

Hans-Jürgen Quadbeck-Seeger

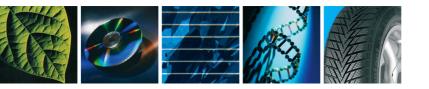
World of the Elements Elements of the World

With kind support from

The Chemical Company

WILEY-VCH Verlag GmbH & Co. KGaA

1 H Hydrogen 1.008									of of of Pu				12. 19	1.64	
3 Li Lithium 6.941	4 Be Beryllium 9.012		 hydrogen noble gases 												
11 Na Sodium 22.99	12 Mg Magnesium 24.30				alkali n alkaline semime	e-earth	metals								
19 K Potassium 39.10 37 Rb Rubidium	20 Ca Calcium 40.08 38 Sr Strontium	21 SC Scandium 44.96 39 Y Yttrium			nonmet metals lanthar actinid	tals nides									
85.47 55 Cs Cesium 132.9	87.62 56 Ba Barium 137.3	88.91 57 La Lanthanum 138.9	58 Ce _{Cerium} 140.1	59 Pr Praseodymium 140.9	60 Nd Neodymium 144.2	61 Pm Promethium 146.9	62 Sm ^{Samarium} 150.4	63 Eu Europium 152.0	64 Gd Gadolinium 157.2	65 Tb Terbium 158.9	66 Dy _{Dysprosium} 162.5	67 HO Holmium 164.9	68 Er Erbium 167.3	69 Tm Thulium 168.9	70 Yb Ytterbium 173.0
87 Fr Francium 223.0	88 Ra Radium 226.0	89 Ac Actinium 227.0	90 Th Thorium 232.0	91 Pa Protactinium 231.0	92 U Uranium 238.0	93 Np Neptunium 237.0	94 Pu Plutonium 244.1	95 Am Americium 243,1	96 Cm ^{Curium} 247.1	97 Bk ^{Berkelium} 247.1	98 Cf Californium 251.1	99 Es Einsteinium 252.1	100 Fm Fermium 257.1	101 Md Mendelevium 258.1	102 No Nobelium 259.1


1 2

3

all lanthanides and actinides belong to group 3

															2 He Helium 4.003
										5	6	7	8	9	10
										В	С	Ν	0	F	Ne
										Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
										10.81 13	12.01 14	14.01 15	16.00 16	19.00 17	20.18 18
										Âl	Si	P	S	Ćĺ	År
										Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
										26.98	28.09	30.97	32.07	35.45	39.95
	22	23	24	25	26	27	28	29	30	31	32	33	34	35 Dat	36
	Ti Titanium	V Vanadium	Cr	Mn Manganese	Fe	Co Cobalt	Ni Nickel	Cu Copper	Zn	Ga Gallium	Ge Germanium	As Arsenic	Selenium	Br Bromine	Kr Krypton
	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.41	69.72	72.64	74.92	78.96	79.90	83.80
	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag Silver	Cd	In	Sn	Sb	Те	Ι	Хе
	Zirconium 91.22	Niobium 92.91	Molybdenum 95.94	Technetium 98.91	Ruthenium	Rhodium	Palladium	Silver 107.9	Cadmium 112.4	Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium	Iodine 126.9	Xenon 131.3
71	72	73	^{95.94}	75	76	77	78	79	80	81	82	83	84	85	86
Lu	ĤĒ	Ta	Ŵ	Re	0s	Îr	Pt	Au	Hg Mercury	Ťĺ	Pb	Bi	Po	At	Řn
Lutetium	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold		Thallium	Lead	Bismuth	Polonium	Astatine	Radon
175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209.0	210.0	222.0
103	104	105	106	107	108	109	110 Do	111 Der	112		114				
Lr Lawrencium	Rf Rutherfordium	Db Dubnium	Sg Seaborgium	Bh Bohrium	Hs Hassium	Mt Meitnerium	Ds Darmstadtium	Rg Roentgenium	Uub		Uuq				
262.1	261.1	(262)	(266)	(264)	(277)	(268)	(271)	(272)							
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

H.-J. Quadbeck-Seeger

World of the Elements Elements of the World

Translated by José Oliveira

1. Edition 2007

Impressum:

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:

applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at <http://dnb.d-nb.de>.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – or transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Author:

Prof. Dr. Hans-Jürgen Quadbeck-Seeger 67098 Bad Dürkheim, Germany

Artwork & design:

Gunther Schulz 67136 Fußgönheim, Germany

Typesetting:Gunther Schulz, FußgönheimPrinting:betz-druck GmbH, DarmstadtBinding:Litges & Dopf GmbH, Heppenheim

Printed in the Federal Republic of Germany Printed on acid-free paper

ISBN: 978-3-527-32065-3

Hans-Jürgen Quadbeck-Seeger

World of the Elements Elements of the World

With kind support from

The Chemical Company

WILEY-VCH Verlag GmbH & Co. KGaA

Preface

"What does the world consist of?" This leads to the next question: "Who were the researchers who discovered this?" They should not be forgotten by us, who take almost for granted all the advantages of progress. After all, the discovery of the Through these discoveries we know what stars are and we know which elements are essential for periodic trend. life.

