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Preface

Reiterated measurements of an experimentally accessible quantity of a dynami-
cal system result in a time series, and one may wonder, what this information can
tell about the system on which the measurements are done. Time series analysis
is, thus, a very obvious way of an attempt to understand nature—already Ke-
pler did it when studying the observations of Tycho Brahe. He came up with
a very simple synopsis formulated in his famous laws and Newton could as-
cribe these to a single law by postulating a fundamental gravitational force.
This marks the beginning of modern science and then, in exploring the nature,
fundamental laws or equations motivated by first principles played a dominant
role.
Turning to more and more complex systems guidance by first principles be-

came less fruitful for finding a mathematical model. Thus, observations cannot
serve any more as indication or pointer to some fundamental underlay but have
to be regarded only as a fingerprint of the system. First tasks in analyzing these
fingerprints then are e.g. characterization or establishing a relation or correlation
to other observations. Time series analysis in this sense, thus, has already a long
history in fields where the systems to be studied are very complex such as mete-
orology or medical science. Sophisticated mathematical methods appeared first
in late 19th century and during the last decades these methods have been utilized
also by many scientists working in applied fields. This has led to many successes
in understanding complex systems.

This handbook comprises a wide range of current topics in the field of time series
analysis. The editors are well-known for both their theoretical work on time series
analysis techniques and their applications. Therefore, the editors attached great
importance to both theoretical work and applications. Especially, the interplay of
theory and practice is included in this Handbook of Time Series Analysis. The
editors brought together contributions of worldwide accepted experts of differ-
ent branches, e.g. from Physics, Mathematics, Biology, Medicine, Neuroscience,
and Engineering. With respect to the theory this Handbook covers a broad vari-
ety of presently used methodologies in different disciplines, ranging from linear
stochastic systems to Nonlinear Dynamics, from univariate to multivariate time
series analysis.
The Handbook of Time Series Analysis will provide guidance for all those

working on time series analysis, from students to experienced investigators. I



xiv Preface

hope that it develops into a standard textbook and that the editors find time to
keep it up-to-date in future.

Josef Honerkamp July 26, 2006

Chair for “Stochastic Dynamical Systems” at the Physics Department of the Uni-
versity of Freiburg, and founder of the “Freiburg Center for Data Analysis and
Modeling”
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1 Handbook of Time Series Analysis:
Introduction and Overview

Björn Schelter, M. Winterhalder, and J. Timmer

Mathematics, Physics, and Engineering are very successful in understanding phe-
nomena of the natural world and building technology upon this based on the
first principle modeling. However, for complex systems like those appearing in
the fields of biology and medicine, this approach is not feasible and an under-
standing of the behavior can only be based upon the analysis of the measured
data of the dynamics, the so-called time series.
Time series analysis has different roots in Mathematics, Physics, and Engi-

neering. The approaches differ by their basic assumptions. While in Mathematics
linear stochastic systems were one of the centers of interest, in Physics nonlin-
ear deterministic systems were investigated. While the different strains of the
methodological developments and concepts evolved independently in different
disciplines for many years, during the past decade, enhanced cross-fertilization
between the different disciplines took place, for instance, by the development of
methods for nonlinear stochastic systems.
This handbook written by leading experts in their fields provides an up-to-

date survey of current research topics and applications of time series analysis. It
covers univariate as well as bivariate and multivariate time series analysis tech-
niques. The latter came into the focus of research when recording devices enabled
more-dimensional simultaneous recordings. Even though bivariate analysis is ba-
sically multivariate analysis, there are some phenomena which can occur only in
three or more dimensions, for instance, indirect interdependences between two
processes.
The aim of this handbook is to present both theoretical concepts of vari-

ous analysis techniques and the application of these techniques to real-world
data. The applications cover a large variety of research areas ranging from elec-
tronic circuits to human electroencephalography. The interplay between chal-
lenges posed by empirical data and the possibilities offered by new analysis
methods has been proven to be successful and stimulating.
In the first chapter, Henry D. I. Abarbanel and Ulrich Parlitz present different

