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Preface
Proteomics of microbial pathogens

Infectious diseases still plague mankind. According to the World Health Report
2004, 19.1% of the deaths estimated in 2002 were caused by infectious diseases.
Aids, tuberculosis and malaria each contributed more than 2% to this figure. In
June 2006, 387 completely sequenced genomes (http://www.genomesonline.org/)
have been published in total, 352 of them from bacteria, an important prerequisite
for the analysis of the proteomes of these organisms. In total 940 ongoing bacterial
genome projects were reported.
The first successful proteome studies revealed vaccine candidates with promis-

ing results in animal models. Immunoproteomics resulted in the detection of
antigens which may be used for diagnostics and vaccine candidate prediction. So it
can be assumed that proteomics will make a marked contribution to the improve-
ment of worldwide health within the next few years.
Here we look at some of the trends in this field. As there are so many micro-

organisms currently under investigation, it is not possible to present a compre-
hensive overview of microbial proteomics. Proteomics technology has been auto-
mated within recent years: spot picking, digestion, LC-MS/MS and database sear-
ches have increased throughput but produced new bottlenecks in quality control
and data evaluation. Microorganisms are ideal models for the application of these
new technologies. Bacteria with genomes containing 600 to 7000 predicted genes
present a medium-sized complexity which can be used to apply proteomic tech-
niques with a good chance of obtaining an overview of a substantial part of the
proteome in combination with prefractionation procedures. Standardization is
now an important theme in proteomic technology but the multiple properties of
organisms and proteins make standardizing sample preparation nearly impos-
sible. Even related bacteria need different procedures for sample preparation, as
outlined in this book in the example of Mycobacterium leprae. It may be estimated
that in one biological situation more than 50% of the predicted proteins may be
identified for genomes such as Mycoplasma pneumoniae containing less than 1000
genes, 30% for those containing less than 2500 genes and only 10% for those con-
taining more than 4000 genes. Subfractionation contributes to the number of
accessible proteins, but in the future throughput has to be increased further to
allow the presentation of the proteome in a kind of film with changing environ-
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mental conditions. Only then may more complete proteomes become accessible.
Bioinformatics accompanies proteomics through all the technological steps,
allowing the data obtained to be stored in a database. A microbial proteomics
database system was set up at the Max Planck Institute for Infection Biology
(http://www.mpiib-berlin.mpg.de/2D-PAGE/) and by June 2006 it contains 18
bacterial species and 4889 identified spots. Peptide mass fingerprinting data are
stored for Helicobacter pylori and isotopic labelling results are represented for
Mycobacterium tuberculosis LC/MS data. Proteomics of microorganisms allow the
scientist to start with a hypothesis-free global approach and focus early on the
hypotheses elaborated from this first step. In the first few years we learned that
posttranslational modifications play a more important role than expected in bac-
teria, and the resulting protein species composition may be directly visualized by 2-
DE/MS but not by LC/MS which has other advantages such as higher throughput
and sensitivity potentials. At the moment, for example, the impact of more than 10
ESAT-6 protein species in Mycobacterium tuberculosis remains unclear. Proteome
analysis at the protein species level is a task for the future.
We wish to thank the authors for their contributions, the referees for their

prompt reviewing of the manuscripts and the publishers for their help in produc-
ing this book. We also take this opportunity to thank the ”Bundesministerium f�r
Bildung und Forschung” in Germany for financing the project ”New methods to
access the complete proteome of bacteria” and the European Union for support in
developing the European Bacterial Proteome Database within the project ”Com-
parative analysis of proteome modulation in human pathogenic bacteria for the
identification of new vaccines, diagnostics and antibacterial drugs” (QLRT-1999–
31536). Several articles in this book were supported by these two initiatives.

