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For the most part of human history, nature has monopolized chirality. Over the last 
decades, however, enantioselective catalysis has become the godly finger of mankind, 
its own instrument for synthesis of natural compounds, and for synthesis of new mol- 
ecules with a substantially beneficial impact on health and environment. The field is 
growing at an incredible pace in academia, which continuously produces new ligands 
and catalysts. Additionally, large scale preparation of single enantiomers has now be- 
come an objective within reach for industry. 

In such an era, books are doomed to get outdated like boulders drowning in a r i s -  
ing tide. However, the mere example of Ojima’s book, which was published in 1993 
by VCH, demonstrates that clear overviews by world experts can be an enlightening 
guide for scores of chemists around the world. For the present book as well, it was a 
prime ambition of the editors to gather leading scientists from all over the globe. We 
feel honored by the outstanding contributions that our authors have delivered, and we 
owe special thanks to all these scientists. 

As enantioselective catalysis is being integrated in process schemes throughout the 
chemical industry, issues such as separation and reuse of expensive catalysts now 
come to the foreground. Thus, the publication of this book itself reflects a certain 
technical maturity but will hopefully also entice chemists and chemical engineers to 
contribute to this challenging subarea of technical chemistry. 

In an introductory chapter, Blaser and his colleagues draw on their wide experience 
to give us a perspective on the challenges ahead, both for researchers in industry and 
in academia. The biggest challenge might well be, as they suggest, for people from 
universities and companies to look together for solutions. The next four chapters pre- 
sent general approaches to immobilization and recuperation of enantioselective cata- 
lysts. While Jacobs presents the major types and uses of inorganic supports in Chap- 
ter 2, Bergbreiter provides the organic polymer counterpart in Chapter 3. The focus is 
on the availability and preparation of the support materials, and on strategies to immo- 
bilize enantioselective catalysts. Liquid biphasic catalysis is addressed in Chapter 4. 
Hanson tackles specific issues, such as the ligand modifications that are required to 
confine a soluble catalyst to a single liquid phase. Chapter 5 is an exception in that it 
discusses enzyme catalysis. Based on his own experience in penicillin antibiotics syn- 



thesis, Rasor compares a spectrum of methods that can lead to economical reuse of 
enzymes, a topic amply illustrated with realistic figures. 

The remaining chapters highlight specific reactions. Hydrogenations over modified 
metallic surfaces are discussed in Chapters 6 to 8. Wells and Wells give a comprehen- 
sive overview of the present understanding of alkaloid modified Pt and Pd, and care- 
fully balance the sometimes conflicting viewpoints in literature. Baiker highlights the 
strategies, e.g. computational methods, that can lead to the successful rational design 
of new synthetic modifiers for Pt hydrogenation catalysts. The Japanese contribution 
of Tai and Sugimura shows in detail the evolution of the modified Ni catalysts, start- 
ing from a very moderate enantioselectivity in the early days, up to the excellent 
e.e.'s and profound understanding that have been achieved in recent years. 

Catalysis with heterogenized metal complexes or ligands is the focus of Chapters 9 
to 11.  Bayston and Polywka introduce the important group of phosphine ligands for 
enantioselective hydrogenations and hydroformylations. The Salvadori group evalu- 
ates. based on its rich experience in the field, heterogenized epoxidation and dihy- 
droxylation catalysts, for instance of the Jacobsen and Sharpless types. Finally, the 
group of Brunel discusses the variety of heterogenized, enantioselective catalysts that 
can be used to create new carbon-carbon bonds. 

Ultimately, Chapter 12 deals with heterogeneous diastereoselective synthesis. An 
increasing number of recent publications shows that, in certain cases, this strategy can 
be an economically attractive alternative to enantioselective catalysis. 

Finally, we thank Nico Wuestenberg for his skillful assistance in handling files of 
bewildering formats as well as the publishing editors of VCH for their fruitful colla- 
boration. Two of the editors (DEDV and IFJV) are indebted to F.W.O. Vlaanderen for 
post-doctoral fellowships. 

