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Preface

Biological membranes display a wealth of physical phenomena including
phase transitions, propagating voltage pulses, variable permeability, struc-
tural transitions (as seen in endo- and exocytosis), and domain formation that
is thought to have an important influence on signal cascades. The title of this
book “Thermal Physics of Membranes” indicates that it deals in particular
with the thermodynamics of such systems. Thermodynamics is always true
because it is based on only two basic and intuitive laws: the conservation of
energy and the maximum entropy principle. Beyond that it is free of any ap-
proximations and assumptions. One therefore finds thermodynamics as a ba-
sis for physics on all length scales from atomic dimensions up to cosmological
scales. Naturally, thermodynamics is also true on the level of biological mem-
branes. We wish to introduce the reader to some of these principles and their
consequences concerning the behavior of membranes. Important topics in this
book are “phase diagrams” including domain formation and rafts, elasticity
and the related changes in vesicular shape, pulse propagation, permeability
as well as protein binding and electrostatics.

Biology deals with complex ensembles of organic molecules including pro-
teins, nucleic acids, and lipids, but also salts and water. Proteins often display
unique molecular surfaces that give rise to specific interactions. Much of bio-
physical research therefore has been dedicated to the study of structures and
interactions between individual molecules. Cells and their compartments are
defined by a large variety of membranes that not only surround the cell as
a whole but also each organelle as the nucleus, mitochondria, or the endo-
plasmic reticulum. On average 50% of the biomembrane mass stems from
proteins. The human genome contains about 30,000 genes encoding at least as
many proteins, many or most of those being membrane proteins.

The major building blocks of membranes, however, are hundreds or thou-
sands of different lipid species. The human body contains several kg of mem-
brane lipids with a total surface on the order of 0.4 km2 per kg. The plasma
membranes of one eucariot cell contains about 1010 lipid molecules. Although
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the diversity of lipids is seemingly smaller than that of proteins, lipid mem-
branes contain many molecules and are thus large ensembles.

Biological molecules usually do not only interact with one specific bind-
ing partner but also with the abundant lipid surfaces, with protons (because
macromolecules contain protonable groups), ions and, very importantly, with
water. Therefore one typically deals not with one interaction but rather with
many. Even if only a few of these interactions have a strength that is of inter-
est and even if one takes into account that one cell usually does not express all
the proteins that are encoded in the genome, it is immediately obvious that it
is a impossible to investigate all possible interactions. One further has to take
into account that the molecules may have different orientations and different
conformations further increasing the complexity. We leave it to the reader to
figure out how many different arrangements of, say, 200 lipid species in vari-
able concentrations and conformations in an ensemble of 1010 molecules are
possible—but the number is beyond any range that can ever be accessed by
computers. One must come to the conclusion that life will never be under-
stood on the basis of binary molecular interactions alone. In particular, many
cooperative phenomena such as the melting of lipid membranes are beyond
the scope of single molecule physics.

Thermodynamics is a fundamental discipline of physics that describes the
behavior of assemblies of molecules. It solely relies on two basic principles:
the law of the conservation of energy (first law) and the seemingly tautolog-
ical principle that a most likely state exists that is assumed with the highest
probability (second law). The latter principle is also known as the principle
of maximum entropy. These two principles are so general and universal that
the thermodynamic relations that are derived from them are also fundamen-
tally true. In the case of biological systems, the variety of proteins, lipids,
and ions is taken into account by their chemical potentials that are a function
of the concentrations of other molecules as well as of temperature, pressure,
voltage, or other intensive variables. In thermal equilibrium a multimolecular
ensemble like a membrane fluctuates around the state of maximum entropy.
If the system is not in equilibrium, the first derivative of the entropy consti-
tutes the thermodynamic forces, which are the forces that drive a system back
to equilibrium. The second derivatives of the entropy are related to suscep-
tibilities, for example, to the heat capacity or the elastic constants of mem-
branes. These properties of membranes are often easier to measure, for exam-
ple with calorimeters (heat capacity), ultrasonic velocity measurements (vol-
ume compressibility) or by vesicular shape fluctuations (bending elasticity).
Even though in thermal equilibrium the thermodynamics forces are zero, the
susceptibilities generally assume nonzero values. Since the different suscep-
tibilities are all second derivatives of the same thermodynamic function (the
entropy), they are not independent of each other, but one can find surprising
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relationships between various thermodynamic susceptibilities that can pro-
vide insights into the behavior of membranes that one would never be able to
predict on the basis of single molecule interactions. Many such relations stem
from the so-called Maxwell relation. We show two examples:(