Peter R. Jungblut
Max Planck Institute for Infection Biology

Core Facility Protein Analysis
Berlin

Michael Hecker
Ernst-Moritz-Arndt-Universit�t Greifswald

Institut f�r Mikrobiologie
Greifswald
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1
Genome and proteome analysis of Chlamydia*

Brian B. S. Vandahl, Svend Birkelund and Gunna Christiansen

It has been difficult to study the molecular biology of the obligate intracellular
bacterium Chlamydia due to lack of genetic transformation systems. Therefore,
genome sequencing has greatly expanded the information concerning the biology
of these pathogens. Comparing the genomes of seven sequenced Chlamydia ge-
nomes has provided information of the common gene content and gene variation.
In addition, the genome sequences have enabled global investigation of both tran-
script and protein content during the developmental cycle of chlamydiae. During
this cycle Chlamydia alternates between an infectious extracellular form and an
intracellular dividing form surrounded by a phagosome membrane termed the
chlamydial inclusion. Proteins secreted from the chlamydial inclusion into the host
cell may interact with host cell proteins and modify the host cell’s response to
infection. However, identification of such proteins has been difficult because the
host cell cytoplasm of Chlamydia infected cells cannot be purified. This problem
has been circumvented by comparative proteomics.

1.1
Introduction

Chlamydia is an obligate intracellular bacterium comprising a number of impor-
tant animal and human pathogens causing infections with serious sequelae. Chla-
mydia trachomatis is a cause of ocular and genital infections. Chlamydophila pneu-
moniae (previously Chlamydia pneumoniae) causes respiratory diseases and has
been associated with asthma and atherosclerosis. Sequelae are primarily due to an
inflammatory response, which may be sustained by bacteria persisting in the
infected organism due to a special intracellular nonreplicative state [1] but delayed-
type hypersensitivity may also be involved.

* Originally published in Proteomics 2004, 10, 2831–2842
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Molecular biological studies of Chlamydia have been hampered by the lack of
genetic transformation systems. Therefore, sequencing of the genomes of several
Chlamydia species has been especially important for chlamydial research. The C.
trachomatis serovar D genome was published in 1998 [2] and in 1999 the first C.
pneumoniae genome followed [3]. Today Chlamydia is one of the most extensively
sequenced microorganisms with seven published genomes including four from
different isolates of C. pneumoniae (http://www.ncbi.nlm.nih.gov:80/PMGifs/ Ge-
nomes/org.html). Besides direct analysis of genome sequences (genomics), global
investigation of transcripts (transcriptomics) and protein content (proteomics) are
developed based on the genome sequences.

1.1.1
Chlamydia biology

Traditionally Chlamydia was the only genus in the family of Chlamydiacae which
was the only family in the order of Chlamydiales. Since the introduction of C.
pneumoniae in 1989 [4] there were four species, distinguished mainly by serology:
C. pneumoniae, C. trachomatis, C. pecorum and C. psittaci. In 1999 a new taxonomy
was suggested [5], introducing more genera and species based on phylogenetic
relationships with requirement of . 95% 16S rRNA identity within a genus. The
suggested taxonomy placed C. trachomatis in the genus Chlamydia and divided the
C. trachomatis into three species. The remaining Chlamydia species were placed in
the new genus Chlamydophila, and C. psittaci was divided into a number of differ-
ent species. Similar developmental biology, similar genome size and genome
organization of C. trachomatis (1.0 Mb) and C. pneumoniae (1.2 Mb) [3], represent-
ing Chlamydia and Chlamydophila, respectively, indicate basic similarities but dif-
ferences are also found [6]. In the present review the new taxonomy will be followed
with respect to species names, but Chlamydia will be used as a unifying term
describing both of the suggested genera Chlamydophila and Chlamydia.