Dirk E. De Vos 
Ivo F.J. Vankelecom 

Pierre A. Jacobs 

Leuven, 
March 9, 2000 
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1 Enantioselective Heterogeneous Catalysis: 
Academic and Industrial Challenges 

Hans- Ulrich Bluser; Benoit Pugin, and Martin Studer 

1.1 Introduction 

The trend towards the application of single enantiomers of chiral compounds is un- 
doubtedly increasing. This is especially the case for pharmaceuticals but also for agro- 
chemicals, flavors and fragrances [ I ,  21. Among the various methods to selectively 
produce one single enantiomer of a chiral compound, enantioselective catalysis is ar- 
guably the most attractive method. With a minute quantity of a (usually expensive) 
chiral auxiliary, large amounts of the desired product can be produced. Homogeneous 
metal complexes with chiral ligands are currently the most widely used and versatile 
enantioselective catalysts. From an industrial point of view, however, catalysts that are 
not soluble in the same phase as the organic reactant have the inherent advantage of 
being easily separated and often having better handling properties. Such catalysts can 
be truly heterogeneous, i.e. insoluble, or they can be soluble in a second phase that is 
immiscible with the organic one [3-61. Here, we will use the term ‘heterogeneous cat- 
alyst’ for both cases. 

In this overview, we will first discuss the situation and requirements for the indus- 
trial application of a catalytic method and more specifically of heterogeneous cata- 
lysts. Thereafter, the present scope and limitations of different types of enantioselec- 
tive heterogeneous catalysts are documented (with reference to the appropriate chap- 
ters in this book) and assessed from an application point of view. Based on this analy- 
sis, academic and industrial challenges are then defined. 

1.2 The Industrial Process in General 
and the Specific Prerequisites for Chiral Catalysts 

In order to understand the challenges facing the application of chiral catalysts in the 
fine chemicals industry, one not only has to understand the essential industrial require- 



ments hut  a lso  how process development is carried out and which criteria determine 
the suitability of a catalyst [ I ,  21. 

1.2.1 Characteristics of the Manufacture of Enantiomerically Pure Products 

The manufacture of chiral fine chemicals such as pharmaceuticals or agrochemicals 
can be characterized as follows (numbers givcn in parentheses reflect the experience 
of the authors): 

Multifunctional molecules produced via multistep syntheses (from 5 to over 10 
steps for pharmaceuticals and 3 to 7 steps for agrochemicals) with short product 
lives (often less than 20 years). 
Relatively small-scale products (1-1000 t/y for pharmaceuticals, 500-1 0000 t/yr 
for agrochemicals), usually produced in multipurpose batch equipment. 
High purity requirements (usually >99% and <10 ppm metal residue in pharmaceu- 
ticals). 
High added values and therefore tolerance of higher process costs (especially for 
very effective, small-scale products). 
Short development time for the production process (< few months to 1-2 years), 
since marketing time affects the profitability of the product. In addition, develop- 
ment costs for a specific compound must be kept low, since process development 
often starts at an early phase when the chances of product success are low. 
At least in European companies, chemical development is carried out by all-round 
organic chemists, sometimes i n  collaboration with technology specialists. 

1.2.2 Process development: Critical Factors for the Application 
of (Heterogeneous) Enantioselective Catalysts 

The first decision to be made at the start of process development is the choice of a 
strategy that promises the best answer in the shortest time. This strategy will depend 
on a number of considerations: the goal of the development, the know-how of the in- 
vestigators, the time frame, the available manpower and equipment etc. In process de- 
velopment, there is usually a hierarchy of goals (or criteria) to be met. It is useful to 
divide the development of a manufacturing process into different phases: 

Phase 1: Outlining and assessing possible synthetic routes on paper. 
Phase 2: Demonstrating the chemical feasibility of the key step, often the enantiose- 

Phase 3: Optimizing the key catalytic reaction. 
Phase 4: Optimizing the overall process. 

lective catalytic reaction. 

In the final analysis, the choice whether a synthesis with an enantioselective catalytic 
step is chosen depends very often on the answers to two questions: 



Can the costs for the overall manufacturing process compete with alternativc 
roil t e s ? 
Can the catalytic step be developed i n  the given time frame? 

Presuming that cnantioselective catalysis is the method of choice, the next question in 
the context of our treatise is whether to choose homogeneous or heterogeneous cataly- 
sis. 

Table 1 . 1  gives a very condensed summary of the strong and weak points of the 
two classes of catalysts. This table is a somewhat subjective view of the authors and 
mirrors their personal experiences. Moreover, the importance of the various factors 
changes for any specific catalytic transformation and, in some cases, might well be 
just the opposite! 

1.2.3 Important Criteria for Enantioselective Catalysts 

As a consequence of the peculiarities of enantioselective catalysis described above, 
the following critical factors often determine the viability of an enantioselective pro- 
cess: 

Enantioselectivity, expressed as enantiomeric excess (ex., 5%). The enantioselectivity 
of a catalyst should be in the range of 99% for pharmaceuticals if further enrichment 
is not possible (this is relatively rare). E.e.'s >80% are acceptable for agrocheinicals 
or if further enrichment is easy, e.g. via recrystallization or via separation of diastereo- 
mers later in the synthesis; in our experience, this is very often the case. 