dS
dp

)
T,ni

= −
(

dV
dT

)
p,ni

(0.1)

where S and V are the entropy and the volume of an ensemble, respectively,
including all their proteins and lipids—and all their conformations. This equa-
tion implies that the term on the left-hand side that is experimentally difficult
to access is identical to the volume expansion coefficient that is very easy to
measure. A second example is(

dμi

dnj

)
S,V,ni �=j

=
(

dμj

dni

)
S,V,nj �=i

(0.2)

This relation couples the chemical potential of one component to the variation
of another and demonstrates the symmetry of the coupling. In biochemical
textbooks such couplings usually do not play a role. This implies that the
findings shown in such books are not necessarily incorrect but definitely in-
complete. However, there are also examples where the molecular textbook
models are clearly in conflict with the laws of thermodynamics. The applica-
tion of thermodynamics therefore should not be considered as a method aver-
aging out the molecular details (and thereby losing information) but rather as
a means to gain considerable insight into all the couplings between seemingly
different processes.

In this textbook we will introduce the reader to the thermodynamic con-
cepts. Overall, our intention is to show the beautiful manner by which ther-
modynamics can link seemingly unrelated membrane processes resulting in a
unified picture of the behavior of membranes as a whole. Our aim therefore
is to present a coherent concept rather than achieving a complete presentation
of the field. This approach takes the risk that important results of respected
colleagues are not presented to the extent that they deserve.

Copenhagen, April 2007 Thomas Heimburg
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1
Membranes—An Introduction

In the second half of the 19th century it became evident that an osmotic bar-
rier separates the inside and the outside of cells (Nägeli and Cramer, 1855;
de Vries, 1871, 1884; Pfeffer, 1877). Plant cell protoplasts were permeable to
water but not to larger macromolecules like sucrose (de Vries, 1871). Pfeffer
was the first to study the osmotic pressure within cells and formulated the
idea that the protoplasm of cells is surrounded by a thin layer, which he called
the plasma membrane. In fact, Pfeffer proposed that this membrane does not
only cover the outer surface of cells but also separates all aqueous environ-
ments of different composition from each other. One may therefore consider
Pfeffer as the father of membrane theory. The developments in biology and
botany coincided with a rapid development in the theory of thermodynam-
ics of solutions. In particular, based on Pfeffer’s work van’t Hoff found the
formal analogy of concentrations of solutes in water and the partial pressures
of ideal gases (van’t Hoff, 1887). Ostwald formulated descriptions for the os-
motic pressure across semipermeable walls and the related electrical proper-
ties (Ostwald, 1887, 1890).1

1.1
Overton (1895)

Charles Ernest Overton is a very important figure in the development of a pic-
ture of cell membranes. He investigated the osmotic properties of cells and no-
ticed in the late 19th century that the permeation of molecules through mem-
branes is related to their partition coefficient between water and oil (Overton,
1895). Overton’s findings led to the hypothesis that the thin membranes sur-
rounding cells have the properties of oil. In his book on anesthesia (Over-
ton, 1901. Jena, Germany. English translation: Studies of Narcosis, Chapman
and Hall, 1991, R. Lipnick, Ed., 1991) he called the layers surrounding cells
“lipoids” made from lipids and cholesterol. The properties of lipids are de-
scribed in detail in Chapter 3 and theory of anesthesia is treated in Chapter 19.

1) The history of biomembrane research is nicely reviewed in Ling
(2001).
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1.2
Langmuir (1917) and Gorter and Grendel (1925)

Langmuir (1917) developed an apparatus in which molecular layers of lipids
were spread at the air–water interface. With this monolayer trough (see Sec-
tion 6.7 and Fig. 6.14) the lateral pressure of the monolayer films could be mea-
sured. Langmuir proposed that in the molecular film the polar head groups
were directed toward the water whereas the hydrophobic hydrocarbons are
pointed toward the air phase.