1.1.1.1 Diseases
The main human pathogenic chlamydiae are C. trachomatis and C. pneumoniae, but
also bird pathogenic C. psittaci can cause severe pneumonia, psittacosis, if trans-
ferred to humans [7]. C. trachomatis is divided into three groups of serovars: (i) ser-
ovars A–C are endemic in developing countries and the cause of trachoma, which
may lead to blindness by scarring of the cornea [7]; (ii) serovars D–K are sexually
transmitted and cause urethritis, cervisitis and salpingitis. It is the most widespread
sexually transmitted bacterial disease and infections are often asymptomatic. The
infection may cause sterility and increased risk for ectopic pregnancy by scarring of
the fallopian tubes if it spreads from the cervix [7]; (iii) serovars L1–L3 are also sexu-
ally transmitted but cause lymphogranuloma venereum (LGV). LGV is a more severe
infection as it readily spreads to the lymphatic system and becomes systemic [7].
Serovars A–K are known as the trachoma biovar and L1–3 as the LGV biovar.
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C. pneumoniae is a respiratory pathogen that causes acute and chronic respiratory
diseases. Most infections are asymptomatic, but about 30% cause more severe
pneumonia, bronchitis or other upper airway illness [8]. About 10% of the cases of
community acquired pneumonia in adults and about 5% of the cases of bronchitis
and sinusitis are caused by C. pneumoniae [9]. Persistent infections have been
described [10] and there are indications that treatment may not eliminate the
organism [11]. C. pneumoniae has been associated with chronic lung diseases [8]
and as a possible risk factor for the development of atherosclerosis [12]. C. pneu-
moniae has been detected in atherosclerotic lesions [13] and studies have shown
that atheromatous plaques are commonly infected with C. pneumoniae. Animal
studies suggest that C. pneumoniae can accelerate atherosclerosis-like disease [14,
15]. However, other studies fail to detect C. pneumoniae in plaques and many stud-
ies find no significant association by serology [16, 17]. At present it is not clear
whether there is an increased risk of coronary artery disease due to C. pneumoniae
infection and if there is, the increase may be small.

1.1.1.2 The developmental cycle
Chlamydia is a Gram-negative, obligate intracellular bacterium, characterized by
a biphasic developmental cycle. The developmental cycle (Fig. 1) in which the
bacteria alternate between an infectious, extracellular form, the elementary body
(EB) and a noninfectious intracellular replicating form, the reticulate body (RB)
is unique for chlamydiae [18–20]. EBs are small rigid bodies of about 300 nm in
diameter that are traditionally described as being metabolically inactive with
their DNA packed by histone-like proteins [21, 22]. They are adapted for extra-
cellular survival with a heavily disulfide cross-linked outer membrane, that pro-
vides osmotic stability. RBs are about 1 mm in diameter with an outer membrane
that is permeable for transport of host cell nutrients and the DNA is unpacked
as in other bacteria.
Infectious EBs attach to a susceptible host cell by which they are phagocy-

tosed. The exact mechanism is not known but the uptake is thought to be
induced by the bacteria. Inside the phagosome, named the inclusion, the EBs
develop into RBs, which divide by binary fission. This includes unpacking of the
DNA and reduction of the disulfide bridges of the outer membrane [23], but it is
not known what triggers these events. After multiple divisions, the RBs begin
conversion into EBs, including packing of the DNA and synthesis of late outer
membraneproteins that are disulfide bridged. Ultimately, a new generation of
infectious EBs is released upon disruption of the host cell. The bacteria stay
inside the inclusion throughout the intracellular stage, which lasts for 72–96 h
for C. pneumoniae grown in cell culture. The inclusion membrane grows by the
acquisition of lipids derived from the host cell [24–26]. It is modified by the
insertion of chlamydial proteins, the so-called inclusion membrane proteins
(incs), and prevented from fusion with lysosomes [27, 28].
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Fig. 1 The developmental cycle of Chlamydia. Hours post infection
(hpi) are listed for C. pneumoniae in cell culture. A, the infectious EB
adheres to a host cell and is taken up by endocytosis. B, Chlamydia
modifies the phagosome, the chlamydial inclusion, to escape the
endocytic pathway. C, the EB develops into the metabolically active
RB. D, the RBs divide by binary fission and the inclusion grows by
incorporation of host cell derived lipids. E, after multiple divisions,
the RBs reorganize into EBs. F, ultimately, a new generation of infec-
tious EBs is released by lysis of the host cell. G, low nutrient avail-
ability, IFN-g mediated tryptophan starvation or other stressful con-
ditions can trigger a persistent state with abnormal nondividing RBs.
These RBs can be reactivated to enter the developmental cycle when
the conditions are again suited for growth. Redrawn from [8].

