Separation of Multiphase, Multicomponent Systems

WILEY-VCH Verlag GmbH & Co. KGaA

Emmanuil G. Sinaiski and Eugeniy J. Lapiga Separation of Multiphase, Multicomponent Systems

1807–2007 Knowledge for Generations

Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Resce

William J. Pesce President and Chief Executive Officer

The Booth Willey

Peter Booth Wiley Chairman of the Board

Separation of Multiphase, Multicomponent Systems

WILEY-VCH Verlag GmbH & Co. KGaA

The Authors

E. G. Sinaiski Leipzig, Germany e-mail: egsin@t-online.de

E. J. Lapiga

Moscow, Russia e-mail: npfeitek@mtu-net.ru

Cover

E. J. Lapiga: Oil rig, developed by EITEK

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.d-nb.de>.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany Printed on acid-free paper

Composition Asco Typesetters, Hong Kong Printing strauss GmbH, Mörlenbach Bookbinding Litges & Dopf GmbH, Heppenheim Cover Design aktivComm GmbH, Weinheim Wiley Bicentennial Logo Richard J. Pacifico

ISBN 978-3-527-40612-8

Contents

Preface XI

List of Symbols XIII

I Technological Fundamentals of Preparation of Natural Hydrocarbons for Transportation 1 ۱v

Introduction 3

- 1 Technological Schemes of Complex Oil, Gas and Condensate Processing Plants 7
- 2 Construction of Typical Apparatuses 13
- 2.1 Separators, Dividers, and Settlers 13
- 2.2 Absorbers 27
- 2.3 Cooling Devices 36
- Basic Processes of Separation of Multi-phase, Multi-component Hydrocarbon Mixtures 39 References 40
- II Physical and Chemical Bases of Technological Processes 43

4 The Transfer Phenomena 45

- 4.1 Phenomenological Models 45
- 4.2 Momentum Transfer 46
- 4.3 Thermal Conduction and Heat Transfer 51
- 4.4 Diffusion and Mass Transfer 51
- 4.5 Electro-Conductivity and Charge Transfer 55
- 5 Conservation Laws and Equations of State 57
- 5.1 Isothermal Processes 57
- 5.2 Non-isothermal Processes 61

- Contents
 - 5.3 Multi-Component Mixtures 65
 - 5.4 Multi-Phase Mixtures 70
 - 5.5 Charged Mixtures 75
 - The Criteria of Similarity 78 5.6
 - 5.7 The State Equations 82
 - The State Equation for an Ideal Gas and an Ideal Gas Mixture 5.7.1 82
 - 5.7.2 The State Equation for a Real Gas and a Real Gas Mixture 86
 - Methods of Calculation of Liquid-Vapor Equilibrium 91 5.7.3
 - 5.8 Balance of Entropy – The Onsager Reciprocal Relations 93 References 103
 - ш Solutions 105
 - 6 Solutions Containing Non-charged Components 107
 - Diffusion and Kinetics of Chemical Reactions 107 6.1
 - Convective Diffusion 112 6.2
 - Flow in a Channel with a Reacting Wall 6.3 116
 - Reverse Osmosis 119 6.4
 - 6.5 Diffusion Toward a Particle Moving in a Solution 128
 - Distribution of Matter Introduced Into a Fluid Flow 6.6 133
 - Diffusion Flux in a Natural Convection 140 6.7
 - 6.8 Dynamics of the Bubble in a Solution 145
 - 6.9 Evaporation of a Multi-component Drop Into an Inert Gas 151
 - 6.10 Chromatography 160
 - The Capillary Model of a Low-permeable Porous Medium 6.11 164

7 Solutions of Electrolytes 167

- 7.1 Electrolytic Cell 167
- 7.2 Electrodialysis 175
- 7.3 Electric Double Layer 182
- Electrokinetic Phenomena 7.4 186
- 7.5 Electroosmosis 187 References 192
- IV Suspensions and Colloid Systems 195

8 **Suspensions Containung Non-charged Particles** 197

- 8.1 Microhydrodynamics of Particles 197
- Brownian Motion 211 8.2
- 8.3 Viscosity of Diluted Suspensions 222
- Separation in the Gravitatonial Field 228 8.4
- Separation in the Field of Centrifugal Forces 237 8.5

9 Suspensions Containing Charged Particles 245

- 9.1 Electric Charge of Particles 245
- 9.2 Electrophoresis 247

- 9.3 The Motion of a Drop in an Electric Field 253
- 9.4 Sedimentation Potential 257
- 10 Stability of Suspensions, Coagulation of Particles, and Deposition of Particles on Obstacles 259
- 10.1 Stability of Colloid Systems 259
- 10.2 Brownian, Gradient (Shear) and Turbulent Coagulation 266
- 10.2.1 Brownian Coagulation 268
- 10.2.2 Gradient (Shear) Coagulation 270
- 10.2.3 Turbulent Coagulation 272
- 10.3 Particles' Deposition on the Obstacles 275
- 10.3.1 Brownian Diffusion 276
- 10.3.2 Particles' Collisions with an Obstacle 278
- 10.4 The Capture of Particles Due to Surface and Hydrodynamic Forces 280
- 10.5 Inertial Deposition of Particles on the Obstacles 288
- 10.6 The Kinetics of Coagulation 289
- 10.7 The Filtering and a Model of a Highly Permeable Porous Medium with Resistance 293
- 10.8 The Phenomenon of Hydrodynamic Diffusion 296 References 297
- V Emulsions 301

11 Behavior of Drops in an Emulsion 303

- 11.1 The Dynamics of Drop Enlargement 303
- 11.2 The Basic Mechanisms of Drop Coalescence 312
- 11.3 Motion of Drops in a Turbulent Flow of Liquid 317
- 11.4 Forces of Hydrodynamic Interaction of Drops 325
- 11.5 Molecular and Electrostatic Interaction Forces Acting on Drops 330
- 11.6 The Conducting Drops in an Electric Field 333
- 11.7 Breakup of Drops 338
- 12 Interaction of Two Conducting Drops in a Uniform External Electric Field 347
- 12.1 Potential of an Electric Field in the Space Around Drops 347
- 12.2 Strength of an Electric Field in the Gap Between Drops 355
- 12.3 Interaction Forces of Two Conducting Spherical Drops 361
- 12.4 Interaction Forces Between Two Far-spaced Drops 367
- 12.5 Interaction of Two Touching Drops 370
- 12.6 Interaction Forces Between Two Closely Spaced Drops 379
- 12.7 Redistribution of Charges 388