approaches to nonlinear systems. By means of a real-world example of a record-
ing from a single neuron, they discuss how to analyze these data. Concepts such
as the Lyapunov exponent, i.e., a measure for chaos, prediction, and modeling in
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nonlinear systems, are introduced with a critical focus on their limitations. Ready
to apply procedures are given allowing an immediate application to one’s own
data.
Local modeling is being dealt with by David Engster and Ulrich Parlitz. Local

models are amongst the most precise methods for time series prediction. This
chapter describes the basic parameters of local modeling. To show the efficiency
of this procedure, several artificial and real-world data, for instance experimental
friction data sets, are predicted using local models. As an alternative to strict
local modeling, cluster weighted modeling is also discussed using an expectation-
maximization (EM) algorithm as a parameter optimization procedure.
Holger Kantz and Eckehard Olbrich present concepts, methods, and algo-

rithms for predicting time series from the knowledge of the past. Thereby, they
especially concentrate on nonlinear stochastic processes which have to be dealt
with by probabilistic predictions. They calculate a certain prediction range in
which future values are going to fall. They complete their chapter by discussing
verification techniques for their forecasted values, which is very important when
dealing with real-world data.
Noise and randomness in biological systems have often been treated as an

unwelcome byproduct. Patrick Celka and co-workers identify different noise
sources and their impact on dynamical systems. This contribution discusses the
concept of randomness and how to best access the information one wants to
retrieve. Different time series analysis techniques are presented. The applica-
tions govern speech enhancement, evoked potentials, cardiovascular system, and
brain–machine interface.
The chapter of Ursula Gather and co-workers is dedicated to robust filter-

ing procedures for signal extraction from noisy time series. The authors present
various filter techniques with their specific properties and extensions in order to
process noisy data or data contaminated with outliers. They point to the vari-
ety of different approaches and compare the advantages and disadvantages. By
means of simulated data they demonstrate the different conceptual properties.
Dealing with bivariate time series analysis techniques, the chapter of Michael

Rosenblum and co-workers is dedicated to the phenomenon of phase synchro-
nization and the detection of coupling in nonlinear dynamical systems. The au-
thors discuss the usage of model-based and nonmodel-based techniques and in-
troduce novel ideas to detect weak interactions between two processes, together
with the corresponding strength and direction of interactions. They illustrate
their analysis techniques by application to data characterizing the cardiorespi-
ratory interaction.
An approach to detect directional coupling between oscillatory systems from

short time series based on empirical modeling of their phase dynamics is intro-
duced by Dmitry Smirnov and Boris Petrovich Bezruchko. This time series analy-
sis technique is utilized to analyze electroencephalography recordings with the
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purpose of epileptic focus localization and climatic data representing the dynam-
ics of the North Atlantic Oscillation and El Niño/Southern Oscillation processes.
Phase synchronization analysis of brain signals, for instance intracranial elec-

troencephalography data recorded from epilepsy patients, has come into the fo-
cus of neuroscience research. Mario Chavez and co-workers suggest a data-driven
time series analysis technique to select the important contents in a signal with
multiple frequencies, the empirical mode decomposition. They summarize this
concept and demonstrate its applicability to model systems and apply it to the
analysis of human epilepsy data.
For cases where the definition of the phase used by common approaches is

impossible, Mamen Romano and co-workers present a way to detect and quan-
tify phase synchronization using the concept of recurrences. Furthermore, to test
for phase synchronization, an algorithm to generate surrogate time series based
on recurrences is discussed. An application to fixational eye movement data com-
plements the results for model systems.
Theoden I. Netoff and co-workers dedicated their work to infer coupling and

interaction in weakly coupled systems, especially in the presence of noise and
nonlinearity. To this end, they applied several analysis techniques to model data
and to data obtained from an electronic circuit. They explored advantages and
disadvantages of the methods in specific cases. The conclusion of their chapter is
that nonlinear methods are more sensitive to detect coupling under ideal condi-
tions. However, in the presence of noise, linear techniques are more robust.
Dealing with multivariate systems, the chapter of Manfred Deistler is ded-