The developmental cycle of C. pneumoniae can be arrested by interferon-gamma
(IFN-g)-induced tryptophan catabolism of the host cell [29]. Tryptophan starva-
tion leads to a nonproductive infection in which enlarged aberrant RBs evolve.
These abnormal RBs do not divide and do not mature into EBs, but the devel-
opmental cycle can be reactivated [30, 31]. Also C. trachomatis can enter a per-
sistent state [32] and in addition to cytokines, limited nutrient availability [33]
and treatment with antibiotics that fail to eradicate the infection have been
shown to trigger this state [34, 35].
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1.2
Chlamydia genomes

1.2.1
Sequenced Chlamydia genomes

The first Chlamydia genome sequences of C. trachomatis [2] and C. pneumoniae [3]
are from the Chlamydia Genome Project (CGP) (http://chlamydia-www.berkeley.
edu:4231/). The sequenced genomes provide insight into genome organization
and metabolic pathways of Chlamydia and form a basis for further research in gene
regulation and protein expression [36]. Genome sequences of C. muridarum (pre-
viously C. trachomatisMoPn) [37], three other isolates of C. pneumoniae [37–39] and
most recently that of C. caviae (previously C. psittaci GPIC) [40] have been pub-
lished. An overview of the sequenced genomes is given in Tab. 1 where the number
of predicted protein encoding open reading frames (ORFs) is the number given in
the respective references. The number of ORFs is dependent on what sequence
length is considered minimum for an expected protein and the cut-off varies
slightly between sequencing projects.
C. trachomatis serovar D and C. muridarum contain a plasmid, and in C. caviae

and C. pneumoniae AR39 a bacteriophage was found. The genomes of C. tracho-
matisD and C. muridarum (human and mouse genital pathogens, respectively), are
very similar with an average of about 10% difference between orthologous genes
[37]. Most differences between these genomes were found in the replication ter-
mination region (RTR) [40] including those in C. trachomatis D genes involved in
tryptophan synthesis, which are missing in C. muridarum.
The C. pneumoniae genomes are more than 99.9% identical and the few differ-

ences are mainly found in pmp [37] and ppp genes [41, 42]. A double-stranded cir-
cular DNA, the replicative form of a bacteriophage was found upon sequencing the
C. pneumoniae AR-39 genome [37]. The phage of C. pneumoniae AR-39 was sug-
gested as contributing to pathogenicity [43], and a similar phage was identified in
C. abortus [6].

Tab. 1 Genome size and number of ORFs

Genome Reference Base pairs ORFs Plasmid/Phage

C. trachomatis D [2] 1,042,519 894 7493 bp plasmid
C. pneumoniae, CWL029 [3] 1,230,230 1073 –
C. pneumoniae, AR39 [37] 1,229,853 1052 4524 bp phage
C. pneumoniae, J138 [38] 1,226,565 1072 –
C. muridarum [37] 1,069,412 924 7501 bp plasmid
C. caviae (GPIC) [40] 1,173,390 1009 7966 bp phage

C. pneumoniae TW-183 has also been sequenced [39] but is not contained
in this table as no paper has yet been published on the results
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1.2.2
Chlamydial genes

The environment of Chlamydia can be considered hostile, since the host cell will
attempt to eradicate the bacteria, or friendly, since the bacteria have access to
nutrients form the host cell. Analyzing the genome sequences of Chlamydia by
comparing metabolic pathways and energy systems to those of free-living bacteria
reveal many consequences of the availability of nutrients. However, the defense
systems implicated by the intracellular nature do not appear as readily from the
genome sequences since these may be unique for Chlamydia.
No genes are found that encode proteins involved in de novo purine and pyr-

imidine synthesis and the ability to synthesize amino acids is greatly reduced.
Correspondingly, a large number of genes encoding different transport proteins
have been identified, including many ABC transporters which are primarily
involved in transport of smaller peptides and amino acids [2]. Also in good agree-
ment with the intracellular and thus isolated nature of Chlamydia, no genes
involved in DNAuptake were identified and no insertion sequences were found [2].
Chlamydiae have traditionally been described as energy parasites obtaining ATP