13 Coalescence of Drops 393

- 13.1 Coalescence of Drops During Gravitational Settling 393
- 13.2 The Kinetics of Drop Coalescence During Gravitational Separation of an Emulsion in an Electric Field 410

- VIII Contents
 - 13.3 Gravitational Sedimentation of a Bidisperse Emulsion in an Electric Field 416
 - 13.4 The Effect of Electric Field on Emulsion Separation in a Gravitational Settler 419
 - 13.5 Emulsion Flow Through an Electric Filter 423
 - 13.6 Coalescence of Drops with Fully Retarded Surfaces in a Turbulent Emulsion Flow 430
 - 13.7 Coalescence of Drops with a Mobile Surface in a Turbulent Flow of the Emulsion 436
 - 13.7.1 Fast Coagulation 440
 - 13.7.2 Slow Coagulation 443
 - 13.8 Coalescence of Conducting Emulsion Drops in a Turbulent Flow in the Presence of an External Electric Field 451
 - 13.9 Kinetics of Emulsion Drop Coalescence in a Turbulent Flow 456 References 458
 - VI Gas-Liquid Mixtures 463

14 Formation of a Liquid Phase in a Gas Flow 465

- 14.1 Formation of a Liquid Phase in the Absence of Condensation 466
- 14.2 Formation of a Liqid Phase in the Process of Condensation 469

15 Coalescence of Drops in a Turbulent Gas Flow 481

- 15.1 Inertial Mechanism of Coagulation 483
- 15.2 Mechanism of Turbulent Diffusion 484
- 15.3 Coalescence of a Polydisperse Ensemble of Drops 488

16 Formation of a Liquid Phase in Devices of Preliminary Condensation 495

- 16.1 Condensation Growth of Drops in a Quiescent Gas-Liquid Mixture 495
- 16.2 Condensation Growth of Drops in a Turbulent Flow of a Gas–Liquid Mixture 505
- 16.3 Enlargement of Drops During the Passage of a Gas–Liquid Mixture Through Devices of Preliminary Condensation 514
- 16.4 Formation of a Liquid Phase in a Throttle 519
- 16.5 Fomation of a Liquid Phase in a Heat-Exchanger 531

17 Surface Tension 539

- 17.1 Physics of Surface Tension 539
- 17.2 Capillary Motion 545
- 17.3 Moistening Flows 548
- 17.4 Waves at the Surface of a Liquid and Desintegration of Jets 552
- 17.5 Flow Caused by a Surface Tension Gradient The Marangoni Effect 561
- 17.6 Pulverization of a Liquid and Breakup of Drops in a Gas Flow 573

18 Efficiency of Gas-Liquid Separation in Separators 581

- 18.1 The Influence of Non-Uniformity of the Velocity Profile on the Efficiency Coefficient of Gravitational Separators 584
- 18.2 The Efficiency Coefficient of a Horizontal Gravitational Separation 587
- 18.3 The Efficiency Coefficient of Vertical Gravitational Separators 593
- 18.4 The Effect of Phase Transition on the Efficiency Coefficient of a Separator 595
- 18.5 The Influence of Drop Coalescence on the Efficiency Coefficient of a Separator 601
- 18.6 The Effect of Curvature of the Separator Wall on the Efficiency Coefficient 603
- 18.7 The Influence of a Distance Between the Preliminary Condensation Device and the Separator on the Efficiency Coefficient 604

19 The Efficiency of Separation of Gas-Liqid Mixtures in Separators with Drop Catcher Orifices 607

- 19.1 The Efficiency Coefficient of Separators with Jalousie Orifices 608
- 19.2 The Efficiency Coefficient of a Separator with Multicyclone Orifices 610
- 19.3 The Efficiency Coefficient of a Separator with String Orifices 618
- 19.4 The Efficiency Coefficient of a Separator with Mesh Orifices 629

20 Absorption Extraction of Heavy Hydrocarbons and Water Vapor from Natural Gas 635

- 20.1 Concurrent Absorption of Heavy Hydrocarbons 635
- 20.2 Multistage Concurrent Absorption of Heavy Hydrocarbons 641
- 20.3 Counter-Current Absorption of Heavy Hydrocarbons 646
- 20.4 Gas Dehydration in Concurrent Flow 650
- 20.5 Gas Dehydration in Counter-Current Absorbers with High-Speed Separation-Contact Elements 659

21 Prevention of Gas-Hydrate Formation in Natural Gas 667

- 21.1 The Dynamics of Mass Exchange between Hydrate-Inhibitor Drops and Hydrocarbon Gas 671
- Evolution of the Spectrum of Hydrate-Inhibitor Drops Injected into a Turbulent Flow 682
 References 695
- VII Liquid-Gas Mixtures 699

22 Dynamics of Gas Bubbles in a Multi-Component Liquid 701

- 22.1 Motion of a Non-Growing Bubble in a Binary Solution 702
- 22.2 Diffusion Growth of a Motionless Bubble in a Binary Solution 706
- 22.3 The Initial Stage of Bubble Growth in a Multi-Component Solution 710
- 22.4 Bubble Dynamics in a Multi-Componenet Solution 713
- 22.5 The Effect of Surfactants on Bubble Growth 716

X Contents

23 Separation of Liquid–Gas Mixtures 721

- 23.1 Differential Separation of a Binary Mixture 723
- 23.2 Contact Separation of a Binary Mixture 727
- 23.3 Differential Separation of Multi-Componenet Mixtures 729
- 23.4 Separation of a Moving Layer 736

24 Separation with Due Regard of Hinderness of Floating Bubbles 743

- 24.1 Separation in the Periodic Pump-out Regime 744
- 24.2 Separation in the Flow Regime 748

25 Coagulation of Bubbles in a Viscous Liquid 751

- 25.1 Coagulation of Bubbles in a Laminar Flow 752
- 25.2 Coagulation of Bubbles in a Turbulent Flow 758
- 25.3 Kinetics of Bubble Coagulation 761 References 764

Author Index 765

Subject Index 769

Preface

This book sets out the theoretical basis underpinning the separation of multiphase, multi-component systems with application to the processes used to prepare hydrocarbon mixtures (oil, natural gas, and gas condensate) for transportation. The text is divided into seven sections.

