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Foreword

V

Stereochemistry has been an important topic for more than a hundred years. 
Nevertheless, as far as the chemist’s everyday life was concerned, it was mainly 
of interest to natural product chemists for most of the time. This changed in 
the 1950s when synthetic chemists, following the example of R. B. Woodward, 
G. Stork and others, began to boldly address complex natural product targets. At 
this time the racemic compound was targeted, i.e. it was diastereoselectivity that 
counted. In the 1970s it became increasingly clear that biological activities of en-
antiomers could differ to the extent that one member of a pair is toxic or generally 
harmful. In this respect, the Contergan disaster was a signal. Pharmacologic 
testing of both individual enantiomers rather than the racemic agent became a 
common practice.

Demand created interest in the development of new methods for syntheses of 
enantiomerically pure compounds, termed EPC-syntheses by Dieter Seebach. First 
auxiliary controlled, stoichiometric asymmetric synthesis began to fl ourish in the 
second half of the 1970s. Dieter Enders, the spiritus rector of this book, with his 
SAMP/RAMP method, was one of the pioneers of this fi eld. At about the same 
time the potential of enzyme-catalyzed enantioselective reactions became more 
and more visible, not least through pioneering early work of the M. R. Kula/
C. Wandrey team in Düsseldorf/Jülich and of Hans-Joachim Gais in Darmstadt, 
later Aachen. In the 1980s, very few people dared to address transition metal cata-
lyzed asymmetric synthesis. This changed in the 1990s after work of Kagan, 
Knowles, Sharpless, Noyori and others had shown that results useful for organic 
synthesis can be obtained.

Thus, in the early 1990s the stage was set for an Aachen/Jülich group of chem-
ists to launch a collaborative program in the fi eld of EPC synthesis that led 
to a prestigious Collaborative Research Center (Sonderforschungsbereich, SFB) 
“Asymmetric Syntheses with Chemical and Biological Methods”, which was to 
become operative for 12 years (1994–2005). In this book the main results, ob-
tained by ca. 20 research groups, are reviewed. A very large and colorful landscape 
of methods and applications is presented.

The fi rst part of the book is devoted to auxiliary controlled reactions using the 
SAMP/ RAMP method (D. Enders) and metallated allylsulfoximines (H.-J. Gais). 



Syntheses of an impressive array of natural products, including medicinally 
interesting alkaloids, underline the usefulness of these methods. The following 
part deals with enantioselective reactions catalyzed by transition metal com-
plexes. Chiral ligands with a modular make-up are of crucial importance here 
and many new classes are described: phosphines containing an arenechromium-
tricarbonyl moiety (“Daniphos” ligands, A. Salzer), phosphaferrocenes (C. Ganter), 
sulfoximine-based N,N- and P,N-ligands (C. Bolm), P,C- and N,O-ligands contain-
ing a [2,2]paracyclophane skeleton (C. Bolm, S. Bräse) and phosphines based on 
dihydroquinolines (“Quinaphos” ligands, W. Leitner). Catalyst immobilization on 
or in a zeolite matrix was much debated in the SFB; fi nally, W. F. Hoelderich’s 
group has been able to obtain highly active, reusable hydrogenation as well as 
Jacobsen type epoxidation catalysts.

The next part of the book deals with enzyme catalysis and bioorganic synthesis. 
An important aim of this research has been the preparation of enantiomerically 
pure small molecules that are useful in general organic synthesis and as inter-
mediates in drug process synthesis. It is apparent that there has been fruitful and 
remarkably successful collaboration between ca. 10 groups, led by established as 
well as junior group leaders. The fi rst three articles, with authors from the groups 
of K.-E. Jaeger, M.-R. Kula, M. Pohl, M. Müller and G. A. Sprenger, deal with 
applications of techniques of enzyme biochemistry, for example site-directed 
mutagenesis and directed evolution based on recombinant DNA technology. The 
following articles describe asymmetric syntheses of a large variety of chiral alco-
hols using R-specifi c alcohol dehydrogenases (W. Hummel), aldolases and related 
types of C-C bond forming enzymes (W.-D. Fessner) as well as sucrose synthase 
I (L. Elling). An article naming 17 authors on asymmetric synthesis of 1,3-diols 
and propargylic alcohols concludes the section.