Gorter and Grendel (1925) experimentally investigated the surface area of
lipids. For this purpose they extracted the lipids from red blood cells of man,
dog, rabbit, sheep, guinea pig, and goat in acetone. The lipids were spread
on a water surface and the area was measured using a Langmuir film balance.
From the same blood preparations they measured the surface area of the red
blood cells from the microscopic images. They found that the surface area of
the monofilms was within error exactly two times that of the cells. They con-
cluded that cell membranes are made of two opposing thin molecular layers,
and they proposed that this double layer is constructed such that two lipid
layers form a bilayer with the polar head groups pointing toward the aqueous
environment (Fig. 1.1). This is the picture of the lipid membrane we know to-
day. As Robertson (1959) noted later, the attractive simplicity of Gorter’s and
Grendel’s pictures is also its greatest weakness since it fails to account for the
manifold of functions attributed to cell membranes.

Fig. 1.1 The cell membrane according to Gorter and Grendel (1925).
They proposed the lipid bilayer structure.

1.3
Danielli and Davson (1935)

The earliest molecular model for the biomembrane structure including pro-
teins was the model from Danielli and Davson (1935). They took into account
that the layers surrounding cells had a significant content of proteins adsorbed
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Fig. 1.2 Danielli and Davson (1935) pro-
posed a membrane model including proteins.
They used their model to interpret the ob-
servation of different membrane permeabili-
ties of ions and hydrocarbons. In particular,
they assumed that the membrane has both a
lipophilic and a hydrophilic character. Water-

containing regions in the membrane give rise
to ion transport depending on water content
of the membrane and its charge; lipophilic
parts are responsible for the transport of
water-insoluble molecules. Figure adapted
from Danielli and Davson (1935) with permis-
sion.

to the layers. It was known that phospholipids have an amphiphilic nature.
Furthermore, proteins investigated were mostly water soluble but neverthe-
less often adsorbed to membranes. Jim Danielli and Hugh Davson thus pro-
posed a model of the cell membrane consisting of a lipid bilayer, with which
a protein layer is tightly associated (Fig. 1.2, left). As in earlier membrane
studies (e.g., by Overton) they were in particular interested in the permeation
properties of membranes. In a theoretical paper they made the following con-
sideration.

• Proteins are adsorbed to the lipophilic layers surrounding cells. The pro-
teins possess hydrophobic interiors and a water-containing outer layer.

• The lipid layer possesses amphiphilic or charged head groups. This im-
plies that the lipid membrane also contains some water.

• The water-containing regions of protein layers adsorped on lipid layers
are permeable for charged solutes, e.g., ions.

• Divalent cations as calcium form complexes with lipids or proteins that
reduce their interaction with water. Therefore membranes containing
calcium are less permeable for ions.

• Hydrophobic molecules such as ether penetrate the membranes through
their lipophilic lipid part.
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They included some theoretical considerations about the different dependen-
cies of the permeabilities of membranes to ions and hydrophobic molecules as
a function of temperature.

Danielli and Davson concluded that the permeabilities of membranes
for solutes are explainable within the concepts of the physical chemistry of
the hydrophilic and lipophilic regions of the cell membranes and that no
particular chemical reactions including the solutes are needed to explain
the transport properties.

Unfortunately, this very sober view is nowadays not in the focus of much
of the biochemical membrane research due to the emphasis of the localized
function of ion- and solute-specific transport channel proteins. In the chapter
on permeability (Chapter 17) we will return to the quite realistic physical view
of Danielli and Davson.

Danielli and Davson did not exclude the possibility that the proteins may
span the membrane such that a “mosaic” of protein-rich and lipid-rich regions
is formed. However, they did restrain themselves from speculating about such
a structure due to the lack of experimental evidence. The term “mosaic mem-
brane” was later used again by Singer and Nicolson (1972).