Section I provides an introduction to the basic processes, the technological schemes, and the components of the equipment employed in systems for the field preparation of oil, natural gas, and gas condensate. The emphasis is on the designs and the principles of operation of separators, absorbers, and cooling devices. Mathematical modeling of the processes in these devices is covered in subsequent sections of the book.

The media with which one has to deal when investigating preparation processes of hydrocarbon systems are invariably multi-phase and multi-component mixtures. Section II thus covers the aspects of the hydromechanics of physical and chemical processes necessary for an understanding of the more specialized material contained in following sections. Among these are transfer phenomena of momentum, heat, mass, and electrical charge; conservation equations for isothermal and non-isothermal processes for multi-component and multi-phase mixtures; equations of state, and basic phenomenological relationships.

Natural hydrocarbon systems exist as solutions, suspensions, colloidal systems, emulsions, gas-liquid and liquid-gas mixtures. Accordingly, Sections III–VII are devoted to each of the aforementioned kinds of systems.

Section III covers the theory and methods for investigating the behavior of multi-component charged and uncharged solutions. Considering non-charged solutions, the main focuses of attention are on diffusion processes with and without the possibility of chemical reactions, the flow of solutions in channels and pipes, processes on semi-permeable membranes (return osmosis), and mass exchange of particles, drops, and bubbles with the ambient media. For charged solutions, consideration is given to processes in electrolytic cells, electrodialysis, the structure of electrical double layers, electrokinetic phenomena, and electro-osmosis.

The behavior and stability of suspensions and colloidal systems, including noncharged and charged suspensions, along with the coagulation and sedimentation of particles and their deposition on obstacles, are considered in Section IV. Chap-

XII Preface

ter 8 (devoted to non-charged suspensions) provides an introduction to the microhydrodynamics of particles, covering the fundamentals of Brownian motion, the viscosity of dilute suspensions, and the separation of suspensions in a gravitational field or under centrifugal forces. Chapter 9, devoted to charged suspensions, deals with the definition of particle charge, electrophoretic effects, the motion of conductive drops in an electric field, and sedimentation potential. Chapter 10 deals with the problem of colloidal system stability, various mechanisms of particle coagulation, and the capture of particles by obstacles when a suspension is passed through a filter.

The behavior of emulsions is considered in Section V in connection with the process of oil dehydration. Actual problems of drop integration in emulsions are discussed. It is shown that this process occurs most effectively if the emulsion is subjected to an electric field. In this context, the behavior of conducting drops in emulsions, the interaction of drops in an electric field, and the coalescence of drops in emulsions are examined in detail. In terms of applications, processes of emulsion separation in settling tanks, electro dehydrators, and electric filters are considered.

Separation processes of gas-liquid (gas-condensate) mixtures are considered in Section VI. The following processes are described: formation of a liquid phase in a gas flow within a pipe; coalescence of drops in a turbulent gas flow; condensation of liquid in throttles, heat-exchangers, and turboexpanders; the phenomena related to surface tension; efficiency of division of the gas-liquid mixtures in gas separators; separation efficiency of gas-condensate mixtures in separators equipped with spray-catcher nozzles of various designs – louver, centrifugal, string, and mesh nozzles; absorbtive extraction of moisture and heavy hydrocarbons from gas; prevention of hydrate formation in natural gas.

Section VII is devoted to liquid-gas (oil-gas) mixtures. The topics discussed are the dynamics of gas bubbles in multi-component solutions; the separation of liquid-gas mixtures in oil separators both neglecting and taking into account the hindrance due to the floating-up of bubbles; and the coagulation of bubbles in liquids.

A list of literature is given at the end of each section.

All of the considered processes relate to the separation of multi-phase, multicomponent media, hence the title of the book. It should be noted that in the preparation technology for the transportation of oil, natural gas, and gas condensates, the term separation is traditionally understood only as the process of segregation of either a condensate and water drops or of gas and gas bubbles (occluded gas) from an oil. The concept of separation used herein can mean any segregation of components in multi-component mixtures or of phases in multi-phase systems.

List of Symbols

Symbol	Definition	Dimension, SI
а	Sound velocity	$m \cdot s^{-1}$
a_i	Activity of <i>i</i> -th component	
а	Radius of tube, pipe, capillary,	m
	particle	
а	Semi-axis of ellipsoid	m
а	Parameter of repulsive electrostatic	
	force	
а	Specific surface of grid (mesh)	m^{-1}
a_t	Radius of particle	m
Α	Dimensionless parameter	
A^*	Reduced gas constant	$J \cdot kg^{-1} \cdot K^{-1}$
A _{cyl}	Parameter of stream function at flow	
	around cylinder	
A_i	Chemical affinity of reaction	J∙mole ⁻¹
A_i	Dimensionless parameters of charged	
	particles, of jalousie separator	
A_s	Parameter of stream function at flow	
	around sphere	
Ar	Archimedean number	
Ar _{av}	Archimedean number calculated by	
	average radius of particles	
b	Adsorption constant	
b	Ellipsoid semi-axis; radius of cell	m
	boundary, of collision section of	
	particles with cylinder	
b	Dimensionless parameter	
В	Constant of reaction of <i>v</i> -th order	$mole^{1-\nu} \cdot m^{3\nu-2} \cdot s^{-1}$
B_i	Henry constant of <i>i</i> -th component	Pa
Во	Bond number	
С	Specific heat capacity	$J \cdot kg^{-1} \cdot K^{-1}$
С	Wave velocity	$m \cdot s^{-1}$

