condensation 
and transreactions seemed to be rather primitive, while physicists hardly 
knew about their existence, although they always took place during such a 
“purely” physical treatment as annealing at temperatures close to melting. 
These reactions attracted again the attention of polymer scientists by the 
start of intensive studies of polymer blends. It turned out that immiscibil- 
ity and incompatibility could be overcome to a great extent by producing 
thin copolymer layers at the interface of blends of condensation polymers, 
mostly via transreactions. 

The ability of condensation polymers to undergo additional chemical 
reactions is fascinating. These reactions allow one (i) to prepare novel 
copolymers with desired composition and sequential order, as well as to 
enhance compatibility, (ii) to obtain more uniform polymers by minimising 
molecular weight fluctuations in a melt stream during polycondensation 
and processing and (iii) to provide for chemical healing of laminates of 
condensation polymers. 

A good friend of mine, who is a polymer physicist with world-wide rep- 
utation, does not believe that transreactions really exist. When, by chance, 
I told this to another common friend, who is a famous polymer chemist, 
his reaction was, “Tell him that Professor Flory, with whom he worked so 
many years, would be very unhappy if he could hear his statement”. As 
a matter of fact, this was the first very strong impulse for starting this 
project. 



In the present book, the term condensation polymers is used as solely 
referring to the type of heterochain macromolecules regardless of the chem- 
ical mechanism and of the way of their preparation, e.g., by means of addi- 
tional polymerisation or condensation polymerisation (polycondensation). 
Although attention is focused mainly on transreactions, additional conden- 
sation is also discussed in some chapters since both types of reactions take 
place simultaneously, particularly under vacuum. Chemical reactions of the 
destructive type are beyond the scope of this book. It should be mentioned 
also that the good intention of the Editor to introduce more or less uni- 
form terminology, in the description of the reactions under consideration, 
failed because the preference of one or another term for the same reaction, 
expressed by some authors, was too strong. 

An international team of polymer chemists and physicists experienced in 
the field tried to cover the main topics related to the chemical interactions 
in condensation polymers. As Editor, I enjoyed the work with the individual 
contributors and gratefully appreciate their support, prompt response and 
patience. My thanks are also extended to the Institute for Structure of the 
Matter, Madrid, for the hospitality during my sabbatical tenure offered by 
DGICYT, Spain, where this project was finalised. I am greatly indebted to 
my coworker Mrs. S. Petrovich for her everyday help. 

Madrid, Dezember 1998 S. Fakarov 
Editor 
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cesses in SEC column 
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constant 
difference in specific heats between the liquid and glassy 
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k 
k 
k, ~ A B  

k2 
kn 
K 
K 
K 
KS 
KSEC 

Definition 

loss modulus 
probability of formation of a polymer having ncyc units 
Planck's constant 
microhardness 
microhardness (or hardness) of crystallised sample 
transition enthalpy 
reaction heat 
enthalpy of melting 
microhardness of quenched amorphous sample 
microhardness of fully amorphous powder 
enthalpy of crystallisation 
hardness of crystals 
enthalpy of crystallisation 
molar heat of fusion 
microhardness of fully crystallised powder 
local magnetic field experienced by a nucleus 
enthalpy of melting 
microhardness of minor and major components of blend 
maximum microhardness 
melting enthalpy of a perfect infinite crystal 
microhardness of coreactive PC/PET blend 
microhardness of homo PC 
molar heat of melting of crystalline units A at Tk 
static magnetic field 
rotating magnetic field orthogonal to Ho 
spin angular momentum quantum number 
signal intensity of A-A bond 
signal intensity of A-B bond 
signal intensity of B-B bond 
scattering along chain axis direction 
strength of scalar coupling between coupled nuclei with 2 
intervening bonds 
Boltxmann's constant 
monomeric transesterification rate 
monomer ratio A/B in A-B copolymer 
transreaction rate constant 
reaction rate 
equilibrium constant 
geometrical factor 
Mark-Houwink coefficient of PS standard 
Mark-Houwink coefficient of sample 
ratio of average solute concentration inside pores to that 
outside the pores (SEC) 
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Definition 