from their host cells [19, 44], and the genomes of C. trachomatis and C. pneumoniae
confirmed the presence of two genes CT065/Cpn0351 and CT495/Cpn0614
(CTXXX and CpnXXXX refer to C. trachomatis and C. pneumoniae gene numbers,
introduced by the CGP [2, 3]), homologous to genes encoding ATP transporting
proteins from Rickettsia prowazekii [45]. The orthologs from C. trachomatis L2 were
cloned and used to express functional nucleoside phosphate transporters (npt) in
Escherichia coli, one (CT065) exchanging ADP for ATP, the other (CT495) trans-
porting all four ribonucleoside triphosphats [46]. Surprisingly, also genes encoding
a wide range of ATPases as well as phosphoglycerate kinase, pyruvate kinase, and
succinate thiokinase were identified, suggesting the capability of Chlamydia to
produce ATP itself [2]. This ability may be important in the early and late stages of
the developmental cycle where Chlamydia supposedly cannot obtain ATP form the
host cell [44]. Genes encoding the proteins of an intact glycolytic pathway (although
it is questionable whether an enzyme with fructose-1,6-diphosphate aldolase activ-
ity is present or this is circumvented), a partial TCA cycle, a complete glycogen
synthesis and degradation system, and genes involved in aerobic respiration were
also found [2]. Furthermore, proteins encoded by many of these genes were shown
to be present in EBs [47] and pyruvate kinase, phosphoglycerate kinase, glyc-
eraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase
were shown to complement E. coli mutants when expressed recombinantly [48].
During the intracellular stage, Chlamydia may store glycogen that is used to fuel
the chlamydiae in the beginning and the end of the developmental cycle together
with stored pools of ATP [48].
Four groups of chlamydial proteins have been indicated as especially interesting

and important results of the genome project [49]. These groups were (i) pepti-
doglycan synthesis proteins; (ii) type III secretion proteins; (iii) inclusion mem-
brane proteins (incs); and (iv) polymorphic membrane proteins (pmps).
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The presence of a nearly full set of genes involved in peptidoglycan synthesis was
unexpected since a peptidoglycan layer is not detected in EBs. However, Chlamydia
is sensitive to beta-lactam antibiotics and peptidoglycan has been suggested to play
a role in the division of RBs [50] supported by the finding of three amidases with
probable peptidoglycan degradating activity.
The finding of type III secretion system genes was expected as such genes had

earlier been found in C. caviae (C. psittaci GPIC) [51]. The type III secretion system
is known from other Gram-negative bacteria to facilitate the transport of molecules
from the bacterial cytosol into a future host cell by penetration of the host cell
membrane with a surface protrusion that is thought to function as a channel. Sur-
face projections of both EBs and RBs observed in electron microscopy [52, 53]
thought to be involved in nutrient uptake, were speculated to be such type III nee-
dles when type III genes in Chlamydia were found [54, 55].
Inclusion membrane proteins are chlamydial proteins that are inserted into the

inclusion membrane. Such proteins were first identified in C. caviae and termed
incA, B and C [56, 57]. Homologs of these were found in the genomes of all
sequenced chlamydiae but have not been found in any other organism. Several ad-
ditional incs have since been identified and all of these share a characteristic bilobed
hydrophobic region, even though no sequence motif is apparent [58]. Thirty-three
genes encoding proteins with this hydrophobicity pattern have been identified in the
C. trachomatis genome and 93 in the C. pneumoniae CWL029 genome [59].
Another group of Chlamydia specific proteins found in the genome was the family

of polymorphic membrane proteins (pmps). These were initially identified in C.
abortus (ovine abortion subtype ofC. psittaci) being immunogenic proteins present in
the outer membrane [60]. Nine pmp genes were identified in C. trachomatis, 17 in C.
caviae and 21 in C. pneumoniae. The pmps are defined by being predicted outer
membrane proteins containing repeated sequences of GGAI and FxxN [61] and by
protein structure analysis they are predicted to be autotransporters [47, 62]. Incs and
pmps are likely to be pivotal for Chlamydia biology indicated by the fact that 37.4% of
the Chlamydia specific coding sequence of C. pneumoniae is constituted by inc and
pmp genes (18.9% and 17.5%, respectively) [49].