C _{cap}	Capillary wave velocity	$m \cdot s^{-1}$
c_i	Inflow of energy to <i>i</i> -th phase due to	$J \cdot m^{-2} \cdot s^{-1}$
	work of external forces	
c_i^n	Work of external surface forces	$J \cdot m^{-2} \cdot s^{-1}$
Cp	Specific heat capacity at constant	$J \cdot kg^{-1} \cdot K^{-1}$
*	pressure	
C_{v}	Specific heat capacity at constant	$J \cdot kg^{-1} \cdot K^{-1}$
	temperature	
С	Molar concentration	$mole \cdot m^{-3}$
С	Reduced concentration of ions	$mole \cdot m^{-3}$
С	Euler constant	
C _{cr}	Critical concentration of electrolyte	mole ·m ^{−3}
C_D	Resistance factor	
C_{ij}	Pair interaction factor of molecules of	
	<i>i</i> -th and <i>j</i> -th components	
C_0	Initial concentration	mole ·m ^{−3}
C_s	Saturation concentration of dissolved	mole ·m ^{−3}
	substance	
Ca	Capillary number	
d	Diameter of pipeline	m
d	Dimensionless parameter	
d_e	Hydraulic diameter of microchannel	m
	in porous environment medium	
d_w	Wire diameter	m
D	Diffusion factor	$m^2 \cdot s^{-1}$
D^0	Diffusion factor of non-hindered	$\mathrm{m}^2\cdot\mathrm{s}^{-1}$
	(free) particle	
D^2	Variance distribution	m ²
D	Diameter of separator	m
D_{av}	Average diameter	m
D _{cr}	Critical diameter of drop to be broken	m
D_{br}	Factor of Brownian diffusion	$m^2 \cdot s^{-1}$
$D_{e\!f\!f}$	Effective diffusion factor	$m^2 \cdot s^{-1}$
D_{ij}	Binary diffusion factor	$m^2 \cdot s^{-1}$
D_{max}	Maximal diameter of stable drop	m
D_{max}	Maximal drop diameter behind	m
	atomizer	
D _{rot}	Rotation diffusion factor	s^{-1}
D_T	Turbulent diffusion factor	$m^2 \cdot s^{-1}$
Da	Damköhler number	
е	Specific internal energy	$J \cdot kg^{-1}$
Ε	Internal energy	J
Ε	Total energy	J
Ε	Strain rate tensor	m·s ^{−2}
Ε	Electric field strength	$W \cdot m^{-1}$

Ε	Activation energy	J∙mole ⁻¹
Ε	Dimensionless parameter	
E_{cr}	Critical strength of electric field	$W \cdot m^{-1}$
Emi	Capture efficiency of particles by	
- <i>cyi</i>	cylinder	
F	Normal component of electric field	$W.m^{-1}$
Ln	strength	W 111
T.	Conture officiency of porticles by	
E_{S}	capture enciency of particles by	
£	Spilere Existion factor	lra a ⁻¹
J		ĸg·s
$\int \int d\mathbf{r} d\mathbf{r}$	Resistance factor	
$f(\mathbf{W})$	Hinderness factor	
F	Stability factor	1
f_i	Molar density of free energy	J.mole ⁻¹
f_i	Fugacity of <i>i</i> -th component	Ра
f_k	Dimensionless parameter of <i>k</i> -th	
	component of electric force of	
	interaction between two charged	
0	particles	
f_k^0	Dimensionless parameter of k -th	
	component of electric force of	
	interaction between two far-spaced	
	charged particles	
f_k^1	Dimensionless parameter of <i>k</i> -th	
	component of electric force of	
	interaction between two far-spaced	
	charged particles, found with greater	
	accuracy	
\tilde{f}_k	Dimensionless parameter of k -th	
ĸ	component of electric force of	
	interaction between two touching	
	charged particles	
f::	Components of friction tensor	$k\sigma \cdot s^{-1}$
for for for	f_{aa} f_{aa} Correction factors of hydrodynamic	1.6 5
Jsr, Jso, Jer,	forces	
f(D)	Distribution of drops over diameters	
J(D)	at jet disintegration	
f(V)	Breakage frequency of drop of	$m^{-3} \cdot s^{-1}$
J (•)	volume V	111 5
f	Dongity of magg force	$N m^{-3}$
r f	Existion tongor	$k \sigma \sigma^{-1}$
r f	Dongity of alactric force	$kg \cdot s$
I_E	Density of electric force	IN·III -
I	Kotation inclion tensor	тт-·кg·s
r r	Free energy	J
Fcap	Capillary force	Ν

/

F _e	Electric force	Ν
F _{fr}	Friction force	Ν
$\vec{F_h}$	Hydrodynamic force	Ν
F^{hyd}	Hydrodynamic force	Ν
F^{el}	Electric force	Ν
F_i	Component of <i>i</i> -th force	Ν
F ^{mol}	Molecular force	Ν
F_n	Normal component of force	Ν
$F_{ au}$	Tangential component of force	Ν
F_{th}	Thermodynamic force	Ν
F_{v}	Viscous friction force	Ν
F_w	Resistance force	Ν
F	Force	Ν
F_a	Molecular attraction force	Ν
F^s_{α}	Molecular attraction force between	Ν
ŭ	two spherical particles	
Fe	Force induced by particle own	Ν
	motion	
\tilde{F}_i	Electric force acting on <i>i</i> -th resting	Ν
	charged particle	
<i>F</i> _n	Normal to particle surface force	
	component	
F ^s _R	Electrostatic repulsion force between	Ν
R	two spherical particles	
Fs	Stokes force	Ν
Fr	Froude number	
g _{eff}	Effective gravity acceleration at wave	$m \cdot s^{-2}$
	motion	
G	Free energy (Gibbs energy)	J
G	Absolute value of vorticity vector	${ m m}{\cdot}{ m s}^{-2}$
G	Dimensionless parameter	
G	Mass flow rate	$kg \cdot s^{-1}$
G	Capture (collision) section	m ²
G(t)	Random force	Ν
Gr	Grashoff number	
h	Specific enthalpy	$J \cdot kg^{-1}$
h	Half the channel height	m
h	Distance between particle centre and	m
	wall	
h	Hydrodynamic resistance factor	$kg \cdot s^{-1}$
h	Dimensionless vorticity	
h	Distance between mash layers	m
h^0	Factor of hydrodynamic resistance at	$kg \cdot s^{-1}$
	motion of non-hindered (free)	
	particle	