lamellar thickness 
total number of units in sample 
long period or spacing (SAXS measurements) 
torque 
average length of block A 
number-average sequence length of an S unit 
number-average sequence length of a T unit 
magnetic quantum number 
average length of polymer unit, or aliphatic polymer unit 
parameter describing internal mobility of groups in a single 
chain 
molecular weight 
molar fraction of k in completely random copolymer 
of monomers j and k, modified for non-randomness if 
necessary 
number-average molecular weight 
number-average molecular weight 
weight-average molecular weight 
weight-average molecular weight 
z-average molecular weight 
repetition factor; n(x + y) = degree of polymerisation 
average degree of polymerisation at time t 
average length of aromatic polymer unit 
degree of polymerisation 
number of ester linkages 
Avrami exponent for microhardness 
average degree of polymerisation at time 0 
slopes of microhardness us. time curves 
number-average sequence lengths of comonomers A and B 
in copolymer 
number of units in a cycle 
population of upper and lower energy states 
number of times an oligomer A,Bn appears in simulated 
sample 
number of polymer reactive groups per unit volume 
number of AlBl units on polyamide 46 
upper limit of p at infinite concentration 
probability of crystallisable homopolymer unit A being fol- 
lowed by another A unit 
molar fraction of monomer j 
probability of reaction at  a given site 
probability of A, unit being followed by Aj unit, or Bj 
unit, in copolymer 
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Symbol 

PS 
PST 
pr 
Pb 

S 
AS 
A S  

AS'' 

Tb,c 
r n  

TC, 

Tm 
TA, Tg 

Definition 

molar fraction of sebacate 
probability of finding a T unit next to an S unit 
molar fraction of terephthalate 
element in probability matrix for sequence distribution of 
units x,y 
number of AzBz units in polyamide 46 
point at which exchange takes place 
distance between nuclei 
transcondensation ratio 
cross reaction parameter 
gas constant 
molar fraction of comonomer A or B in sample (mixture 
of comonomers and copolymer) 
number of exchange events per initial molecule 
reaction entropy 
entropy increase for randomisation of initial copolymer 
blend or diblock 
entropy increase for randomisation of restored block 
copolymer 
extrusion time 
evolution period 
acquisition (detection) time 
annealing time 
crystallisation time 
time at which hardening kinetics change 
melt-pressing time 
SEC peak elution time 
temperature 
spin-lattice relaxation time (longitudinal relaxation time) 
spin-spin relaxation time (transverse relaxation time) 
annealing temperature 
Brill transition temperature 
Brill transition temperature during cooling from the melt 
crystallisation temperature 
crystal-nematic transition temperature 
glass transition temperature 
glass transition temperature of coreactive PC/PET blend 
glass transition temperature of component i 
glass transition temperature of homo PC 
healing temperature 
melting point 
melting points of less and more perfect crystallites in ran- 
domised equimolar PET/PC copolymer, respectively 
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Definition 

equilibrium melting temperature of random copolymer 
equilibrium melting temperature of semicrystalline 
homopolymer 
thermodynamic equilibrium melting point 
interstitial liquid volume between SEC packing particles 
crystal-nematic transition temperature 
elution volume 
internal pore volume (SEC) 
vector in MOSES program 
SEC elution (retention) volume 
molar fraction of one coponent in copolyester blend 
average lengths of polymer sequences 
average lengths of polymer sequences 
degree of crystallinity 
weight fraction of co-oligomers 
weight fraction of homopolymers A or B 
mass fraction of component i 
total concentration of PEN units 
concentration of PET units 
weight fraction of component i 
vector in MOSES program 
probability of block length n 
distance from chain ends 
number-average sequence length of AlBl groups 
number of transesterification events 
number-average sequence lengths of A1B and AzB 
fractional contribution of z- or y-mer to molar volume of 
X Y  polymer 
average lengths of ethylene terephthalate and bisphenol A 
terephthalate sequences 
nominal concentration of starting material i 
concentration of starting material m of minor nominal 
concentration 
molar fraction of crystallisable units A 
concentration of component i in blend 
actual volume fraction of component i in blend 
molar fraction of A1Bz or AzBl dyads a t  time t 
molar fraction of AlBz or AzBl dyads at equilibrium 
molar fraction of component i 
initial number-average degree of polymerisation of A or B 
distance along chain axis; atomic coordinate along the 
chain axis direction 
monomer j separation 
reciprocal space coordinate of z 
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Symbol 

a 
(Y 

(YL 

a s  

Y 
6 
62 
tan 6 
& 

EO 

&b 

rlint 
8 
28 
x 
P 
Y 

X 
!& 

Definition 

fraction of minor component m 
Mark-Houwink coefficient of PS standard 
linear crystallinity, t , /L  
Mark-Houwink coefficient of sample 
magnetogyric ratio 
chemical shift 
cohesive energy density 
loss factor 
strain 
initial number of chain ends 
relative elongation at break 
viscosity 
intrinsic viscosity 
invariant in Chapter 7, Eq. (15) 
intrinsic viscosity 
angle between magnetic moment p and applied field Ho 
scattering angle 
draw ratio 
magnetic moment 
frequency of energy quantum absorbed or emitted by 
nucleus 
number of transesterication events per monomer 
precessional or Larmor frequency 
electron density of amorphous phase 
electron density of crystalline phase 
screening constant 
normal stress 
stress at break 
fold surface free energy 
degree of crystallinity 
degree of randomness 
percentage of transamidation 



