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Preface

“Please, pass the salt” is something that could be asked by microorganisms as
well as gourmets. How do cells transport nutrients? An essential feature of
all living organisms is the ability to accumulate nutrients against a concentra-
tion gradient and to excrete the various end products of metabolism. The
topic of microbial transport systems involves a variety of other issues, such as
generation of a membrane potential, homeostasis of ions, maintaining an
osmotic balance, excretion of enzymes and toxins, the release of hormones
and signals, drug resistance strategies, etc. The main cellular structure respon-
sible for nutrient transport is the plasma membrane, which may be accom-
panied by an outer membrane in the case of gram-negative bacteria. Due to
their long evolutionary development, microbial cells are the most diverse with
respect to transport. The various mechanisms of solute transport across these
membranes are so diverse that it is surprising that cells can manage the traffic
of so many different compounds simultaneously. Cells obviously avoid traffic
jams by two principal mechanisms, that is by up- or down-regulation and by
energetic activation and inactivation of transporters and channels. Although a
distinction between primary transporters (F-type ATPase, P-type ATPase, ABC-
ATPase), secondary transporters (major facilitators, channels) and group trans-
location is generally made, many more strategies occur. While channel-type
facilitated diffusion is common among pore-forming compounds, active trans-
port against a concentration gradient occurs via ABC transporters, P-type AT-
Pases, MFS transporters and group translocation. While some of these use direct
ATP hydrolysis for transport, MFS transporters use indirect energy from a mem-
brane potential, which in turn connects ion gradient to solute flow resulting in
uniport, symport and antiport mechanisms.

This diversity of transport systems has necessitated the development of a trans-
porter classification (TC) system (see Chapter 1 of Milton Saier).

It is the aim of the present book to demonstrate how some important nutrients
are transported into the cells, how proteins are excreted and how the diverse trans-
port mechanisms operate. Gene replacing techniques of transport genes, hydropa-
thy plots, mutational analysis and structural and functional genomics are modern
tools in transport biology which have led to unraveling the secrets of transport
mechanisms. Although this book cannot be comprehensive it should inspire and
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encourage further studies. Including every topic on transport would generate
a book three times this length and far too expensive – therefore, I hope to have
selected the essentials.

My thanks go to all authors for their willingness to participate in this project
and for producing their manuscripts so promptly. I am especially grateful to
Carl J. Carrano, Volkmar Braun, Klaus Hantke, Dick van der Helm and Milton
Saier for helpful suggestions and comments.

Tübingen Günther Winkelmann
June 2001
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Chapter 2, Fig. 1. Schematic presentation of
the F1FO ATP synthase. Overview of subunit
assembly and modeling of available structural
information from either NMR spectroscopy
or X-ray crystallographic analysis into the

electron density map of the E. coli F1FO complex
(taken from [7] with kind permission from
Nature). Corresponding references are quoted
in brackets.
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Chapter 2, Fig. 2. Catalysis within the
F1 complex – the binding change mechanism.
A Different conformations assumed sequen-
tially by each catalytic site during synthesis or
hydrolysis of ATP as subunit rotates 120 °
within the 3 3 hexamer. Sites are designated
as “open”  ( O, no nucleotide bound), “loose”
( L, ADP+ Pi bound), and “tight”  ( T, intercon-
version of bound ADP + Pi and ATP). The
sketch of the crystal structure from the bovine
heart F1 complex [5] is depicted as seen from
the membrane. Clockwise rotation of subunit
leads to ATP synthesis, whereas counter-clock-
wise rotation corresponds to ATP hydrolysis .
Based on kinetic data it is likely that during
steady state catalysis the “open”  site is
immediately occupied by another nucleotide.
B Circulating conformational changes within
the 3 3 hexamer as subunit rotates stepwise

at intervals of 120 °  each in counter-clockwise
direction (i. e., ATP hydrolysis). C Cross-section
through B. Nucleotide-dependent conforma-
tional changes within the C-terminal domain
of the -subunit during subunit rotation.
Whereas the C-terminal domain undergoes
spatio-temporal rearrangements during the
catalytic cycle (red color), the N-terminal
portion of subunit (green) retains an
approximately threefold symmetry around the
rotational axis. The N- and C-terminal domain
of subunit is depicted in gray and blue,
respectively. D Clipping of the subunit hinge
region in either “open”  (left) or “tight”  (right)
conformation. Refer to Sect. 4 for further
details. Molecular sketches are kindly provided
by Dr. G. Oster (Copyright © 2001, University
of California, Berkeley).
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Chapter 2, Fig. 5. Hand-over-hand pattern of
the proton translocation pathway within the
assembled FO complex. Structural sketches are
shown from four of the c-subunits (both the N-
and C-terminal helix, c- N and c- C, respectively)
as well as from the transmembrane domain
of the subunit b dimer (b1-34) and from the four
C-terminal helices of subunit a (a- C – a- C-3)
according to [92]. The assembly is presented as
seen from the F1 complex. The proposed func-
tional cycle for the translocation of one proton
is depicted according to the two-channel model
established for the E. coli ATP synthase. The
proton enters the complex via the inlet channel
from the periplasmic side of the membrane,
involving the positive stator charge aR210 (1).
In the resting state, residue aR210 is sand-
wiched by both a protonated and a deproto-

nated cD61 side chain at the periphery of the
subunit c oligomer. After proton transfer to
cD61 (2), the C-terminal helix of the newly
protonated monomer rotates 140 °  in order to
adopt its protonated orientation (3), resulting
in a fully protonated intermediate state of the
oligomer. Simultaneously, by the interaction
of cD61 and aR210 during helix rotation, the
subunit c ring is pushed to rotate contrarily one
step ahead (4), placing residue aR210 at the
interface of the subsequent set of neighboring
c-subunits. Concomitantly, residue cD61 of the
next c-subunit loses its proton to the cytoplas-
mic side via the outlet channel (not shown),
accompanied by rotation of the C-terminal helix
in order to regenerate the deprotonated con-
formation of the resting state.
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A

B

Chapter 4, Fig. 5. Ribbon representation of the
Thermococcus litoralis MalK dimer.The A- and
B-molecules are colored yellow and blue, re-
spectively, except for both regulatory domains
which are gray. Labels indicate numbers of
strands and helices according to the secondary
structure assignment given in Fig. 6. (A) The
side view shows the extended dumbbell shape
resulting from the two regulatory domains
on either end and the central ATPase domain
dimer. The pseudo-twofold symmetry axis is
oriented vertically and runs through the center
of the dimer. The strong involvement of
helices 2 and 4 in dimerization is seen. The

bottom part of the dimer is supposed to inter-
act with the TMDs MalFG. (B) The bottom view
along the pseudo-twofold axis shows the de-
viation from twofold symmetry. The helical layer
of one monomer is seen in contact with the two
upper layers containing the nucleotide binding
site of the other monomer. The symmetry axis
between strands 6 of both monomers seems
to provide a mechanical hinge for the dimer.
Residues Gln88 from both monomers are
shown to demonstrate their close apposition.
The A- and B-viewing directions are indicated.
Taken from [31] with permission from the
author and the publisher.
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