h _{cr}	Critical thickness of liquid film on	m
1.	Cylindrical string	
n_N	Height of deposit layer	III
П	Fight	III I
Н ;	Enthalpy	J
<i>l</i> _m	Limiting density of electric current	A A -2
1	Density of electric current	$A \cdot m^2$
I I	Nucleation rate in a unit volume	$m^{3} \cdot s^{-1}$
1	Iotal mass flux	mole·s ⁻¹ , kg·s ⁻¹
1	Electric current	A
$I(R_0)$	Correction factor for condensate	
	growth of drop	2 1
I _a	Rate of distribution change due to	$m^{-3} \cdot s^{-1}$
	drop sedimentation	
I _b	Rate of distribution change due drop	$m^{-3} \cdot s^{-1}$
	breakage	
I_D	Diffusion flux	kg·m ⁻² ·s ⁻¹
I_k	Rate of distribution change due to	$m^{-3} \cdot s^{-1}$
	drop coagulation	
I_m	Rate of distribution change due to	$m^{-3} \cdot s^{-1}$
	drop ablation	
I_n	Intensity of particle generation in a	$\mathrm{m}^{-3}\cdot\mathrm{s}^{-1}$
	unit volume	
j	Mass flux through a unit surface	$kg \cdot m^{-2} \cdot s^{-1}$
j	Diffusion flux of particles	$m^{-3} \cdot s^{-1}$
<i>j</i> o	Non-hindered (free) diffusion flux of	$m^{-3} \cdot s^{-1}$
	particles	
j _{rw}	Diffusion flux of particles through a	$m^{-2} \cdot s^{-1}$
	unit surface of solid angle	
j _s	Entropy flux through a unit surface	$J \cdot m^{-2} \cdot s^{-1}$
j_i	Individual mass flux of <i>i</i> -th	$kg \cdot m^{-2} \cdot s^{-1}$
	component	
j_i^*	Individual mole flux of <i>i</i> -th	$mole \cdot m^{-2} \cdot s^{-1}$
	component	
J	Diffusion flux of drops	s^{-1}
J	Mass flux	$kg \cdot s^{-1}$
J_0	Non-hindered (free) diffusion flux of	s^{-1}
	drops	
J_A	Diffusion flux of drops with regard to	s^{-1}
	molecular attraction force	
J_{A+R}	Diffusion flux of drops with regard to	s^{-1}
	both molecular attraction force and	
	electrostatic repulsion force	
J _{br}	Diffusion flux of drops at Brownian	s^{-1}
	coagulations	

Ji	Moment of inertia of <i>i</i> -th particle	kg⋅m²
Ji	Mass flux <i>i</i> -th component	$kg \cdot s^{-1}$
$J_i^{(r)}$	Rate of <i>i</i> -th chemical reaction	mole·m ⁻³ ·s ⁻¹
J _{ji}	Mass-exchange rate between <i>j</i> -th and	$kg \cdot m^{-3} \cdot s^{-1}$
	<i>i</i> -th phases in a unit volume	C
Jg	Diffusion flux of drops at gradient	s^{-1}
	coagulation	
JG	Gas flux from a unit surface of	$kg{\cdot}m^{-2}{\cdot}s^{-1}$
T	solution	_1
\int_t	Diffusion flux of drops at turbulent coagulation	S
Ji	Relative mass flux of <i>i</i> -th component	$kg \cdot m^{-2} \cdot s^{-1}$
J_i^*	Relative mole flux of <i>i</i> -th component	mole·m ⁻² ·s ⁻¹
Jq	Heat flux to a unit surface	$W \cdot m^{-2}$
J_s	Entropy flux to a unit surface	$W \cdot m^{-2}$
k	Heat conductivity factor	$W \cdot m^{-1} \cdot K^{-1}$
k	Specific kinetic energy	$J \cdot m^{-3}$
k	Permeability of porous medium	m ²
k	Wave number	m^{-1}
k_1	Equilibrium constant	
k _i	Constant of <i>i</i> -th heterogeneous	$mole^{1-v_i} \cdot m^{3v_i-2} \cdot s^{-1}$
	reaction of v_i -th order	
k	Ratio of particle radiuses	
k	Adiabat constant	
k	Wetting factor	
k	Energy density	
k_T	Heat exchange factor	$W \cdot m^{-2} \cdot K^{-1}$
Κ	Kinetic energy	J
Κ	Kozeny factor	
К	Ablation factor of separator	
Κ	Dimensionless parameter	
K(V, u)	Kernel of kinetic equation	s^{-1}
	(coagulation constant)	
K_i	Equilibrium constant of <i>i</i> -th	
	component	
1	Characteristic linear size	m
1	Mean free path	m
1	Distance between centres of particles	m
1	Specific heat of evaporation	J⋅kg ⁻¹
1	Step of particle random walk	m
$l \times l$	Average size of mesh cell	$m \times m$
1	Radius of capture section	m
L	Length	m
L	Characteristic linear size	m

L	Mole fraction of liquid phase	
L	Work of friction forces	J
L	Work done on a unit mass of gas	J⋅kg ⁻¹
L_0	Distance between device of	m
	preliminary condensation (DPC) and	
	separator	
L_B	Distance from the point of jet outflow	m
5	up to the place of jet disintegration	
L_d	Throttle length	m
L.	Height of separation contact element	m
Lik	Phenomenological factor	
 L.1.	Length of absorber contact zone	m
L_{κ}	Cyclone length	m
	Length of entrance concentration	m
	region	
Lea	Length of equilibrium establishment	m
L_{II}	Length of entrance dynamic region	m
Le	Lewis number	
<u>m</u>	Mass	kø
mc	Relative amount of extracted	8
\ldots	components of fraction $C_{\rm b}$	
m ·	Mass of <i>i</i> -th component	ka
m ₁	Distribution moment of k-th order	m^{3k-3}
m _k	The dimensionless moment of k-th	111
nv _k	order	
М	Molecular mass	ka mole-1
\overline{M}	Average molecular mass	kg.mole ⁻¹
M	Mach number	kg-mole
Ma^{z+}	Motel ention of charge 7	
	Number of molog	
ri 1	Numerical concentration	-3
n	Numerical concentration	III
n	Number of absorbent recirculations	
	In separation-contact element	
n (D(D)	Vector of a normal	-4
n(R, t, P)	Distribution of drops over radiuses	m '
n(m, t, P)	Distribution of bubbles over mass	kg ⁻¹ ·m ³
n(V,t,P)	Distribution of drops over volumes	m °
$n_d(D)$	Distribution of drops over diameters	m '
	benind atomizer	
n _i	Components of normal vector	
n _i	Number of moles of <i>i</i> -th component	mole
nm°	Cubic metre of gas under normal	m'
	conditions	
Ν	Number of moles	mole