Catalyst productivity, given as turnover number (TON), determines catalyst costs. In 
our experience, TONS for (homogeneous) enantioselective hydrogenation reactions 
ought to be >I000 for small-scale, high-value products and >50000 for large-scale or 
less expensive products. For C-C coupling reactions and probably also for some other 
reaction types with high added value or for very inexpensive catalysts, lower TONS 

Table 1.1. Strong and weak points of homogeneous and heterogeneous catalysts. 

Homogeneous Heterogeneous 

Strong points Defined on molecular level (close to 
organic chemistry) 
Scope, variability (design?) stability, handling 
(commercial) preparation 

Weak points Sensitivity (handling, stability) characterization (understanding on mo- 

separation, 1-ecovery, recycling 

lecular level) 
availability, preparation (needs special 

diffusion to and within catalyst 

Activity. productivity (of many litera- 
ture procedures) know-how), reproducibility 



might be acceptable. Much lower limits might apply if catalyst reuse is possible with- 
out much loss in selectivity and activity. 

Catalyst activity. For preparative applications, a useful number is the turnover fre- 
quency (TOF) at high conversion. Because this value determines the production ca- 
pacity, TOFs (especially for high pressure reactions) ought to be >SO0 h-' for small- 
scale and >I0000 h-' for large-scale products. For applications in standard equipment, 
lower TOFs might be acceptable. 

Separation should be achieved by a simple operation such as distillation, filtration or 
phase separation, and at least 95% of the catalyst should be recovered. Methods like 
ultrafiltration or precipitation (e.g. for separating soluble polymer supports) usually re- 
quire expensive equipment. 

Stability. If the advantage of the heterogeneous catalyst is its recyclability, it has not 
only to show a stable catalytic performance, but it should also be mechanically stable 
and the active component must not leach (chemical stability). 

Price of catalysts. The catalyst price will only be important at a later stage, when the 
cost of goods of the desired product is evaluated. For homogeneous catalysts, the 
chiral ligand often is the most expensive component (typical prices for the most im- 
portant chiral phosphines are 100-500 $/g for laboratory quantities and 5000 to 
>20000 $/kg on a larger scale). For heterogeneous systems, the dominant cost ele- 
ments depend on the type of catalyst. 

Availability of the catalysts. If an enantioselective catalyst is not available at the 
right time and in the appropriate quantity, it will not be applied due to the time limita- 
tion of process development. At present, only very few homogeneous catalysts and li- 
gands are commercially available in technical quantities, so that their large-scale syn- 
thesis must be part of the process development. The situation for heterogeneous cata- 
lyst systems is even more difficult, because their preparation and characterization re- 
quire know-how that is usually not available in a standard development laboratory. 

Which of these criteria will be critical for the development of a specific process will 
depend on the particular catalyst and transformation, the scale of the process, the tech- 
nical experience and the production facilities of a company as well as the maturity of 
the catalytic process. 

1.3 The General Challenges 

In many areas described in the following chapters, much remains to be done for both 
academia and industry. A special challenge for both communities is the interdisciplin- 



ary nature of the field of heterogeneous enantioselective catalysic. It comprise\ the 
preparation of such widely diffcrent materials as polymers. inorganic support\. \mall 
metal particles, colloids, complex organic molccules and organoinetallic complexes. 
We have listed some crucial points which, in our view, arc important for progrcs\ in 
heterogeneous enantioselective catalysis. Needless to cay, ii good dialog between in-  
dustry and academia is probably the most important factor for the ratc of progres\. bu- 
cause the different approaches and goals are very often complimentary. 

1.3.1 For Academia 

Generally, the central task of academic researchers is to find new concepts. catalysts 
and reactions, to demonstrate proof of concept of a catalytic reaction and to inve\ti- 
gate its mechanism. 

Development of new concepts, new catalysts and processes. Most of thc existing 
enantioselective catalytic systems lack general applicability. Although some new con- 
cepts (such as artificial catalytic antibodies) and technologies (e.g., fluorous biphasic 
reactions, or immobilization on an aqueous layer on a porous suppoit) have bccn de- 
veloped and applied recently, there is a need for new ideas which eventually will lead 
to new catalysts - hopefully with broader applicability. 