Chapter 1 

Interchange Reactions in 
Condensation Polymers and Their 
Analysis by NMR Spectroscopy 

H. R. Kricheldorf, Z. Denchev 

1. Introduction 

Interchange reactions* are a phenomenon that concerns numerous classes 
of polymers. Recently, these interactions have been subject to extensive 
research due to the fact that they open the route to some new methods of 
polymer modification and even the preparation of novel polymer materials. 

Interchange reactions take place at elevated temperatures (most fre- 
quently in the melt) between functional groups belonging to molecules with 
different degrees of polymerisation or different chemical compositions. As 
a rule, they are reversible equilibrium interactions, typical of polyconden- 
sates, and have been recognised since these polymers were first made. Most 
prominent examples are polyesters and polyamides, where interchange re- 
actions are best studied and understood. However, during recent decades, 
a number of publications have dealt with interchange reactions that involve 
urethane and urea groups, Si-0 bonds, etc.; these also deserve special at- 
tention. 

*There is a great variety of different terms used in the literature when addressing the 
interchange reactions, e.g., transreactions, transesterification, ester-ester interchange, 
etc. In this chapter, the general term “interchange reactions” is used consistently. It is 
classical English, widely accepted and highly versatile. 



2 H. R. Kricheldorf, Z. Denchev 

1 Interchange reactions I 

Low molecular weight High molecular weight Monomer systems 
(monomer) systems (polymer) systems but resulting in polymer 

resulting in monomer resulting in: products (equilibrium 
lproducts (model systems) polycondensation) 

Molecular weight Molecular weight Molecular weight 
decrease retention increase (additional 

(degradation) (copolymer polycondensation) 
formation) 

Figure 1. Relationships between interchange reactions 

This chapter covers the characteristics of some significant types of in- 
terchange reactions, such as acidolysis, alcoholysis, aminolysis, esterolysis, 
taking place in low or high molecular weight systems and resulting in dif- 
ferent products - low molecular weight compounds, homo- or copolymers. 
The scheme in Figure1 depicts the mutual connections and relations be- 
tween all the types of interchange reaction. However, this classification is 
quite superficial: for instance, when discussing the interchange reactions in 
polymer systems, attention is focused on copolymer formation, although it 
is clear that, depending on the conditions of treatment and chemical com- 
position of the blend constituents, the process should be accompanied by 
either degradation or additional polycondensation. These three processes 
are closely connected and should be considered as inevitable parts of the 
condensation equilibrium. 

It is worth noting that there had been some indications that interchange 
reactions might be possible in some carbochain polymers (ie., with all- 
carbon backbones). These also result in polymer modification, but occur 
to a much lesser degree. For this reason they are treated as secondary 
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reactions, taking place during the polyaddition [1,2], and are beyond the 
scope of this chapter. 

Very often it is of prime importance to discover the effect of the in- 
terchange reactions on the microstructure of the respective system - for 
instance, to  find out whether or not a copolymer is formed as a result 
of interchange reactions in monomer or polymer systems, or to determine 
the sequence length distribution, etc. High resolution nuclear magnetic res- 
onance (NMR) has proved to be the most useful method for the direct 
experimental determination of the polymer microstructure. Of the two nu- 
clei 'H and 13C, which possess spin and are common in synthetic polymers, 
'H initially served as the spin probe in NMR polymer studies. However, 
though lH is more abundant than 13C, proton NMR spectra of synthetic 
polymers suffer from a narrow dispersion of chemical shifts and extensive 
'H-'H spin coupling. 13C NMR, as currently practiced, does not suffer 
from these difficulties, of which the latter has recently been turned to  ad- 
vantage for 'H NMR by 2D techniques. The advent of proton-decoupled 
spectra recorded in Fourier-transform mode has quickly made 13C NMR 
spectroscopy the method of choice for determining polymer microstruc- 
tures. Other methods, such as 15N and 29Si NMR, are rapidly gaining 
importance as irreplaceable tools for the characterisation of siloxanes and 
N-containing polycondensates. For all these reasons, the basic principles 
and importance of modern NMR techniques in view of their application for 
interchange reaction characterisation are discussed in this chapter. 