Ν	Numerical concentration of particles	M^{-3}
Ν	Number of mesh layers	
Ν	Number of plates in absorber	
N _{ad}	Adhesion parameter of cylinder	
N_{ad}^{sph}	Adhesion parameter of sphere	
N _d	Number of moles in drop	mole
N _d	Numerical concentration of drops	m^{-3}
	behind atomizer	
Ne	Number of separation-contact	
	elements on the plate of absorber	
N_i	Dimensionless parameter	
$N_n(x_0,t)$	Rate of bubble nucleation at depth x	s^{-1}
	at moment <i>t</i>	
Nud	Diffusion Nusselt number	
NuT	Temperature Nusselt number	
Oh	Ohnesorge number	
p	Pressure	Ра
D D	Parameter of electromagnetic	
I	retardation	
n _a	Atmospheric pressure	Pa
Pu D _c	Critical pressure	Pa
Pc n _{ec}	Pressure above solution surface	Pa
$p_{\infty}^{(eq)}$	Established pressure above solution	Pa
r w	surface	
De	Additional pressure at wave motion	Pa
r.	of liquid	
<i>v</i> i	Partial pressure	Pa
Pi Dim	Partial pressure of <i>i</i> -th solution	Pa
Ρw	component vapor	1 4
n	Reduced pressure	
pr n-	Saturation pressure	Pa
Ps n	Partial pressure of vapor	Pa
Pv n	Partial pressure of saturated vapor	Pa
Pvt	above drop surface	Iu
ท	Partial pressure of saturated vapor	Pa
$Pv\infty$	above flat surface	Ia
ท	Capillary pressure	Pa
Pσ n	Linit vector	Ia
P D	Point of volume	
I D	Probability of particle displacement	
$P(V,\omega)$	Probability of drop formation	
$\mathbf{D}_{\mathbf{u}}$	Intensity of momentum exchange	$kam^{-2}a^{-2}$
∎ ji	between <i>i</i> th and <i>i</i> th phagag	vä.111 .2
Do-	Diffusion Declet number	
reD	Diffusion Peciet number	

Pe _T	Temperature Peclet number	
Pr	Prandtl number	
9	Specific quantity of heat	$J \cdot kg^{-1}$
9	Electric charge	С
<i>q</i>	Specific heat flux	$J \cdot m^{-2} \cdot s^{-2}$
9	Dimensionless parameter	
q _a	Specific flow rate of absorbent	$10^{-3} \cdot \text{kg} \cdot \text{m}^{-3}$
q_i	Electric charge of <i>i</i> -th component	С
q_i^n	Normal component of heat flux of	$W \cdot m^{-2}$
	<i>i</i> -th component	
q_s	Density of surface charge	$C \cdot m^{-2}$
q	Heat flux	$W \cdot m^{-2}$
\boldsymbol{q}_i	Heat flux of <i>i</i> -th component	$W \cdot m^{-2}$
Q	Mole mass flux	$mole \cdot s^{-1}$
Q	Volume flow rate	$m^3 \cdot s^{-1}$
Q	Dynamic pressure	Ра
Q	Total charge	С
Q	Heat brought to a unit mass of gas	$J \cdot kg^{-1}$
Qa	Absorbent flow rate	Tonne/day
Q _{cr}	Critical gas flow rate	Mill.m ³ /day
Q_G	Gas flow rate	Mill.m ³ /day
Q_h	Amount of hydrocarbons extracted	Tonne/day
	from gas	
Q_i	Specific heat released due to work of	$J \cdot K \Gamma^{-1}$
	friction forces	
Q_i	Mass flux of <i>i</i> -th component	$kg \cdot m \cdot s^{-1}$
Qin	Specific heat released by	$J \cdot m^{-3} \cdot s^{-1}$
	condensation	
Qs	Specific heat due to heat transfer	$J \cdot kg^{-1}$
	through pipe wall	
Q_w	Heat transfer from pipe wall	J
r _c	Radius of wire	m
r _i	Rate of mass formation of <i>i</i> -th	$kg \cdot m^{-3} \cdot s^{-1}$
	component in a unit volume	
R_{av}	Average drop radius	m
R_{av}^0	Initial average radius of drop	m
R _c	Coagulation radius	m
R_c	Radius of cyclone	m
R _{cr}	Critical radius	m
R_i	Factors of resistance (components of	m
	resistance tensor) along principal	
	axes of ellipsoid	
R_i	Radius of <i>i</i> -th particles	m
R_{ij}	Components of resistance tensor	m

xxII	List of Symbols		
	$R_i^{(s)}$	Specific mole rate of heterogeneous chemical reaction with formation of	$mole{\cdot}m^{-2}{\cdot}s^{-1}$
	$\mathbf{p}^{(v)}$	I-th component	···· -1 · ··· -2 · -1
	R _i	shemical reaction with formation of	mole·m -·s -
		i th component	
	מ	<i>I</i> -th component Minimal radius of drops	100
	R_m	Minimal radius of drops	III
	<i>K_{ms}</i>	Staliogian valagity	III
	D	Impada factor of mombrana	
	R _s	Padius of coll	100
	Λ_z	Radius of Cell Bounolda number	111
	D	Dimongionlogg radiug of gulindor	
	K	capture section	
	P	Resistance tensor (Translation tensor)	m
	ĸ	Specific entropy	$Lk\alpha^{-1} K^{-1}$
	s	Specific surface	m^{-1}
	s	Relative distance between particles	111
	s	Sedimentation factor	c
	s	Random displacement	m
	s	Supersaturation degree	111
	s	Critical supersaturation degree	
	S _{cr}	Entropy	$I \cdot K^{-1}$
	S	Area	m^2
	S	Surface	
	S	Stokes number	
	S	Spread factor	$N \cdot m^{-1}$
	S_{A}	Parameter of molecular interaction	
	San	Average area of interface	m ²
	Scr	Critical Stokes number	
	S _E	Parameter of electrohydrodynamic	
	2	interaction	
	S_{f}	Total area of microchannel sections	m ²
	S_i	Dimensionless parameter	
	S_m	Dimensionless parameter	
	S _m	Minimal Stokes number	
	S_R	Parameter of electrostatic interaction	
	Sc	Shmidt number	
	St	Strouhal number	
	t	Time	S
	t_b	Absorbent residence time on	S
		absorber plate	
	t _{br}	Characteristic time of Brownian	S
		coagulations	