1.4
Robertson (1958)

So far most evidence about the structure of cell membranes was indirect. The
resolution of light microscopy is restricted to the regime above 200 nm, which
is not sufficient for revealing the bimolecular structure of the biological mem-
brane that is between 5 and 10 nm thick. This changed with the progresses
in electron microscopy. In 1959, J. David Robertson wrote a review in which

Fig. 1.3 Two opposing plasma membranes showing the double-layer
character of the membranes. Picture taken from Bloom and Fawcett
(1994) © Springer. Such images support the view of Gorter and Gren-
del (1925) and of Danielli and Davson (1935).
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Fig. 1.4 Robertson (1959) collected electron microscopy images of
many cells and organelles. His picture of a biological membrane re-
sembles that of Danielli and Davson (1935). However, it is now based
on microscopic evidence. Reproduced with permission from Robertson
(1959) © The Biochemical Society.

he collected his evidence for a unique membrane structure obtained from the
then advanced electron microscopy (Robertson, 1959). He basically confirmed
the models of Gorter and Grendel (1925) and Danielli and Davson (1935). In
his review he carefully described the membrane structures of the different or-
ganelles including the double membrane layers of mitochondria and the cell
nucleus (Fig. 1.3). He also described the membranes of nerve cells and rec-
ognized that the Schwann cells form membrane layers surrounding the nerve
membranes. Robertson’s conclusion was that all evidence points at a common
construction principle for all membranes of biological cells. They form a three-
layered structure and are about 7.5 nm thick. In Robertson’s view two protein
layers are adsorbed to the lipid bilayer (see Fig. 1.4). As he noted himself this
picture is in agreement with that of Danielli and Davson (1935). Remember,
however, that the aim of Danielli was rather to explain selective transport of
ions and apolar molecules. Robertson’s model was sometimes incorrectly in-
terpreted as that all membranes have the same composition. However, Robert-
son’s statement was merely meant to describe a common structure.

1.5
The Fluid Mosaic Model of Singer and Nicolson (1972)

In the 1960s, the structures of a number of soluble proteins were solved by
X-ray crystallography. Lenard and Singer (1966) found that many membrane
proteins have a high α-helical content. Also, electron micrographs revealed
that labeled proteins form isolated spots in some membranes. Furthermore,
they considered the role of hydrophobic amino acids in α-helices. From this
Singer and Nicolson concluded that proteins may also span through mem-



6 1 Membranes—An Introduction

branes. This led to the famous Singer–Nicolson model (Singer and Nicolson,
1972) also known as the “fluid mosaic model.” This model can be summarized
as follows: Membranes are constructed from lipids and proteins. The proteins
form mainly two classes. Peripheral proteins are those proteins that are only
loosely attached to the membrane surface and can easily be separated from the
membrane by mild treatment (e.g., cytochrome c in mitochondria or spectrin
in erythrocytes). Integral proteins, in contrast, cannot easily be separated from
the lipids. They form the major fraction of membrane proteins. The structure
forming unit (matrix) is the lipid double layer (bilayer). Proteins may be either
adsorbed to the membrane surface or span through the membrane (Fig. 1.5).
The term “fluid mosaic model” used by Singer and Nicolson probably origi-
nates from Danielli and Davson (1935) although their paper was not cited.

Fig. 1.5 The “fluid mosaic model” of Singer and Nicolson (1972). The
left side shows the lipid bilayer including globular proteins intercalated
with the membrane, and transmembrane proteins. The membrane pro-
teins are not all distributed homogeneously. Reprinted with permission
from AAAS.

Singer and Nicolson (1972) underlined that some proteins seem to inter-
act with the surrounding lipids and that protein function may depend on the
presence of specific lipids (see Fig. 1.6). They proposed that the proteins are
surrounded by a layer of strongly interacting lipids while most of the remain-
ing lipids are hardly influenced by the presence of proteins. This implies that
the lipids form a matrix and no long-range order of proteins exists within the
matrix. Short range order due to protein–protein interactions (possibly me-
diated by specific lipids) was considered as a possibility (see Fig. 1.6). Such
interactions are discussed in Chapter 9. It was postulated that the lipid mem-
branes of biological cells are in the fluid lipid state (with exceptions, e.g., the
myelin) in which proteins can freely diffuse. In this respect an interesting
paper by Frye and Edidin (1970) showed that when two different cells with
different proteins are forced to fuse, the proteins redistribute over the whole
surface within 40 min. This finding supports the view of freely diffusing pro-
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Fig. 1.6 Protein distribution in erythrocyte membranes from Singer
and Nicolson (1972). Specific proteins were labeled with antibodies.
The circles indicate protein clusters with a diameter of about 30 nm.
Reprinted with permission from AAAS.

teins in cell membranes. Singer and Nicolson also noted that the fluid mosaic
membrane is most likely asymmetric and displays distinctly different features
on the inside and the outside of cells. Asymmetry of membrane lipids has
in fact been found in experiments (Rothman and Lenard, 1977; Rothman and
Kennedy, 1977). Also, proteins are now known to display preferential orien-
tations in membranes.