Determination of synthetic scope and limitations. Well characterized catalysts with 
clear scope and limitations are much more likely to be applied by the synthetic chemist 
(both at the university and industry) who usually has little time and patience for trial and 
error. In the literature, many new systems are tested only on one or two model substrates 
under a very narrow set of reaction conditions. For an immobilized catalyst, a realistic 
comparison with the corresponding homogeneous systems is quite often lacking and, 
in addition, little information on catalyst activity or productivity is provided. 

Characterization, mechanistic investigation, understanding and interpretation. 
Many of the heterogeneous systems are very difficult to characterize and are not well 
understood. Improved characterization should lead to better reproducibility, whereas 
understanding on a molecular level (if possible) can often help to improve existing 
concepts and develop new catalytic systems. 

1.3.2 For Industry 

Its main task is to apply the know-how created by basic research to practical prob- 
lems. For the catalyst user, this means to adapt catalysts and processes to industrial 
conditions, and for catalyst manufacturers, to make available more well-defined cata- 
lysts on a commercial basis. 

Development, up-scale and commercialization of industrially useful catalysts and 
processes. New systems, as described in the literature, are often unsuited for indus- 



trial application (exotic solvcnts, reactions conditions, too low productivity and activ- 
ity, etc.). Since the industrial chemist knows the specific prerequisites of the process, 
it is his or her task to determine the technical scope and limitations and to adapt catalytic 
systems to the technical problems and conditions. In addition, investigation of technical 
aspects such as catalyst stability, recycling, metal leaching are often necessary. 

Toolbox for fast development and commercial availability of catalysts. In  many 
cases. development of technical proccsses with heterogeneous or immobilized chiral 
catalysts is very tedious. Automation of both the development of the best suited cata- 
lyst as well as the optimization of reaction conditions should improve that consider- 
ably. For this endeavor, the ready and easy availability of a large collection of (tun- 
able) catalysts is necessary to get results in a timely manner. Involvement of the cata- 
lyst producers and commercial availability of versatile catalysts would certainly help 
their application. 

1.4 Chiral Heterogeneous Catalysts: 
State of the Art and Future Challenges 

In this section, the present scope as well as the specific problems and challenges are 
analyzed for the most important types of enantioselective heterogeneous catalytic sys- 
tems. One can roughly distinguish between three types of enantioselective heteroge- 
neous catalysts: 

Heterogeneous catalysts with demonstrated catalytic activities that are rendered 
chiral by modification with a chiral auxiliary, 
Homogeneous catalysts with demonstrated enantioselectivity and activity modified 
in such a way as to become heterogeneous (as defined in the introduction), 
Catalysts with no known precedent in these two categories. 

1.4.1 Heterogeneous Catalysts Modified with a Chiral Auxiliary 

1.4.1.1 Metallic Catalysts on Chiral Supports 

Metals supported on chiral biopolymers and natural fibers were the first somewhat 
successful approach to produce enantioselective heterogeneous catalysts. For a review, 
see Blaser and Muller [3].  With the exception of Pd/silk fibroin where e.e.’s of up to 
66% were reported for the hydrogenation of an oxazolinone derivative, the optical 
yields were very low. Later, it was found that the results observed with silk fibroin 
were not reproducible and this approach was practically abandoned. 

Assessment and challenge. Clearly, fresh ideas would be needed to revive this class 
of enantioselective catalysts but at the moment, no leads exist for a promising revival. 



1.4.1.2 Metallic catalysts Modified 

This is undoubtedly the most successful approach to render an already active catalyst 
enantioselcctive, and several recent inforniative reviews on different aspects ha\,c been 
published 17-121. The investigation of heterogeneous chiral hydrogenatioii catalpts 
started in the late fifties in Japan and has seen a renaissance in the last few years. De- 
spite many efforts, only two classes of modified catalyst systems have been found to 
be of industrial interest at this time: Ni catalysts modified with tartaric acid and Pt 
and, to a lesser degree, Pd catalysts modified with cinchona alkaloids and analogs 
thereof. However, several laboratories are working to expand the scope of this inter- 
esting and potentially very versatile class of chiral catalysts. 

Since these catalytic systems are covered in Chapters 6-8, we will not discuss but 
only list reactions and catalysts that have either sufficiently high enantioselectivities 
for synthetic applications or are of conceptual importance (see Table 1.1). One ex- 
ception: in two very recent papers the highly selective hydrogenation of a variety of 
wketoacetals with cinchona modified Pt catalysts was described with enantioselcctiv- 
ities up to 97% [13, 141. Since chiral ri-hydroxyacetals are versatile intermediates for 
a variety of chiral building blocks (e.g., I ,2-diols, 0-hydroxy acids, 1,2-amino alco- 
hols), the new enantioselective transformation is also of synthetic significance. 

with a Low Molecular Weight Chiral Auxiliary 

Table 1.2. State of the art for the synthetic application of modified metallic catalysts. 

s u bstrate WR ' Catalyst Modifier E.e. (5%) TOF (l/h)" Ref. 