icated to state space and autoregressive moving average models. He summa-
rizes the basic ideas about state space models and autoregressive moving av-
erage models including external influence. He focuses on the mathematics and
discusses approaches to parameter estimation. Lower dimensional parameteriza-
tions of these state space models are described to cope with high-dimensional
time series.
David S. Stoffer and Myron J. Katzoff introduce an extension to spatio-tempo-

ral state space models. They concentrate on the concept of spatially constrained
state-space models presenting ideas and mathematical aspects. Their application
is dedicated to real-time disease surveillance by analyzing weekly influenza and
pneumonia mortality collected in the northeastern United States that is essential
in helping to detect the presence of a disease outbreak and in supporting the
characterization of that outbreak by public health officials.
Graphical models are introduced in the chapter by Michael Eichler. He in-

troduces the mathematical basis for a graphical representation of the interaction
schemes obtained by multivariate analysis techniques. Moreover, the inference in
these graphs is discussed and illustrated by means of model systems. Novel mul-
tivariate analysis techniques that allow distinction not only of direct and indirect
interactions but also of the direction of interactions leading to such graphs are
summarized and applied to neurophysiological and fMRI data.
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The directed transfer function allows detection of directed influences in mul-
tivariate systems. Katarzyna J. Blinowska and Maciej Kamiñski introduce the
directed transfer function, extend the concept to nonstationary data, and discuss
approaches to decide its statistical significance. In their application, they analyze
human electroencephalography data using the directed transfer function. They
complement this work by comparisons of different multivariate analysis tech-
niques.
Luiz A. Baccalá and co-workers are working on a multivariate analysis tech-

nique called partial directed coherence. Besides several applications of this tech-
nique, one of the challenges when applying this technique to real-world data is
that a significance level is mandatory. Several approaches to evaluate statistical
significance in practice are presented and discussed in their chapter. Moreover,
they compare their technique to other techniques suggested for a similar purpose.
The techniques are applied to electroencephalography data during and immedi-
ately before an epileptic seizure.
Another multivariate analysis technique to detect the directions of interac-

tions between processes is discussed by Mingzhou Ding and co-workers. Bivari-
ate Granger causality and conditional Granger causality are presented with par-
ticular emphasis on their spectral representations. Following a discussion of the
theoretical properties and characteristics, the time series analysis technique is ap-
plied to model systems and to multichannel local field potentials recorded from
monkeys performing a visuomotor task.
Pedro A. Valdés-Sosa and co-workers focus in their chapter on multivariate

autoregressive models (MAR) based on a Bayesian formulation that combines
several components of different types of penalizations as well as spatial a priori
covariance matrices. This approach is shown to be practical by simulations and an
application to concurrent EEG and fMRI time series gathered in order to analyze
the origin of resting brain rhythms.
Ranging from univariate to multivariate analysis techniques, ranging from

applications of physics to life sciences, covering an exceptionally broad spectrum
of topics, beginners, experts as well as practitioners in linear and nonlinear time
series analysis who seek to understand the actual developments will take advan-
tage of this handbook.



2 Nonlinear Analysis of Time Series Data

Henry D. I. Abarbanel and Ulrich Parlitz

Nonlinear dynamical systems pose challenges in the analysis of observed time se-
ries. The required time-domain methods require more care than linear frequency-
domain techniques, yet they are mature enough to answer important questions
about the system producing the time series data. We review a set of standard
methods for this analysis with an eye toward how they may be used in a practi-
cal sense and with a critical focus on their limitations. The key question in any
such analysis is what aspect of the physical or biological system is of importance.