century Europe to scientific chemistry allowed the element has not only its own history but also its discovery of more and more new elements through the thirst for knowledge, intuition, patience, and even luck. Known materials such as gold, silver, and the corresponding number of electrons in the copper, iron, and lead were "suspected" to be elements relatively early. Despite all the best efforts, these materials could not be broken down so to speak. There are relationships, but each into further components, and hence their being elements was consistent with the then generally recognized definition of John Dalton, which was also staunchly supported by Antoine de Lavoisier. from everyday life where we would encounter

Attention — this is not a textbook! It is also New scientific methods (e.g. electrolysis) allowed not meant to replace one. Nevertheless, there is the veteran elements to be joined stepwise by a lot to be learnt, albeit in a different manner more and more unknown and unexpected subfrom that in which chemistry is normally pre-stances that fulfilled the criteria for an element. sented. The initial question is old and simple: In 1869, after many attempts to bring order into the growing chaos, Dimitri Mendeleev revealed a daring concept with his Periodic Table and its predictions. Each of the then known elements was assigned a place. The gaps represented elements that were not yet known. The discoveries of such 92 elements that occur in the universe and that elements proved that there was an order and syscan also be found on Earth is one of the greatest tem to the elements. This order explained much accomplishments of human intellectual curiosity. that was previously puzzling, for instance, the different atomic radii observed that same year by made of, we know the composition of the Earth, Julius Lothar Meyer, which seemed to follow a

The representation of the periodic system in The transition of empirical alchemy in 18th this book shows yet another perspective. Each own identity. This is determined by the number of protons in the nucleus (the atomic number) atomic shell. These electrons, in turn, give each element their properties, their "personalities", element is unique in the sum of its properties. The text describes the particularities of each element, and the chosen picture indicates a scene the element. They are often hidden in functional how molecules interact with each other. The prinsystems such as electronics, or they impart particular properties to alloys, such as hardness and magnetism.

The tables and graphics at the end of the book provide an overview of how everything is connected. In general, it can be quite cumbersome for some to put together such a wealth of information. Hopefully, the selection presented will facilitate the search. Like all historical precedents, the discovery of the elements was complex and often multitracked. Some discoveries "were floating in the air" and were made independently by several researchers. Hence, even the authoritative literature leaves some questions unanswered, for example, regarding absolute priorities. These have been selected to the best of knowledge and belief, but unavoidable subjectivity should be borne in mind.

Chemistry would not be done justice if only the past and the status quo were discussed. Today, new heavy elements are discovered in nuclear accelerators as a result of their decomposition traces and are of interest in nuclear physics. The Periodic Table provides building blocks for new areas of chemistry. The possibilities for combining elements into defined compounds is far from exhausted, even though about 30 million have been described to date. Besides the question as to how molecules react with each other, a new phenomenon is becoming increasingly important: Hans-Jürgen Quadbeck-Seeger

ciple of self-assembly was a condition for the origin of life. The targeted use of this fascinating property of materials to build functional systems is still in its infancy. An exciting phenomenon is the erratic change in properties as the particles of the material become very small. The door to the nanoworld (nano = 10^{-9} m) has only just been opened, but already fascinating perspectives with great potential can be seen in the transition from classical physics to quantum mechanics. Catalysis and materials science are undergoing dynamic developments. And finally, we are all aware of how molecular biology is rapidly developing at the interface of chemistry and biology. The Periodic Table is the foundation for the tower of knowledge and application of chemistry. The challenge for chemistry is and will remain the exploration of this knowledge for the good of mankind.

I am deeply grateful to many friends and colleagues, especially at BASF AG, for their help in collecting materials for this book. I am equally indebted to the imaginative graphic designer Gunther Schulz and the ever helpful colleagues at Wiley-VCH, without whose help this book would not have come together.

June 2007

Table of Contents ö ő 0 00 00 00 00 00 စစ်စ ဝစ်ဝ ဝစ်ဝ စစ်စ

bout the Historical Periodic Table nd the Chemometer Data and Facts	6
he History of the Atomic Model	16
he Elements of the World Properties, Discovery, Occurance & Applications	25
Vhere to from Here?	83
he Elements and Life	84
he Elements in Culture and Language	88
hemical Olympics Interesting Facts from the World of Chemistry	90
all of a Winged Word	95
Vater	96

Appendix

Chronology of the Discovery of the Elements	98				
Places of Discovery	99				
Periodicity of Atomic Properties	100				
Abundance of the Elements	102				
World Production of Elements and Raw Materials					
Nobel Prize Winners	106				
Alternative Representations of the Periodic System					
Occupation of the Shells and Orbitals	108				
The World of the Elements — Literature	109				
Sources of Photograph	110				

About the **Historical Periodic Table** and the **Chemometer**

These two new representations arouse curios-The Periodic Table Through Hist ity about the elements, their discovery, and their characteristics. And Who Charted the Elemen where can they be found? The close relationships between their properties and their importance in our lives and for civilization are made apparent. **Chemometer:** www.corporate.basf.com **WILEY-VCH**