An asset of the Aachen/Jülich bioorganic synthesis approach is technology 
transfer, which is testifi ed by no less than fi ve start-up companies. Scale-up re-
quires stable and highly effi cient enzymes as well as appropriate reaction technol-
ogy. The development of membrane reactors has been a key to success. Reaction 
technology is outlined by C. Wandrey and co-workers in the fi nal article.

Reading this book is worthwhile for anybody seeking an impression of the state 
of the art of the entire fi eld of asymmetric synthesis. A lot of interesting material 
is offered to the expert from academia or industry as well as to the student look-
ing for an interesting fi eld of graduate research.

Günter Helmchen
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Preface

After the pioneering work of Louis Pasteur and Emil Fischer in the middle and 
at the end of the nineteenth century, respectively, it still took more than fi fty years 
before chemists started to discuss transition state models together with polar and 
steric effects to gain more insight into the phenomenon of asymmetric induction. 
Even fi rst observations in organic synthesis of enantioselectivities comparable to 
those of enzymes in the late fi fties and sixties of the 20th century did not convince 
the chemical community and the term “asymmetric synthesis” was regarded a 
mechanistic curiosity rather than a practical way to synthesize compounds of 
high enantiomeric purity.

In the mid-seventies, with the development of generally applicable stoichio-
metric asymmetric syntheses, especially the Meyers oxazoline methodology as 
the fi rst one, the scientifi c community began to believe that asymmetric synthesis 
really worked resulting in an explosive growth of this new fi eld. Later on, and 
mainly driven by the fact that the biological activity of enantiomers is usually 
different, dozens of new chemical companies were founded all over the world in 
a newly created area called “chirotechnology”.

Around that time and after intensive discussions several professors of the 
RWTH Aachen University and the nearby Jülich Research Center decided to apply 
at the German Research Council for a so-called Collaborative Research Center on 
the topic of asymmetric synthesis. Looking back, it was truly a seminal event 
when the Professors D. Enders, W. Keim, M.-R. Kula, H. Sahm and C. Wandrey 
stopped their cars at the highway station Köln-Frechen and nailed down the pro-
posed research topic as “Asymmetric Synthesis with Chemical and Biological 
Methods”. After Professor E. Winterfeldt, as an advisor, saw this new initiative 
“under a good star”, indeed the new “Sonderforschungsbereich 380” was funded 
and started in 1994.

From the very beginning of this long term research endeavor, the aim has been 
to cover all aspects of the entire fi eld of asymmetric synthesis including stoichio-
metric and catalytic asymmetric syntheses with chemical and biological methods 
as well as the development of new reaction technologies. The interdisciplinary 
cooperation among the areas of classical organic and inorganic chemistry as well 
as technical chemistry (RWTH Aachen University) and the various fi elds of 



enzyme technology and biotechnology (Research Center Jülich, HHU 
Düsseldorf) resulted in effi cient asymmetric syntheses of synthetic building 
blocks, fi ne chemicals, natural products and biologically active compounds in 
general. Mechanistic and theoretical aspects, organic synthesis, organometallic 
chemistry, homogeneous and heterogeneous transition metal catalysis, microbiol-
ogy, enzyme- and biotechnology were all employed and used for stereoselective 
C-H-, C-C-, and C-heteroatom bond formations.

Besides the scientifi c success of this Collaborative Research Center as measured 
in publications, patents and foundation of start-up companies, it should be men-
tioned that a high percentage of the younger scientifi c members received and 
accepted calls for full professorships including D. Vogt (Eindhoven), W.-D. Fessner 
(Darmstadt), U. Kragl (Rostock), A. Liese (Hamburg), S. Bräse (Karlsruhe), G. 
Sprenger (Stuttgart) and M. Müller (Freiburg) and also associate professorships 
as C. Ganter (Düsseldorf), L. Elling (Aachen), M. Ansorge-Schumacher (Berlin) 
and M. Pohl (Privatdozent, Düsseldorf). A highlight during the twelve years of 
funding was the “Deutsche Zukunftspreis” awarded by the Federal President of 
Germany to Prof. Kula and Dr. Pohl and presented in a spectacular nationwide 
television show broadcasted from Berlin in 2002. Professor Maria-Regina Kula, 
herself being a chemist, was always aware of the necessity to combine biological 
and chemical catalytic methods. As her 70th birthday coincides with the appear-
ance of this book, the editors would like to express their warm congratulations 
and best wishes for her future.