2.1 Introduction

Nonlinear dynamics plays an essential role in the behavior of physical and bio-
logical systems actually observed in experiments. Chaotic oscillations of moons
orbiting heavy planets as well as action potential generation by neurons arise
from nonlinear processes in those settings. This means one must step beyond
the classical set of time series tools, such as Fourier analysis, utilized widely in
the extraction of information from observed time series. Indeed, Fourier analy-
sis is precisely suited for the simplification of linear time invariant dynamics.
This method transforms and simplifies such dynamics from differential equa-
tions to algebraic problems since the transform kernel eiωt is the eigenfunction
of the time translation operator. However, even the presence of a quadratic term
in the dynamical variable leads to a convolution of the Fourier transform of that
variable with itself, thus significantly complicating the analysis rather than sim-
plifying it.
The methods for analyzing time series from nonlinear systems have thus been

developed in time domain. We review here some methods in the analysis of such
time series concentrating on those which have proven valuable over time and
accepting that this chapter will thus miss recent developments which may prove
valuable as they are critically used.
Our discussion will start with the embedding methods utilized to reconstruct

a “proxy” phase space (or state space) for the observed system based on the geo-
metric theorem of Whitney and brought to nonlinear dynamics by Takens [1] and
the Santa Cruz “dynamics collective” [2] around 1980. Within that framework we
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will address how to determine the key quantities within the embedding process:
time delays and dimensions [3–5]. This in itself gives substantial clues to the dy-
namical system leading to the measurements. To classify that system we require
some invariants of the dynamics, and we discuss dimensions and Lyapunov ex-
ponents. The latter also give us insight into the predictability of the system. From
there, we discuss the job of predicting within the reconstructed phase space. At
that stage we turn to estimating the parameters in models of the system produc-
ing the time series measurements.
Through this chapter we use an example from the Laboratory of Al Selverston

at University of California, San Diego (UCSD) [6]. These are measurements of the
cross membrane voltage in an isolated neuron of a small circuit, the pyloric cen-
tral pattern generator of crustaceans. This neuron, called LP, when in the intact
circuit produces quite regular voltage bursts which are coordinated with bursts
of two other circuit neurons leading to an important three-phase functional out-
come for the crustacean digestive system. While model equations of motion of
the Hodgkin–Huxley form are known for this neuron [7], tests for the quality of
those models relied in the past on visual, subjective aspects of the time series of
voltage. The analysis here is both illustrative of how one uses the tools of nonlin-
ear time series analysis and has important implications for the understanding of
the entire neural circuit.

2.2 Unfolding the Data: Embedding Theorem in Practice

We will primarily focus on the usual and simplest case of time series measure-
ments of a single signal s(t). If more than a single measurement is available,
there are additional questions one may ask and answer. The signal is observed
with some accuracy, usually specified by an estimate of the “noise” level associ-
ated with interference of the measurement by other processes. The signal is also
measured in discrete time, starting at an initial time t0 and then typically at a
uniform time interval τs we call the sampling time. s(t) is thus the set of N mea-
surements s(t0 + nτs), n = 1, 2, . . . , N.
The dynamical system from which the signal comes is usually unknown

in detail. In the case of the LP neuron s(t) is the membrane voltage ranging
from about −70mV to +50mV, and while one has conductance-based Hodgkin–
Huxley models for the dynamics [8], one does not know how many dynamical
variables are needed nor does one know with any specificity the many parame-
ters which enter such models. We are certain, however, that there is more than
one dynamical variable and the system state space is not one dimensional even
though the measurement is. To describe the state of the system we need more
than amplitude and phase which is where linear analyses dwell.
The first task is to ask how many variables we will need to describe the sys-

tem. If the dynamical system has a state space trajectory lying on an attractor
of dimension dA, then our observation is the projection of the multidimensional
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Fig. 2.1: Membrane voltage across the cell membrane of an isolated LP neuron
from the crustacean pyloric central pattern generator. The amplitude on the y-axis
is in scaled, arbitrary units. The time series is shown as a solid line, but the voltages
were measured at 2 kHz or τs = 0.5ms. Altogether 200 000 data points or 100 s of
data were recorded.