The Singer–Nicolson model still is the widely accepted model. In particular,
due to progresses in the crystallization of membrane proteins it is nowadays
known that membrane proteins display α-helical or β-barrel-like membrane
spanning segments of predominantly apolar amino acids.

1.6
The Mattress Model by Mouritsen and Bloom (1984)

The fluid mosaic model of Singer–Nicolson has nowadays experienced some
refinement, which takes into account that lipids and proteins may distribute
inhomogeneously and that domains and clusters may form within the mem-
brane. Without explicitly saying so, the Singer–Nicolson model considered
the lipid membrane as a homogeneous fluid in which the proteins diffuse in
two dimensions. In 1984, Mouritsen and Bloom (1984) proposed the mattress
model (Fig. 1.7) that suggests that proteins and lipids display interactions with
a positive free energy content due to variations in the hydrophobic length of
the molecules (see Section 9.1). The typical thickness of a lipid bilayer is about
5 nm. If the hydrophobic core of a membrane protein is longer or shorter than
this length, either some hydrophobic protein or lipid segments are exposed
to water, or the lipid membrane has to be deformed to compensate for the
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Fig. 1.7 The mattress model from Mouritsen and Bloom (1984). This
model takes into account that the hydrophobic core of proteins may
not match the bilayer thickness. This leads to interfacial tensions and
capillary forces between protein and lipids. With permission from Bio-
phys. J.

unfavorable hydrophobic interactions. This effect is called the “hydrophobic
matching.” The hydrophobic matching gives rise to interfacial tensions be-
tween lipids and proteins. These tensions may result in the accumulation of
certain lipid species around the proteins (see Fig. 1.8), and in the mutual attrac-
tion of proteins due to capillary forces, leading to aggregation and clustering
of proteins.

Fig. 1.8 In the mattress model the proteins may influence the lipids in
their vicinity. Picture courtesy to O. G. Mouritsen.

1.7
Domain Formation and Protein Clusters

Similar arguments as for the matching of lipids and proteins lead to the as-
sumption that also different lipid species may not match perfectly. Biologi-
cal membranes contain hundreds of different lipid species with variable head
group and chain composition (Chapter 3). Most lipids possess two apolar
hydrocarbon chains with variable length. Furthermore, lipid membranes un-
dergo melting transitions, which are accompanied by changes in the effective
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lipid chain length (Chapter 6). Thus, also the lipids within the membrane
plain can form various clusters, domains, and aggregates. A modern view
of biological membranes has to include the phase behavior of the lipid and
protein components (Chapters 7–9).

The phase behavior of membranes becomes especially interesting if one con-
siders cooperative transitions in the biological membrane. Native membranes
show several cooperative events in direct proximity of growth or body tem-
perature. As an example a calorimetric experiment on native E. coli mem-
branes grown at 37◦ is shown in Fig. 1.9. Slightly below growth temperature
a cooperative lipid melting peak is found. Above growth temperature several
protein unfolding peaks can be seen.

Fig. 1.9 A calorimetric experiment on a native E. coli membrane
shows that lipid melting events take place slightly below growth tem-
perature. Above growth temperature a number of protein unfolding
events take place. Adapted from Heimburg and Jackson (2007a).

During lipid melting transitions the thickness of lipid membranes and the
lateral lipid distribution changes. This is of extreme interest for regulation and
signal transduction purposes in such membranes (Section 9.5 and Chapter 10).
The mattress model implied that the matching of the dimensions of lipids
and proteins influences the lipid recruiting around proteins and the lateral
arrangement of proteins due to attractive forces from capillary effects. Thus,
such transitions are linked to the formation of domains and clusters. Some
examples are shown in Fig. 1.10. The left-hand panel shows a fluorescence
microscopy image of a monolayer consisting of one single lipid. The dark re-
gions represent ordered lipid domains while the bright regions represent dis-
ordered chains. The center panel shows domain formation phenomena in the
fluorescence microscopy image of a giant lipid vesicle made from a lipid mix-
ture. Giant vesicles are lipid bilayer vesicles that have similar dimensions to
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Fig. 1.10 Domain formation in lipid mono-
layers, bilayers, and in biological cells. Left:
Domain formation in the phase coexistence
regime of DPPC monolayers. The dimension
of the panel is about 100 μm. From Gud-
mand/Heimburg, NBI Copenhagen. Center:
Confocal fluorescence microscopy image
of domain formation in a giant lipid vesicle