We thank the German Research Council (“Deutsche Forschungsgemein-
schaft”) for the generous fi nancial support of the Collaborative Research Center 
“Sonderforschungsbereich, SFB 380” over a period of twelve years. In particular, 
we are thankful to Dr. H. H. Lindner and Dr. A. Pollex-Krüger as well as Dr. W. 
Rohe, Dr. P. Schmitz-Möller and Dr. H. Schruff for their organizational help 
during the course of the priority programme. In addition, on behalf of all partici-
pants of the Collaborative Research Center, we would like to thank the scientifi c 
referees, the Professors M. Ballauff (Bayreuth), J. E. Bäckvall (Stockholm), A. 
Böck (München), H. Brunner (Regensburg), H. Buchholz (Erlangen-Nürnberg), 
W. Buckel (Marburg), G. Dziuk (Freiburg), F. Effenberger (Stuttgart), H. Eschrig 
(Dresden), H. Fischer (Konstanz), W. Francke (Hamburg), G. Gottschalk 
(Göttingen), H. Griengl (Graz), G. Helmchen (Heidelberg), U. Kazmaier 
(Saarbrücken), H. Kessler (München), H. Kunz (Mainz), E. P. Kündig (Genf), J. 
Mulzer (Wien), H.-U. Reißig (Berlin), K. Sandhoff (Bonn), G. Schulz-Eckloff 
(Bremen), H. Simon (München), W. Spiess (Mainz), J. Thiem (Hamburg), H. 
Tschesche (Bielefeld), H. Vahrenkamp (Freiburg), and H. Waldmann 
(Dortmund) for their help, advice and the many fruitful discussions.

We hope that this book will be useful and a source of inspiration for all those 
interested in the chemical, biological and technical aspects of asymmetric syn-
thesis in general and will stimulate new ideas and research activities among the 
young scientists in this rapidly growing fi eld.

Aachen / Jülich, December 2006 Dieter Enders
 Karl-Erich Jaeger
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1
Stoichiometric Asymmetric Synthesis

1.1
Development of Novel Enantioselective Synthetic Methods
Dieter Enders and Wolfgang Bettray

1.1.1
Introduction

Since the pioneering times of the mid-1970s, when the fi rst practical and gener-
ally applicable methods in asymmetric synthesis [1] were developed, such as the 
oxazoline method of Meyers [2] and the SAMP/RAMP hydrazone method [3], 
there has been a tremendous growth in this research fi eld. One major driving 
force for this rapid development is of course the different biological activities of 
enantiomers and thus the need for enantiopure compounds. In this chapter we 
describe the development of some effi cient synthetic methods for asymmetric 
carbon–carbon and carbon–heteroatom bond formation, which have been carried 
out within the frame of the “Sonderforschungsbereich 380” (1994–2005) and 
employing the concept of stoichiometric asymmetric synthesis.

1.1.2
a-Silyl Ketone-Controlled Asymmetric Syntheses

Electrophilic substitutions with carbon and hetero electrophiles α to the carbonyl 
group of aldehydes and ketones are among the most important synthetic 
operations. Such regio-, diastereo-, and enantioselective substitutions can be 
carried out effi ciently with the SAMP/RAMP hydrazone methodology [3]. For 
cases where virtually complete asymmetric inductions could not be attained, an 
alternative approach based on α-silylated ketones 2 was developed [4]. They can 
be prepared easily from ketones 1 in high enantiomeric purity (ee > 98%) by 
asymmetric carbon silylation employing the SAMP/RAMP hydrazone method 
(Fig. 1.1.1). After the introduction of various electrophiles via classical enolate 
chemistry with excellent asymmetric inductions, the desired product ketones 3 
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are obtained by removal of the “traceless” silyl directing group with various 
sources of fl uoride.

1.1.2.1 Regio- and Enantioselective a-Fluorination of Ketones
Due to the unique properties of organofl uorine compounds and their rapidly in-
creasing practical usage in plant protection, medicine, and many other areas, the 
scientifi c and economic interest in organofl uorine coumpounds has grown im-
mensely over recent decades. With the availability of user-friendly NF reagents 
such as 4 (NFSI, Accufl uor®), 5 (NFOBS), 6 (Davis et al.) and 7 (Selectfl uor®) 
(Fig. 1.1.2), for electrophilic fl uorination [5], the effi cient synthesis of α-
fl uorinated ketones, aldehydes, and esters has become possible. However, the 
asymmetric inductions in enantioselective α-fl uorinations of ketones reached 
no practical values (ee = 10–75%) until the mid-1990s. We were therefore pleased 
to see that our α-silyl ketone-controlled approach led for the fi rst time to the 
target α-fl uoro ketones in high yields, few steps, and very good enantiomeric 
excesses [6].