2. Nuclear magnetic resonance as an analytical 
tool (lH, 13C, 15N and 29Si NMR) 

2.1. Basics of the method 

NMR spectroscopy belongs among the radiospectroscopic methods, where 
the basic transitions are those between spin (or magnetic) energy levels 
of the nuclei. In contrast to the optical transitions (e.g., vibrational, ro- 
tational, electronic), the nucleus can absorb radiofrequencies only if the 
molecules are placed in a strong, external magnetic field. This is because 
in the absence of magnetic field, the different spin states of the nuclei have 
the same energy, i e . ,  they are degenerate. 

2.1.1. Magnetic properties of the nucleus 

While the nuclei of all atoms possess charge and mass, not every nucleus 
has angular momentum and a magnetic moment. Nuclei with odd mass 
numbers have spin angular momentum quantum numbers I, with values 
that are odd-integral multiples of 1/2. Nuclei with even mass numbers are 
spinless if their nuclear charge is even, and have integral spin I if their 
nuclear charge is odd. 
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The angular momentum of a nucleus with spin I is simply I(h/2n), 
where h is Planck's constant. If I # 0, the nucleus will possess a magnetic 
moment, p, which is taken parallel to the angular-momentum vector. A set 
of magnetic quantum numbers m, given by the series 

m = I ,  I - 1 , 1 - 2  , . . .  ,-I (1) 

describes the values of the magnetic moment vector which are permitted 
along any chosen axis. For nuclei of interest here (IH, 13C, 15N, IgF, 29Si, 
31P), I = 1/2, and thus m = +1/2 and -1/2. In general, there are 21 + 1 
possible orientations of p, or magnetic states of the nucleus. The ratio of the 
magnetic moment and the angular momentum is called the magnetogyric 
ratio, y: 

y = 2np/hI (2) 

and is characteristic of a given nucleus. 
The nuclei commonly observed in NMR studies of polymers usually 

have spin I = 1/2, and are characterised by 21 + 1 = 2 magnetic states, 
m = +1/2 and -1/2. Both nuclear magnetic states have the same energy in 
the absence of a magnetic field, but they correspond to states of different 
potential energy upon application of a uniform magnetic field Ho. The 
magnetic moment p is either aligned along (m = +1/2) or against (m = 
-1/2) the field WO, with the latter state corresponding to a higher energy. 
Detection of the transitions of the magnetic nuclei between these spin states 
[m = +1/2 (parallel), m = -1/2 (antiparallel)] are made possible by the 
NMR phenomenon. 

Table 1. Magnetic characteristics of some atomic nuclei [3] 

Nucleus Natural Atomic Magneto- Magnetic Quadropole Relative Resonance 
abundance number gyric moment p moment Q amplitude frequency 

I ratio? (magne- cm2) of the (MHz) 
signal 

(%I 
(rad.s.Oe) tons) 

'H' 99.98 112 26753 2.79270 - 1.000 100 
2 ~ 1 ( ~ )  
l lg5 
lZc6  

13c6 

1 4 ~ 7  

1 5 ~ 7  

1608 
1 7 0 8  

19F9 
2Ssi14 

29si14 

3 1 ~ 1 5  

3 2 ~ 1 6  

3 3 ~ 1 6  

0.016 1 4 107 
81.17 3/2 8583 
98.89 0 
1.11 1/2 6728 
99.64 1 1934 
0.36 1/2 -2712 
99.76 0 

- 

- 
0.037 5/2 -3628 

100 1/2 25179 
- 92.28 0 

4.67 112 -5319 
100 112 10840 

0.74 312 2054 
- 95.06 0 

0.85738 
2.6880 

0.70216 
0.40357 

- 

-0.28304 
- 

- 1.8930 
2.6278 

-0.55477 
1.1305 

0.64274 

0.00274 
0.0355 

- 

0.02 
- 
- 

-0.004 
- 

- 

-0.064 

0.010 15.4 
0.165 32.2 

0.016 25.1 
0.001 7.2 
0.001 10.1 

0.029 13.5 
0.834 94.0 

- - 

- - 

0.078 19.9 
0.066 40.5 

0.002 7.67 