CH3COR Alk Ra-Ni Tartrate/NaBr"' 70-85 << I I101 
PhCOCF3 Pt/AI20? Cinchona alkaloid 56 I 50 [I51 
RCOCOOR' b, R/Alk,H Pt/A1203 Cinchona alkaloid 85-98 Low ->SO000 [7. 8, 161 
RCOCH(OR')1 WAIk Pt/AI,O, Cinchona alkaloid 50-97 Low->20000 [ 13, 141 

RCOCH2COOR' ') Alk/Et Ra-Ni TartratemaBr 83-98 < I  [I91 
CH3COCH2COCHI Ra-N i Tartrate/N aB r 9l(diol) I [201 

Alk, Aryl Pd/Ti02 Cinchona alkaloid 50-72 400 18, 211 
R AooH R 

- Pd black Vinca alkaloid 53 [221 

TOFs for complete conversion, rough estimates. h, In presence of pivalic acid. 'I Technical applica- a) 

tions with R'=Et have been reported. 



Assessment and challenges. Several transformations have already been developed for 
commercial applications or are mature to  be used on a technical basis 13, 41. There 
are some good and challenging ideas on the mode of action of the chiral catalysts. but 
by far no mechanism that explains all major effects or allows to design new catalysts. 
In  the case of the Pt-cinchona system, both catalyst and some of the modifiers are 
available commercially or easy to prepare. Neverthelcss, reproducibility is still an is- 
sue even here and especially for the Ni  catalysts. Furthermore, the preparation proce- 
dures (soaking in dilute solutions, extractions etc.) and pretreatments (high tempera- 
ture prereduction under hydrogen, sonication etc.) are often cumbersome. Besides 
these technical problems, the sensitivity for catalyst poisons and starting material qual- 
ity is a major drawback. Last but not least, the scope of thesc systems is still very nar- 
row, and only very few substrates give satisfactory activities and selectivities. 

The challenge for academia is further progress in understanding mechanisms, iden- 
tifying catalyst poisons and developing new catalytic systems. The challenge for cata- 
lyst producers is developing reproducible catalysts that do not need pretreatment and 
are less sensitive to poisoning, and for industrial process developers, optimizing exist- 
ing systems with respect to technical applicability. 

1.4.1.3 Metal Oxide Catalysts Modified with a Chiral Auxiliary 

Titanium-pillared montmorillonite (Ti-PILC) modified with tartrates was described as 
a heterogeneous Sharpless epoxidation catalyst [23]. Unfortunately, the results could 
not be reproduced by other laboratories. Very recently, tantalum tartrate complexes 
grafted to silica were described with e.e.’s of up to 98% and promising activities for 
the epoxidation of allylic alcohols. Remarkably, the homogeneous Ta-complex was 
neither stable nor catalytically active 1241. Metal oxides modified with histamine 
showed modest efficiencies for the kinetic resolution of activated aminoacid esters 
(kR/ks z 2) [2S]. Silica or alumina treated with diethyl aluminium chloride and 
menthol catalyzed the Diels-Alder reaction between cyclopentadiene and methacrolein 
with modest enantioselectivities of up to 3 1 % [26]. Zeolite HY, modified with chiral 
sulfoxides, had remarkable selectivities for the kinetic resolution of 2-butanol by de- 
hydration (ks/kR = 39). The enantioselectivity is due to the preferential acceleration of 
the dehydration of one enantiomer [27]. A NaY zeolite modified with norephedrine al- 
lowed the photocyclization of tropolone methyl ether with an e.e. of up to SO%, albeit 
not in a really catalytic fashion [28]. 

having Low Molecular Weight 

Assessment and challenges. Although solid acids and bases are increasingly applied 
for the catalytic synthesis of fine chemicals, chirally modified versions, though poten- 
tially interesting because of their variability, are definitely not ready for synthetic ap- 
plications. In many cases, the preparation of the catalysts is not trivial and not always 
reproducible. There is very little known about their mode of action, and few new con- 
cepts are currently being discussed. Filling this gap is an important fundamental chal- 
lenge for academic laboratories with a good background in metal oxide catalysis. 