(DLPC:DPPC = 30:70 at room tempera-
ture). The size of the vesicle is about 30 μm
in diameter. From Fidorra/Heimburg, NBI
Copenhagen. Right: Placental alkaline phos-
phatase distribution in fibroblast. The size
of the segment is about 4 μm. From Harder
et al. (1998).

biological cells. The right-hand panel shows the formation of protein clusters
(placental alkaline phosphatase=PLAP) in a fibroblast cell form (Harder et al.,
1998). In this paper it was shown that different proteins species tend to colo-
calize in different regions of the cell membrane. In biomembranes a special
kind of domain called “raft” is presently highly discussed. Rafts are thought
to be microdomains consisting predominantly of sphingolipids, cholesterol
and certain GPI-anchored proteins. These phenomena are discussed in much
more detail in Chapters 8 and 9.

Domain formation is also interesting for the electrostatic properties of mem-
branes. Many membrane components carry charges. Thus, domain formation
leads to inhomogeneities in electrostatic potential and to the preferential bind-
ing of proteins.

1.8
Perspectives of this Book

The biological membrane resembles the picture in Fig. 1.11, showing varia-
tions in the membrane thickness, the presence of peripheral and transmem-
brane proteins, as well as the formation of lipid and protein domains (Chap-
ters 8 and 9). The thermodynamics of such phenomena is an essential part of
this book. Cooperative transitions also influence the elastic constants (Chap-
ter 14). Thus, rearrangement of proteins and lipids is also generally linked
to alterations of membrane elasticity and compressibility. Due to the cou-
plings in the thermodynamic equations these relations go in both directions
meaning that changes in the membrane curvature by necessity have to change
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Fig. 1.11 The modern picture of membranes allows for lateral hetero-
geneities, cluster and domain formation within the membrane plane.
Picture generated by H. Seeger, NBI Copenhagen.

lipid distributions. If the melting of membranes leads to the rearrangement
of proteins and a related change of the elastic constants, then conversely a
change in protein distribution will lead to a change in the physical state of the
membrane, and bending will influence melting and protein distributions. The
elastic constants are responsible for many changes in the geometry of mem-
branes (Chapter 15), for the possibility of mechanical excitations propagating
in membranes (Chapter 18), and for changes in permeability (Chapter 17).
Since some of the membrane components carry charges, generally domain
formation also leads to heterogeneities in the electrostatic potential and to a
coupling of electrostatic fields to the phase behavior of membranes.

The subjects treated in this book include

• composition and structure of biological membranes (Chapters 2 and 3),

• the role of water and the hydrophobic effect (Chapter 5),

• phase behavior and domain formation (Chapters 6–9),

• lipid–protein interactions (Chapter 9) and protein binding to surfaces
(Chapter 12),

• diffusion in membranes containing domains (Chapter 10),

• electrostatics and its influence on protein binding (Chapter 11),

• the elastic constants and how they are influenced by temperature, pres-
sure, protein binding, and other thermodynamic variables (Chapters 13
and 14),



12 1 Membranes—An Introduction

• changes in membrane geometry due to changes in the elastic constants
(Chapter 15),

• relaxation phenomena (Chapter 16),

• some considerations on the permeability of membranes for ions and
larger molecules and how it is related to the thermodynamics of the
membrane (Chapter 17).

• the propagation of density pulses and a related thermodynamic theory
for the propagation of nerve pulses (Chapter 18),

• a thermodynamic theory for anesthesia (Chapter 19),

The function of the biological membrane cannot be understood without con-
sideration of its thermodynamics. It is a multicomponent system that sensi-
tively responds to changes in temperature, pressure, and the chemical poten-
tials of its components. Therefore, this book also contains a basic introduction
into thermodynamics (Chapter 4). The purpose of this book is to describe the
concepts of thermodynamic couplings of seemingly independent properties of
membranes. It will be shown that all of the above phenomena are intimately
related and fit into a coherent thermodynamic picture.