1.2.3
Genome comparison

Genome sequences are thus available for C. trachomatis serovar D, C. muridarum,
C. caviae and four isolates of C. pneumoniae (CWL029, AR39, J138 and TW-183), all
of these share the unique developmental cycle but they are diverse in tissue trop-
ism; C. trachomatis serovar D infects the genital tract of humans, C. pneumoniae
infects the human respiratory tract; C. caviae the conjuctiva of guinea pigs and C.
muridarum is a mouse pathogen. Hence, genome comparisons may reveal differ-
ences that are important for pathogenicity and tissue specificity.
Comparison of the C. caviae genome [40] to those of C. pneumoniae and C. mur-

idarum showed that only 68/1009 C. caviae genes were not found in any of the other
Chlamydia genomes, but differential expression of genes shared by the different
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organisms may contribute to pathogenicity differences. Seven hundred and ninety-
eight genes were found in all genomes and may be the minimum set of genes
required for the basic growth and development of Chlamydia. Out of the 798 shared
genes, 183 could not be found in any other of 70 published microbial genomes in
the TIGR database [40]. Investigation of these genes, which include the inc and pmp
genes, may elucidate functions that are specifically related to the intracellular
characteristics of Chlamydia and its developmental cycle.
The most prominent C. caviae specific genes compared to C. pneumoniae are the

genes required for tryptophan synthesis found in the RTR. C. caviae appears to be
able to synthesize tryptophan from anthranilate, which is a very early precursor
[40]. C. trachomatis possess a more limited set of tryptophan synthesis genes [2] and
the genital and LGV serovars can produce tryptophan from the intermediate pre-
cursor indole, whereas the ocular serovars A and C have a truncated TrpA and ser-
ovar B lacks the trpA operon [63] similar to that which is found for C. pneumoniae
[3]. A tox gene similar to cytotoxic genes from enterobacteria has been found in C.
caviae and C. muridarum, the product of which may be secreted by the type III
secretion system in order to inhibit actin polymerization [40]. In addition, a gene
with homology to an invasin/intimin family protein was identified but the gene is
interrupted by two frame shifts [40]. Specific genes found in C. pneumoniae that are
absent from C. caviae include a uridine kinase, two 3-deoxy-D-manno-octulosonic
acid (KDO) transferases, and two genes involved in biotin synthesis. In addition,
168 genes with unknown function are present in C. pneumoniae but not in any
other Chlamydia [40].
Comparing C. pneumoniae to C. trachomatis, 80% of the predicted protein

encoding genes have an ortholog in C. trachomatis [3]. From the 214 genes found in
C. pneumoniae but not in C. trachomatis, most have no known function, but those
that have include genes for purine and pyrimidine salvage pathways and comple-
tion of the biotin synthase pathway. A prominent difference is the expansion of the
pmp gene family from nine members in C. trachomatis to 21 members in C. pneu-
moniae [61]. The C. trachomatis pmp genes are located in two clusters pmpA-C and
pmpE–H except for one gene, pmpD. Most of the difference between C. pneumoniae
and C. trachomatis is accounted for by expansion of pmpG to 13 pmps (pmp1–13) in
C. pneumoniae [61]. The amino acid identity between pmp1–13 is 34–55%.
The C. pneumoniae genomes elucidated that several pmp genes contain frame

shifts, and these vary between isolates, as listed in Tab. 2. Furthermore, at least
pmp10 was shown to be differentially expressed between chlamydiae within the
same cell, and this is likely due to a polyG tract that varies in length [64]. Based on
the relatively high variability in the pmp gene family, considering the otherwise very
conserved sequences between isolates, it has been speculated that the pmps may
function in surface variation of Chlamydia as seen in other pathogenic bacteria [65].
Another gene family in C. pneumoniae that shows remarkable variation is the

recently identified Cpn1054 family or C. pneumoniae polymorphic protein (ppp)
family [42]. Cpn1054 was initially identified as one of eleven paralogous genes
located in four hyper-variable regions in C. pneumoniae CWL029, one of which is
situated between pmp1 and pmp2 [66]. The genes were predicted to encode inc
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Tab. 2 Variation in C. pneumoniae polymorphic membrane pro-
tein (pmp) genes

pmp CWL029 AR39 J138

2 frame shift
3 frame shift frame shift frame shift
4 frame shift frame shift 11 frame shift
5 frame shift frame shift frame shift
6 393 bp del. 393 bp del.