t _e	Residence time in separation-contact	s
t.,	Maxwell stress tensor	N⋅m ⁻²
t:	Characteristic time of inertial	s
• m	coagulation	5
tı.	Characteristic time of drop	S
× _K	coagulation (coalescence)	5
ī.	Average life time of drops in	S
*1	turbulent flow	5
t	Characteristic time of drops mass	s
114	exchange with gas	
tmono	Characteristic time of coagulation	s
mono	(coalescence) in monodisperse	
	emulsion	
tnow	Characteristic time of drop	s
por	coagulation (coalescence) in	
	polydisperse emulsion	
t _r	Time of drop relaxation in turbulent	${ m m}{ m \cdot s^{-1}}$
	flow	
t_t	Characteristic time of drop turbulent	s
	coagulation	
t_v	Characteristic time of velocity profile	s
	development in channel	
$t_{s\varphi}, t_{e\varphi}, t_{e\varphi1}$	Correction factors for hydrodynamic	
	moments	
t	Stress	$N \cdot m^{-2}$
Т	Absolute temperature	Κ
Т	Characteristic time	S
Т	Period of turbulent pulsations	S
T_G	Temperature of gas	Κ
T_L	Temperature of liquid	Κ
$T_{c_{(1)}}$	Critical temperature	Κ
$T_{cr}^{(k)}$	Temperature of condensation	Κ
	beginning	
T_r	Reduced temperature	
T_t	Temperature of dew-point	Κ
T_e	Moment caused by particle own	N∙m
	motion	
T_s	Moment caused by Stokesion flow	N∙m
_	around particle	3
T	Stress tensor	N·m ^{−2}
Т	Moment vector	N·m
и	Velocity component	$m \cdot s^{-1}$
<i>u</i> _{cr}	Critical velocity	m·s ^{−1}

<i>u</i> _d	Dynamic velocity of gas	${ m m}{\cdot}{ m s}^{-1}$
<i>u</i> _s	Stokesian velocity	${ m m}{\cdot}{ m s}^{-1}$
<i>u</i> _s	Velocity of particle cross drift in	${\rm m}{\cdot}{\rm s}^{-1}$
ū	Average velocity	$m e^{-1}$
u	Cas velocity in concretion contact	$m s^{-1}$
Иe	clamont	111-5
u_i^n	Normal velocity component of <i>i</i> -th	$m{\cdot}s^{-1}$
	Drop velocity near the wall in	$m e^{-1}$
u _m	turbulent flow	111-5
	Maximal valuatity	$m a^{-1}$
u _{max}	Maximial velocity	$m \cdot s^{-1}$
u_{λ}	velocity of turbulent pulsation of	m·s ⁻
	Scale λ	
u	velocity vector, mean-now-rate	m·s -
***	Moon mole velocity vector	$m e^{-1}$
<i>u</i> [*]	Stalionian valacity	$m s^{-1}$
u_{st}	Vala sites of shoor flow	
u_{sh}	Chamada ministra and a site	$m \cdot s^{-1}$
U	Characteristic velocity	m·s ⁻¹
U_e	Rate of nitration through porous	m·s -
	medium	_1
U_G	Velocity of motion of interface border	$m \cdot s^{-1}$
U_s	Sedimentation velocity	$m \cdot s^{-1}$
v	Velocity component	$m \cdot s^{-1}$
v	Specific volume	m ³ kg ⁻¹
v	Dimensionless velocity	1
Vi	Mobility of particles of <i>I</i> -th solution component	mole·s·kg ⁻¹
v_i	Mobility factor of a body along <i>i</i> -th principal axis	$s \cdot kg^{-1}$
v_{arphi}	Tangential component of velocity in cyclone	$m \cdot s^{-1}$
v_z	Longitudinal component of velocity	${\rm m}{\cdot}{\rm s}^{-1}$
V	Volume	m ³
V	Mole fraction of gas phase	111
V	Flectromotive force (emf)	V
V	Total potential energy of interaction	v T
v	between two particles	J
V	Mobility tensor	$s \cdot kg^{-1}$
V^{S}_{A}	Potential of molecular attraction force	I
А	between two spherical particles	,
V^P_{Λ}	Potential of molecular attraction force	$I \cdot m^{-2}$
л	between two infinite parallel planes	,

List of Symbols XXV

V_{av}	Average volume of drops	m ³
V _{cr}	Critical volume	m ³
V _d	Volume of drop	m ³
V _e	Volume of eluent	m ³
Vi	Mole concentration of <i>i</i> -th	$mole \cdot m^{-3}$
· ·	component	
Vi	Potential of <i>i</i> -th particle surface	I
V	Volume of germ	m^3
Vmol	Volume of molecule	m ³
$V_{\rm p}^S$	Potential of electrostatic repulsion	I
ĸ	force between two particles	,
V _t	Volume of particle	m ³
V _v	Volume of voids between particles of	m ³
U	permeable medium	
w	Velocity component	$m \cdot s^{-1}$
w	Specific work	J·kg ^{−1}
Wi	Velocity of <i>i</i> -th phase relative	$m \cdot s^{-1}$
•	medium as a whole	
W	Volume concentration (volume	m^3/m^3
	content)	r
W	Work of drop done on the change of	W
	volume in a unit time	
W	Energy of one mole	J
W	Stability factor	,
W_0	Volume concentration of drops at the	m^3/m^3
	entrance of separator	
W_1	Volume concentration of drops at the	m^3/m^3
	exit of separator	
We	Weber number	
We _{cr}	Critical Weber number	
x _{cr}	Critical distance from top end of the	m
	string up to the point of liquid film	
	detachment	
x_i	Mole fraction of <i>i</i> -th component of	
	liquid phase	
x_{Ir}	Mole fraction of hydrate inhibitore in	
	solution	
x_M	Mole fraction of methanol in hydrate	
	inhibitore	
x_{wr}	Mole fraction of water in solution	
X	Radius-vector of point $P(x, y, z)$	
X	Thermodynamic force	
X_L	Length at which the flowing jet	m
	reaches wall	
X^{z-}	Anion with charge <i>z</i>	