orbit in a space of integer dimension larger than dA onto the measurement axis
where we observe s(t). If the dynamical system producing s(t) is autonomous,
then the orbit does not intersect itself in a high enough dimensional space captur-
ing all the dynamical variables. In a space of integer dimension D a set of points
with dimension dA intersects itself in a set of points of dimension dA + dA −D.
If D is large enough, this is negative, indicating no intersections at all. This tells
us that if D > 2dA, we are guaranteed that the space we use to describe the
dynamics will have unfolded the projection made by the measurement. This is
a sufficient condition. It could be that a dimension smaller than this unfolds the
measurement projection, but we need another tool to determine that [3, 9–16].
It was probably David Ruelle’s idea in the late 1970s that coordinates for the

space of dimension D could be made out of the observations and their time de-
lays. Takens proved a theorem [1] implying that the observed variable and any
independent set of D− 1 other variables made from s(t) would be acceptable co-
ordinates for this space. The simplest set of variables, though not always the very
best, is taken from the measurements themselves. One seeks a D-dimensional
vector made from s(t) and its time delays by forming
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y(t = t0 + nτs)

= [s(t0 + nτs), s(t0 + (n − T)τs), . . . , s(t0 + (n − (D − 1)T)τs)] . (2.1)

This D-dimensional vector is composed of the observation s(t0 + nτs) and the
j = 1, 2, . . . , D− 1 earlier observations at t0 +(n− jT)τs. If T = 1, the components
are selected at each sampling time.
To use this vector as a “proxy” for the degrees of freedom actually specifying

the state of the system (unknown to us, of course) we need to determine values
for D and T . To simplify the notation we will drop the initial time t0 and the
sampling time τs and write s(n) = s(t0 + nτs) as well as

y(n) = [s(n), s(n − T), . . . , s(n− (D− 1)T)] . (2.2)

How do we know that the sampling time τs is small enough to capture significant
variations of the dynamical signal s(t)? If we know nothing about the source of
the observations s(t), we cannot answer this question with any certainty. We will
indicate how one can test this, but that comes in a moment. If we know that
the source of the signal is an oscillating neuron, then we might know that the
typical time scale of neural activity is in milliseconds, so if τs is 1 s, we probably
have undersampled data. If τs is 1 μs, the data are probably oversampled. One
always prefers the latter situation as selecting a subset of the data to describe that
the system can be reliable. For now, let us assume that the system is properly
sampled or possibly slightly oversampled.

2.2.1 Choosing T : Average Mutual Information

The goal of replacing the original signal s(n) with a vector y(n) is to provide
independent coordinates in a D-dimensional space to replace the unknown co-
ordinates of the observed system. The components of the vector y(n) should
thus be independent looks at the system itself, so all of the needed dynamical
variations in the system are captured. If the time delay between the components
s(n − jT) and s(n − (j − 1)T) is too small for some T , then the components are
not really independent and we require a larger T . If T is too large, then the two
measurements s(n−jT) and s(n−(j−1)T) are so far apart in time that the typical
instabilities of nonlinear systems will render them essentially uncorrelated. We
need some criterion which retains the connection between these measurements
yet does not make them essentially identical.
While it is easy to evaluate the linear autocorrelation between measurements

as a function of T , the usual criterion of seeking a zero in that quantity only
leads to a value of T where the measurements are linearly independent. The dy-
namical interest of this is rather small. A much more motivated criterion, though
harder to evaluate, was suggested by Fraser and Swinney in 1986: evaluate the
average mutual information between measurements at time n and time n − T ;
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look for the first minimum in this quantity. This tells us when the two mea-
surements are nonlinearly relatively independent, and this may provide a useful
choice for T [17–21].
To evaluate the average mutual information, we need the distribution of the

measurements s(n) over the time series. This means we need to bin the ampli-
tudes s(n), n = 1, 2, . . . , N, into a normalized histogram using the whole data
set. This gives the frequency of occurrence P(s(n)). We also need to do the same
for the time-delayed data s(n− T), and we need the normalized histogram of the
joint occurrence of s(n) and s(n−T) to find P(s(n), s(n−T)). The average mutual
information