10 frame shift
12 truncation truncation truncation
17 frame shift frame shift frame shift

proteins by the presence of the characteristic bilobed hydrophobic motif. Many of
the genes contain stop mutations that differ between sequenced strains and as in
pmp10, a poly-G tract was identified in the 5’ end of cpn1054 [66]. Recently, poly-G
tracts present in seven of eleven 1054 family members were analyzed by sequenc-
ing of a number of clinical isolates [67]. Five out of seven were found to vary in all
investigated isolates, and functional analysis of protein products from this gene
family will be interesting.

1.3
Proteome analysis of Chlamydia

The genome sequence reveals the coding capacity of an organism and thus what
proteins it theoretically can produce. The coding capacity is informative, but does
not reveal information about when, where and in what quantities the genes are
transcribed and whether the possibly resultant proteins are modified or secreted.
The direct investigation of proteins in their post-translationally modified and pro-
cessed form present in a given biological compartment at a specific time and in a
defined environment is the task of proteomics.
Proteomics is used to describe any large-scale investigation of proteins and can

be approached in many ways but in principle it involves two steps: separation of the
proteins in a sample and subsequent identification of these proteins. The perfect
proteome study would provide a quantitative measure of every single protein pres-
ent in the investigated sample. Unfortunately, such a study is so far not possible.
Novel quantitative mass spectrometric techniques come close, but these are still in
the development phase. Today 2-D gels as a separation tool coupled to mass spec-
trometry protein identification provides the most comprehensive way of analyzing
complex protein mixtures [68].
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1.3.1
Early Chlamydia proteome studies

In 1985, 2-DE was used to compare the protein content of outer membrane pre-
parations from C. trachomatis serovars L2 and F [69]. Chlamydiae were selectively
radiolabeled by [35S]methionine incorporation in the presence of the inhibitor of
eukaryotic ribosomes, cycloheximide. EBs were purified and Chlamydia outer
membrane complex (COMC) was prepared by sarkosyl extraction [70]. The COMC
was solubilized in a 2-D buffer based on urea with NP-40 as detergent and mer-
captoethanol as reducing agent and subjected to 2-D PAGE where the first dimen-
sion was carried out in tube gels in which the pH gradient was established during
focusing. Three proteins, major outer membrane protein (MOMP), a 60 kDa pro-
tein and a 12 kDa protein were observed for C. trachomatis F, whereas the 60 kDa
protein was missing for C. trachomatis L2. However, by NEPHGE it could be con-
cluded that the 60 kDa protein was also present in C. trachomatis L2, but migrating
more basic than in serovar F [69].
Improvements in 2-D PAGE, including IPG strips for the first dimension,

means that today more proteins can be resolved in 2-D gels of COMC [71]. Lamb-
den et al. [72] identified the 60 kDa large cysteine-rich outer membrane protein,
OmcB (Omp2), and the 12 kDa small cysteine-rich protein, OmcA (Omp3) to be
developmentally regulated and transcribed as a polycistronic mRNA late in the
developmental cycle. A model of the COMC architecture has been proposed [73] in
which Omp2 is localized in the periplasmic space, disulfide cross-linked to Omp3,
which is suggested to be anchored in the outer membrane by its lipid moiety.
Comparing COMC from different C. trachomatis serovar to C. pneumoniae and C.
caviae [74] showed that Omp2 from C. trachomatis L2 was resolved in the gels, but
migrated one pH unit more basic than Omp2 of C. trachomatis F and two pH units
more basic than C. trachomatis D. No additional proteins were identified for any of
the species even though high molecular bands were observed by 1-D SDS gels for
C. trachomatis serovar D [74].