γi	Mole fraction of <i>i</i> -th gas phase	
-	component	
γм	Mole fraction of methanol vapor in	
	gas	
z	Compressibility of gas	
Ζ	Dimensionless parameter	
z_m	Dimensionless minimal radius	
z_i	Charge of ion of <i>i</i> -th component	
α	Thermal diffusivity	$m^2 \cdot s^{-1}$
α	Thermal expansion factor	K^{-1}
α	Heat exchange factor	$W \cdot m^{-2} \cdot K^{-1}$
α	Dimensionless parameter	
α	Effective section	
α	Condensation factor	
α	Correction multiplier on	
	microchannel curvature of porous	
	medium	
α	Mass fraction of glycol in absorbent	
	solution	
α	Slope of inclined wall	
β	Volume expansion factor	$Pa^{-1} \cdot s^{-1}$
β	Dimensionless parameter	
β	Coalescence parameter	s^{-1}
β	Design parameter of atomizer	
β_1	Asymmetry square of distribution	
β_2	Excess of distribution	
β_{ii}	Collisions frequency of particles <i>i</i>	s^{-1}
5	and j	
γ	Activity factor	
γ	Dimensionless parameter of	
	repulsion force energy	
γ_I	Activity factor of inhibitor	
γw	Activity factor of water	
γ_{φ}	Dimensionless parameter of cyclone	
ý	Shear rate	s^{-1}
ÿ	Dimensionless shear rate	
Γ	Hamaker constant	J
Γ	Surface concentration of surfactant	mole ·m ^{−2}
Γ_{∞}	Limiting surface concentration of	$mole \cdot m^{-2}$
	surfactant	
δ	Thickness of gap between two	m
	spherical particles	
δ	Thickness of a boundary layer	m
δ_v	Thickness of viscous boundary layer	m
δ_{f}	Thickness of liquid film	m

δ_D	Thickness of diffusion boundary layer	m
Δ	Dimensionless thickness of gap	
	between two spherical particles	
Δ_i	Dimensionless parameter	
Δ_k	Capillary length	m
$\Delta \gamma_i$	Difference between mole fractions of	
-	<i>i</i> -th component at the interface and	
	in gas bulk flow	
$\Delta \rho$	Difference of densities of bordering	kg∙m ⁻³
	phases	C
$\Delta \varphi_{om}$	Ohmic drop of potential	В
3	Dielectric permittivity	$C \cdot V^{-1} \cdot m^{-1}$
8	Void fraction of porous medium	
	(porosity)	
3	Dimensionless parameter	
£0	Dielectric permittivity in vacuum	$C \cdot V^{-1} \cdot m^{-1}$
£0	Specific energy dissipation of	$J \cdot kg^{-1} \cdot s^{-1}$
	turbulent flow	, 0
E _{cr}	Critical specific energy dissipation of	$J \cdot kg^{-1} \cdot s^{-1}$
	turbulent flow	, 0
ε _r	Relative dielectric permittivity	
ε _{ii}	Components of strain rate tensor	$m \cdot s^{-2}$
ε_v	Void fraction of mesh layer	
ζ	ζ-potential	V
ζ	Vertical perturbation of interface	m
ζ	Dimensionless variable	
η	Dimensionless variable	
η	Separation efficiency, coefficient of	
	effectiveness (CE)	
$\eta_{ m f}$	Capture efficiency of filter	
η_G	Effectiveness coefficient of mesh	
-	droplet capture	
η_h	Effectiveness coefficient of horizontal	
	separator	
η_i	Mole fraction of <i>i</i> -th component	
η_k	Effectiveness coefficient of horizontal	
	separator with regard to coagulation	
	of drops	
η_s	Effectiveness coefficient of separator	
	with string droplet capture	
η_t	Dehydration factor	
η_v	Effectiveness coefficient of vertical	
-	separator	
η_z	Effectiveness coefficient of cyclone	
Θ	Velocity divergence	

θ	Fraction of surface occupied by	
	molecules of adsorbed substance	
θ	Dimensionless temperature	
λ	Heat conductivity factor	$W \cdot m^{-1} \cdot K^{-1}$
λ	Particle resistance factor	
λ	Scale of turbulent pulsation	m
λ	Ablation factor	
λ	Wave length	m
λ	Correction to minimal radius of drop	
	on condensation growth of drops	
λ_0	Inner scale of turbulence	m
λ_D	Thickness of electric double layer	m
λ_G	Heat conductivity factor of gas	$W \cdot m^{-1} \cdot K^{-1}$
λ_h	Ablation factor of horizontal	
	separator or settler	
λ_v	Ablation factor of vertical separator or	
	settler	
λ_L	London wave length	Å
Λ	Mole conductivity	$S \cdot m^2 \cdot mole^{-1}$
Λ	Dimensionless parameter	
μ	Dynamic viscosity factor	Pa∙c
μ_{μ}	Chemical potential	$J \cdot mole^{-1}$ or $J \cdot kg^{-1}$
$\mu_i^{(0)}$	Chemical potential of pure <i>i</i> -th	$J \cdot mole^{-1}$
	component	
$ar{\mu}$	Ratio of viscosities of internal and	
	external liquids	
ν	Kinematic viscosity factor	$\mathrm{m}^2\cdot\mathrm{s}^{-1}$
ν	Stoichiometric factor	
v_{ki}	Stoichiometric factor of k-th	
	component in <i>j</i> -th reaction	
ν_+, ν	Number of ions	
ξ	Degree of completeness of reaction	$mole \cdot m^{-3}$
ξ	Dimensionless variable,	
	dimensionless parameter	
ξ_i	Dimensionless parameter	
Ξ	Osmotic factor	
π	Pressure drop in reverse osmosis	Pa
π	Dimensionless parameter	
π_0	Osmotic pressure	Pa
Π_i	Mass percentage of <i>i</i> -th component	2
П	Viscous stress tensor	N·m ^{−2}
χ	Debye reverse radius	m^{-1}
χ	Dimensionless parameter	
χ	Ratio of drop charges	