As shown in Scheme 1.1.1, symmetric and unsymmetric ketones (control of 
regioselectivity) as well as cyclic and acyclic ketones 8 were fi rst converted to the 
corresponding virtually enantiopure α-silyl ketones 2 (ee > 98%) employing the 
SAMP/RAMP hydrazone methodology. Metallation with LDA and treatment of 
the enolates with the N-fl uorosulfonamide 4 (NFSI) afforded the α-fl uoro-α′-si-
lylated ketones 9 with moderate to excellent diastereomeric excesses. Finally, the 
racemization-free removal of the sterically demanding silyl directing group was 
carried out with fl uoride sources in almost quantitative yields, leading to the de-
sired α-fl uoroketones 10 (ee 55 to >96%). Especially in the case of cyclic ketones 
almost complete asymmetric inductions could be achieved. As the epimeric 
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Fig. 1.1.1 α-Silyl-controlled asymmetric synthesis (the “silyl trick”).
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fl uorinated silyl ketones 9 can be separated easily by fl ash column chroma-
tography, various enantiopure α-fl uoroketones 10 could be obtained in this 
way.

Although effi cient organocatalytic methods for the electrophilic α-fl uorination 
of aldehydes and ketones have recently been developed [7], high enantiomeric 
excesses can only be reached with aldehydes so far. The asymmetric inductions 
in the case of ketone fl uorinations have remained low (ee ≤ 36%) [7a]. Thus, the 
α-silyl ketone-controlled stoichiometric asymmetric synthesis of α-fl uoroketones 
10 (Scheme 1.1.1) still constitutes a practical method.

1.1.2.2 a-Silyl Controlled Asymmetric Mannich Reactions
The Mannich reaction, in which an aminomethyl group is introduced in the α-
position of the carbonyl function, has been the subject of investigations since the 
early 20th century [8]. In 1985 our research group, in close cooperation with 
Steglich and coworkers, developed a fi rst asymmetric Mannich reaction [9]. Some 
ten years later, with the enantiopure α-silylated ketones 2 in hand, we reported a 
fi rst practical procedure for the regio- and enantioselective α-aminomethylation 
of ketones taking advantage of the excellent asymmetric inductions with the help 
of the “traceless” silyl control group [10].

As depicted in Scheme 1.1.2, the silyl ketones (S)-11 of high enantiomeric pu-
rity were converted into the Z-confi gured silyl enol ethers (S)-12, which were used 
in the aminomethylation step by treatment with dibenzyl(methoxymethyl)amine 
in the presence of a Lewis acid. The silylated Mannich bases (S,R)-13 were 
obtained in excellent yields and diastereomeric excesses (de = 92–96%). Finally, 

O O

R2R1 R2 R1
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O
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Scheme 1.1.1 Asymmetric synthesis of α-fl uoroketones.
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the silyl directing group was removed tracelessly by employing a fl uoride source. 
In this way, the α-substituted β-amino ketones (R)-14 were obtained in three steps 
with superb overall yields of 90–95% and, most importantly, with very high en-
antiomeric excesses ee of 91–97%. To explain the almost complete diastereofacial 
selectivity of the Mannich key step, two transition states can be discussed: a 
closed one along the lines of the Zimmerman–Traxler model, and an open one 
with the iminium ion formed in situ, explaining in both cases the R confi guration 
at the newly generated stereocenter (Scheme 1.1.3).

After the successful asymmetric synthesis of α-substituted β-amino ketones 
(R)-14, we envisaged the diastereo- and enantioselective synthesis of α,β-
disubstituted Mannich bases. As shown in Scheme 1.1.4, we were able to use 
benzaldehyde-N-phenylimine [11] as well as α-alkoxycarbonylaminosulfones [12] 
as Mannich electrophiles to synthesize in good overall yields and high de- and 
ee-values the anti-confi gured β-amino ketones (R,S)-15 and (R,S)-16, 
respectively [13].
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Scheme 1.1.2 Enantioselective synthesis of β-dibenzylamino ketones.
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