1.3.2
C. trachomatis proteome studies

The first proteome study on whole Chlamydia aimed at identifying early proteins in
C. trachomatis L2 by pulse labeling with [35S]methionine at 2–4 h post-infection
(hpi), 8–10 hpi, 14–16 hpi and 28–30 hpi [75]. Seven proteins were detected earlier
than MOMP, four of which were labeled at 2–4 hpi. Three of these were identified
by colocalization with proteins detected by immunoblotting with known anti-
bodies. These were the heat shock proteins DnaK and GroEL and the ribosomal
protein S1. The remaining four proteins were not identified. Early transcription of
the groEL gene has recently been confirmed by transcript analysis [76, 77], but dnaK
was designated a late gene in [78]. However, the designation “late” was based on
lower transcription at earlier points in time than 24 hpi and higher transcription at
later points in time and this does not exclude early transcription.
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A second global study [79] aimed at providing a basis for the development of a
protein database of C. trachomatis proteins. This was the first Chlamydia study to
use IPG strips. Approximately 600 spots were separated in the area from pH 4–9
and 10–120 kDa in silver-stained gels. The very good resolution compared to earlier
studies can be ascribed to the use of IPGs but also the substitution of mercap-
toethanol with dithioerythritol (DTE), and NP-40 with CHAPS may have con-
tributed to the superior results. Mercaptoethanol will more readily migrate out of
the first dimension gel than DTE due to its charge, and removal of reducing agent
will cause reoxidation and precipitation of proteins. A combination of immuno-
blotting with known antibodies and N-terminal sequencing was used to identify
nine known proteins [79]. Seven sequences were obtained from yet uncharacter-
ized proteins distributed in different areas of a 2-DE map and even though the gels
showed very good resolution, the study like all other pregenomic proteome studies,
suffered from the lack of identification methods for unknown proteins.
In the pregenomic area, 2-DE was most appropriate in studies where antibodies

were available for identification of the proteins. One such study demonstrated the
superiority of 2-DE in comparison to 1-DE with respect to the resolution of differ-
ent isoelectric isoforms [80]. A family of high molecular weight C. abortus proteins
detected by post-abortion sera from sheep were shown to be identical to immuno-
genic putative outer membrane proteins (POMPs). As the proteins had similar
molecular weight, they could not have been distinguished in 1-D gels.
Western blotting of 2-D gels has also been applied to identify immunogenic

proteins in C. trachomatis using sera from 17 patients suffering from genital
inflammatory disease [81]. Fifty-five immunogenic proteins were detected with
frequencies varying from 17 to 1. Eight proteins could be identified by colocaliza-
tion with previously determined proteins. In addition, N-terminal sequences were
obtained for nine proteins from which six could be identified in the genome
sequence. Omp2, GroEL, MOMP and DnaK were the most frequently recognized
proteins. These are known antigens, but also previously unknown antigens were
detected such as elongation factor TU and ribosomal proteins.

1.3.3
C. pneumoniae proteome studies

The first comprehensive proteome map of Chlamydia in the postgenomic area was
that of C. pneumoniae [47] (Fig. 2). Like Bini et al. [79] this study used IPGs in the
first dimension and thiourea was incorporated into the 2-DE buffer to obtain the
best possible recovery of hydrophobic proteins. Mass spectrometry was used to
identify 263 protein spots representing 167 different genes and all identifications
were published on the internet at http://www.gram.au.dk in a searchable form.
Data for pH 4–7 (Fig. 2) was also included in the bacterial proteome database at the
Max Planck Institute for Infection Biology at http://www.mpiib-berlin.mpg.de/2D-
PAGE/. The proteome map can thus serve as a reference for 2-D PAGE studies
performed in other laboratories. A good agreement between predicted and
observed number of proteins was observed in the acidic region, whereas recovery in
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Fig. 2 Screen dump of the clickable IPG4-7 proteome map of C.
pneumoniae available at www.mpiib-berlin.mpg.de/2D-PAGE/EBP-
PAGE/index.html. Crosses represent identified proteins.

the basic region was poor. The use of basic strips (pH 6–11) did not significantly
improve the number of resolved protein spots, but gave a better spatial distribution
which is important when proteins are to be excised for further analysis.