I(T) =
∑

s(n),s(n−T)

P(s(n), s(n − T)) log2

[
P(s(n), s(n − T))

P(s(n))P(s(n − T))

]
(2.3)

tells us in bits how much, on average over the whole time series or the attractor,
we know about the measurement at time n from the measurement at time n− T .
I(T) � 0, and it acts as a nonlinear correlation function. The sums are over the
binned values of the observations. Now the theorem of Takens indicates that (al-
most)1 any value of T is acceptable, if the data are of infinite precision. Well, that
is not likely, so how we choose T is bound to be somewhat arbitrary. In practice,
as the goal of this handbook, we recommend that one find the value of T for
which I(T) has its first minimum and then evaluate all subsequent quantities we
discuss for T , T ± 1, T ± 2, and perhaps T ± 3. If the conclusions from that set
of five calculations with different T are the same, then in a practical sense the
selection of T is acceptable. Choosing different T is equivalent to selecting dif-
ferent coordinate systems, connected by an unknown nonlinear transformation,
in which to view the unfolding of the observations. If the quantities of interest
are expected to be independent of the coordinate system, which is usually an
important criterion, then this is a simple practical test of that.
Let us look at our LP neuron data now. In Fig. 2.1 we present a selection of

the data of scaled membrane voltage from an LP neuron isolated from all other
electrophysiological or neurochemical input. The sampling time was τs = 0.5ms.
Figure 2.2 shows the average mutual information evaluated using all 200 000 data
points. There is a very shallow minimum near T = 10, corresponding to 5ms in
time. Note that the data are a collection of spikes riding on top of a slow, large
amplitude variation of the membrane potential with a period about 1 s. The
T selected by the first minimum of I(T) reflects the variation of the spikes at
about 30Hz.
In the literature there are often suggestions that one should use the first zero

of the autocorrelation function of the measured time series as a good choice
for the time Tτs to use in constructing the data vector y(n). In the case of the

1 Some values of the delay time T may lead to a nonfaithful representation of the dynamics that is
not equivalent to the original system. For example, a closed orbit is mapped to a point if T equals
exactly the period of the oscillation.
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Fig. 2.2: The average mutual information I(T) for the LP neuron membrane voltage
time series shown in Fig. 2.1. I(T) has a minimum in the neighborhood of T = 10;
Tτs ≈ 5ms. It is a shallow minimum.

isolated LP neuron the Fourier power spectrum of the time series is shown in
Fig. 2.3. Its Fourier transform is the autocorrelation function which shows a first
zero crossing at 245ms. This large number reflects the large amplitude oscilla-
tions near 1Hz and washes out the dynamical structure of the spiking activity at
each burst. That structure is reflected in the average mutual information choice
of Tτs ≈ 5ms.
Procedure 2.1 (Average mutual information procedure). From the amplitude range
of the observations s(n) form B bins. Record the frequency with which each bin is occu-
pied by the values of s(n). Normalize the frequency of occurrence by the total number of
data. This normalized histogram is P(s(n)). Vary B to assure yourself that the ampli-
tudes are properly sampled.
Do precisely the same with the observations s(n − T ). The corresponding distribution

P(s(n − T )) should be the same as P(s(n)) if your data are stationary-independent of
the origin of time-indicating autonomous oscillations of the signal source.
From the amplitude range of the observations s(n) and s(n − T ) form B2 bins.

Record the frequency with which each bin is jointly occupied by the values of s(n) and
s(n − T ). Normalize the frequency of occurrence by the total number of data. This nor-
malized histogram is P(s(n), s(n − T )). Vary B to assure yourself that the amplitudes
are properly sampled.
By summing over the bins evaluate

I(T ) =
∑

s(n),s(n−T)

P(s(n), s(n − T )) log2

[
P(s(n), s(n − T ))

P(s(n))P(s(n − T ))

]
. (2.4)


